1986ARA&A. . 24. . 127N

Ann. Rev. Astron. Astrophys. 1986.24 : 127-70

MAXIMUM ENTROPY IMAGE
RESTORATION IN
ASTRONOMY'

Ramesh Narayan

Steward Observatory, University of Arizona, Tucson, Arizona 85721

Rajaram Nityananda

Raman Research Institute, Bangalore 560080, India

1. INTRODUCTION

Imaging the two-dimensional intensity distribution of the sky has always
been an important part of astronomy. This is particularly true at present,
a time when aperture synthesis mapping is firmly established in radio
astronomy, charge-coupled devices are revolutionizing optical imaging,
and X-ray-imaging cameras are being flown in space.

Atmospheric irregularities, instrument aberrations, detector noise, and
the diffraction limit all cause the observed image to deviate from the ideal
one. Image restoration techniques have therefore had a long history. The
field owes much to the classic papers of Bracewell & Roberts (12) and
Fellgett & Linfoot (35), which focused attention on the amount and nature
of information about the image present in the measurements. These ideas
have become increasingly relevant with the growth of interferometry,
where the data correspond to the Fourier transform of the image. The
Michelson stellar interferometer (82) was an early application in optical
astronomy. However, it is at radio frequencies where interferometry has
proved most fruitful and where astronomers have had to face the problem
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of constructing an image from incomplete knowledge of its Fourier
coefficients.

An important step forward was the realization that the information
contained in the measurements should be supplemented by prior knowl-
edge about the image. A powerful example of a priori information is the
positivity of intensity. In X-ray crystallography, positivity of electron
density has been the cornerstone of the remarkably successful “‘direct
methods” (71, 78), while in astronomy the early work by Biraud (10)
demonstrated that resolution enhancement is possible by using the posi-
tivity constraint to supplement the data. Another successful application
of a priori information is the widely used Clean algorithm of Hégbom (56,
58), which exploits the fact that point sources dominate many radio images.
More recently, the Maximum Entropy Method (MEM) of inference intro-
duced by Jaynes (62, 66) has been widely used and even more widely
discussed for image processing. This method, which is reviewed here, aims
to obtain the most probable nonnegative image consistent with the data,
based on the number of ways in which such an image could have arisen.

Early work by Frieden and collaborators (40, 42) and Ables (1) demon-
strated the promise of the MEM for image processing, and this potential
has been largely fulfilled in later work. Applications to real data include
the image of Ganymede produced by Frieden & Swindell (43), as well as
Gull & Daniell’s (49) work on radio images. Applications to X-ray (34)
and gamma-ray (109) data have also been made. Figure 1 shows two
examples where the MEM has clearly resulted in remarkable improvement
over the raw unprocessed image. With the availability of large computers
and an improved understanding of the method, it is likely that use of the
MEM in astronomy will continue to increase. A serious study of its
properties and limitations is therefore useful, not only to the producers of
MEM maps, but also to the wider community of consumers who need to
examine them critically.

Understanding of the MEM has so far mostly been based on discussions
of the conceptual foundations of the method, which are reviewed in Section
2. However, enough experience in the use of the MEM has accumulated
to attempt a more systematic and detailed analysis of its properties, includ-
ing a discussion of the role of noise. This is the subject of Section 3.
Remarkably, many of the results here do not depend on the precise form
of the entropy function being maximized. Practical algorithms for entropy
maximization are covered in Section 4. Extensions of the MEM that
have been proposed for specialized applications such as polarization data,
spectral mapping, and phase refinement are discussed in Section 5. These
are areas where much work remains to be done. A comparison of the
MEM with other image-restoration techniques, in particular the Clean
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algorithm and various positivity-enforcing schemes, is made in Section 6.
Finally, Section 7 gives our view of how far the MEM has come and what
the outlook is for the future.

To set the stage for our discussion of the MEM, we start in Section 1.1
below with a brief review of the image-restoration problem as it arises in
single-aperture and synthesis (1.e. interferometric) measurements in astron-
omy. We then introduce the maximum entropy (ME) solution to this
problem in Section 1.2.

1.1 The Image-Restoration Problem

We consider a somewhat idealized and simplified picture of the image-
restoration problem. Let I(x,y) be the true two-dimensional intensity
distribution (we refer to this as the “object” or “true image’), where x, y
are orthogonal angular coordinates in some small region of the sky. To
clarify the conceptual ideas involved, we consider the case of ground-based
optical or infrared imaging by a single aperture. Atmospheric “seeing”
(125) causes a blurring of the image, so that the measured image D(x, y)
(where D stands for data), after correcting for spatial variation of the
detector response (“flat-fielding”), takes the form of a convolution

D(x,y) = JJP (x—x",y=y)(x',y") dx" dy’+ N(x, y). L.

The function P(x, y) is the point-spread function (psf) of the telescope and
describes the measured image corresponding to an isolated point source.
For a telescope with a circular aperture, P(x,y) consists of a central
peak at x = y = 0 with a characteristic half-width w, which measures the
resolution limit imposed by the seeing disk. N(x, y) is the noise in the data.
Equation 1 shows that the fine details in the object are washed out in the
measured image by the blurring due to the psf as well as the presence of
the noise. Image-restoration techniques attempt to overcome such degra-
dation, which is inherent to the measuring process.

The information about the object that is contained in the measurements
is best appreciated in the Fourier plane. Let us represent the image as a
Fourier series

[ce]

I(x,y) = Yy I(u,v)exp[2mi(ux+0vy)] 2.

up=—00

with coefficients given by

1/2

I(uw) = *(—u, —v) = le(x,y) exp [—2mi(ux+vy)] dx dy. 3.

—12
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Figure 1 (A) Anexample of maximum entropy image restoration in radio astronomy. Top:
An unprocessed image (“‘dirty map”) of the radio source Cygnus A made at 6 cm with the
Very Large Array of the NRAO (operated by Associated Universities, Inc., under contract
with the National Science Foundation). Middle: A maximum entropy reconstruction from
the same data. Bottom : A maximum entropy reconstruction after the data have been “self-
calibrated” (92). Observers: R. A. Perley, J. W. Dreher. (B) Top: An optical photograph of
the galaxy M87. Bottom: A maximum entropy reconstruction [Bryan & Skilling (18), with
permission from the Royal Astronomical Society].
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Figure 1 (continued)
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Equation 1 then becomes
D(u,v) = P(u,0)I(u,v)+ N(u,v), 4.

where the Fourier transforms D, P, and N have definitions similar to that
of I. We have for convenience adopted units such that the region of sky
being mapped extends from —1/2 to +1/2 along x and y. The integers u
and v are called spatial frequencies, since larger values correspond to a
more rapidly oscillating function of the angles x and y. For the form of
P(x, y) described above for a single aperture, P(u, v) consists of a central
peak at u = v = 0 with a half-width w ~ 1/mw, proportional to the reciprocal
of the width of the seeing disk. Thus, by Equation 4, Fourier amplitudes
I(u,v) in the true image with (#2+1v?)"2 > W are severely reduced in the
data D(u, v) as a result of the falloff in P. Since the noise usually does not
vary rapidly with u,v, this means the higher spatial frequencies in the
measured image are progressively swamped by the noise, and so there is
no direct way of inverting Equation 4 to obtain I(x, v). Hence, one needs
image restoration techniques to estimate the high-spatial-frequencies in
the object.

X-ray imaging also is described by Equation 1, and many of the cameras
flown in space [e.g. the Einstein telescope (46)] have point-spread functions
very similar to the single-aperture case described above. However, there
is an alternative design involving the use of a coded mask in front of the
telescope aperture (110), where the psf consists of a number of peaks
scattered over a wide area. Here, the deconvolution of Equation 1 is
essential before any interpretation of the observations is possible, in con-
trast to the case discussed earlier, where the image is a smoothed version
of the object and therefore resembles it even before processing.

Mapping at radio frequencies using aperture synthesis (38) is somewhat
different from the above. This is a case of “‘indirect imaging” (96), where
the data consist directly of the Fourier transform I(x,v) of the object
(also called the visibilities), measured interferometrically by correlating the
signals received by a pair of telescopes. The indices u and v are proportional
to the spatial separation in wavelengths of the two telescopes and are
hence also called baseline components. Owing to practical limitations, one
obtains measurements only over a finite set of baselines (u, v), which we
denote by K (standing for “known’’). Thus, all spatial frequencies beyond
a certain maximum spacing are unmeasured. In addition, gaps in the data
may also occur at lower frequencies, often near the origin in Fourier space.
We denote the measured and unmeasured frequencies by (u,v)€K and
(u,v) ¢ K, and thus the situation is described by Equation 4 with

I,  (wv)ek,

Peo) o wnek
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Because of the abrupt transition in the magnitude of P(u,v) between
measured and unmeasured spatial frequencies, the psf P(x, y) (called the
“dirty beam” in radio astronomy) now consists of secondary peaks, or
“sidelobes,” of appreciable amplitude surrounding a central peak of finite
width. If the unmeasured D(u, ) are set to zero, the measurements alone
(restricted to u,veK) can be Fourier inverted to generate a map D(x, ).
This image is called the “principal solution” or, in radio astronomy, the
“dirty map.” The sidelobes in the psf cause oscillations, or “ripple,” in the
principal solution around strong point sources and sharp edges. At a
deeper level, these artifacts are a consequence of setting unmeasured
Fourier coefficients to zero, which is an arbitrary procedure (1). They
make it extremely difficult to see weak features in the map, and so image
restoration gets elevated from a luxury to a virtual necessity.

Summarizing the various cases discussed above, we note that the goal
of image processing is to extract from the measured data an approximation
to the true image with reduced ripple and possibly improved resolution,
making due allowance for noise. This involves some form of extrapolation
in the Fourier domain. This is certainly true in aperture synthesis, where
the high-frequency data are missing altogether. (In this case one also needs
interpolation to fill in the missing shorter spacings.) But it is also true in
the single-aperture case discussed earlier, where the algorithm should give
less weight to high-spatial-frequency data that are badly corrupted by
noise and instead give more importance to extrapolated values obtained
from better data at lower frequencies.

The classical method of reducing the effect of sidelobes and high-
frequency noise is to convolve D(x, y) with a suitable smoothing function,
such as a Gaussian. This is equivalent to multiplying D by a “filter,” a
process that unfortunately further attenuates higher spatial frequencies.
Ables (1) has pointed out the irony of going to great expense to build large
single apertures or arrays, only to damp out the costliest measurements
to insignificance! Also, such a linear operation cannot generate nonzero
values at unmeasured spatial frequencies, nor can it sensibly extrapolate
into noise-contaminated regions of the uv plane. We thus conclude that
successful image restoration requires nonlinear methods (41, 117).

Several good reviews are already available, describing a variety of linear
and nonlinear algorithms for astronomical image restoration (5, 11, 41,
113, 119). A common feature of all nonlinear algorithms is that they
generate nonzero values for unmeasured (or very noisy) data instead of
making them zero as in linear methods. Such a procedure is sensible
because these methods use a priori information, such as positivity of
intensity or finite spatial extent of the source of interest. A natural effect
of this extrapolation into unmeasured regions of data space is increased
resolution. The actual amount of “‘superresolution” obtained will clearly

© Annual Reviews Inc. * Provided by the NASA Astrophysics Data System



1986ARA&A. . 24. . 127N

134 NARAYAN & NITYANANDA

depend on how strongly the a priori information constrains the un-
measured data. However, a modest degree of superresolution (not more
than a factor of two) will often be possible and need not be treated with
suspicion. We should distinguish clearly between superresolution based on
a priori information and that based on analyticity of the data. The latter
requires infinite signal to noise (5, 117) and is only of academic interest.

A note on notation. In parts of Sections 2 and 4, the discussion requires
only the general structure of the relation between the object, the psf, the
data, and the noise ; thus, we write

D,=)Y P,J+N, r=1,2,...,m. 6.
=

Here [; is the intensity in the ith pixel, P, is the contribution it makes to
the measurement D,, and N, is additive noise. In Section 3, however, we
use the more concrete Fourier relation of Equation 4, which is a particular
case of Equation 6.

1.2 Maximum Entropy Image Restoration

The MEM is a particular nonlinear image restoration scheme that is being
increasingly applied in a number of fields. Here, the entropy of an image
I(x, y) is defined to be

S = fjf[[(x, y)] dx dy, 7.

where f is a suitably selected function. This expression for the entropy is
maximized subject to the constraints imposed by the data. Without the
ME condition, the inversion of Equations 1 or 4 is ill posed, since the data
can be satisfied by an infinity of maps that differ from each other at
unmeasured spatial frequencies by arbitrary amounts, and at measured
frequencies by amounts consistent with the noise. The condition that the
entropy be a maximum selects one among these many possible solutions
and therefore regularizes the problem (115).
Two forms have been proposed for the entropy function f, namely

fid)=1n1, fol) = —In I 8.

The standard arguments in favor of these functions are discussed in Sec-
tions 2.3 and 2.4. Here we mention two important properties possessed
by both forms. Firstly, they do not permit negative values of I, thus
automatically imposing the positivity constraint on the image (see Section
6.2 for more on positivity). Secondly, when the only available measurement
is the total flux, both forms have maximum entropy for a uniform image
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with a constant intensity. This suggests that the MEM is maximally non-
committal regarding unmeasured data (1), and that it produces images
that are as featureless as possible (93). The entropy forms in Equation 8
are sometimes defined in terms of intensity proportions 7,/Z ;. This intro-
duces additive and multiplicative constants (e.g. see Equation 15), which
are of no consequence in the maximization of entropy.

The more practical-minded reader could at this point go directly to
Section 3, which describes general properties of ME images. Perhaps this
will whet his appetite for the discussion of the foundations of the MEM
given in Section 2.

2. ORIGINS AND MOTIVATIONS OF THE
MAXIMUM ENTROPY METHOD

The concept of entropy in thermodynamics has intrigued generations
of physicists, chemists, and biologists. Its generalization has played an
important role in the theory of probability, communication, and statistical
inference. The application to images is in a sense a particular case of the
last of these. This section reviews some of this background material very
briefly and attempts to guide the reader through the literature on the
problem of assigning a functional form to the entropy of an image.

2.1 The Concept of Entropy

As introduced by Boltzmann into statistical mechanics, the entropy S is a
measure of the number of microscopic ways that a given macroscopic state
can be realized. For W alternatives, each with probability p, = 1/W, the
entropy is

S=Iln W= —In py.

When the alternatives, labeled by i, have probabilities p,, this equation is
generalized to the following average :

S=—lnp,~=—Zp,-lnp,-. 9.

The choice of the logarithm in these equations ensures the desirable
property that the entropy behaves additively when one multiplies the
probabilities for two independent systems. Thus

- ZZP:‘%‘ In (pig) = — Zpi In Pi—z g; In g;,
i 1 J

where we use Xp,=2Xg;=1. Indeed, this property of additivity,
combined with a few more reasonable axioms, leads uniquely (73) to
Equation 9.
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The classic papers by Shannon (101, 102) introduced the idea that the
information gained in a measurement depends on the number of possible
outcomes out of which one is realized. Equation 9 applied to messages
is the basis for the mathematical theory of communication. The direct
generalization for a continuous variable with probability density p(X)
gives

§=- JP(X) In [p(X)] dX.

However, if we change to a new variable Y with density g(Y) given by
p dX = q dY, the entropy would read

S=- jq(Y) In [¢(Y)/J(Y)] 47,

where J(Y) (=dX/dY in one dimension) is the Jacobian of the trans-
formation from Y to X. We thus see that in general the entropy must be
written as

S=- JP(X) In [p(X)/po(X)] dX, 10.

where the function p,(X), known as the “prior,” can be regarded as
containing information about the coordinate system used. The analog of
po(X) for a discrete variable would be a degeneracy factor g; associated
with the state i. The probability p; has to be distributed over g; substates,
and adding the contributions to the entropy gives

S=— ZP:‘ In (pi/g). 11.

An important property of entropy is that for a uniform prior, it is
maximum when p; = constant = 1/(number of states) or p(X) = constant.
This is intuitively reasonable, since a flat probability function represents
a state of maximum ignorance or minimum information. More precisely,
the maximum is attained when p; and p(X) are proportional to their
respective priors g; and py(X). The choice of prior in a problem is therefore
rather important. In favorable cases, a prior may be suggested by symmetry
(64), but in general, different priors (which express different counting rules)
are all equally legitimate from the point of view of pure probability theory.
Only further experimental or theoretical input can single out a particular
prior. For example, in statistical mechanics, equal weights are assigned to
equal numbers of energy levels or equal volumes in phase space. The
ultimate justification for this has to be sought in the dynamics of a many-
particle system [see (63), however].
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2.2 The Bayesian Strategy

Out of all images that satisfy the measurements, it is natural to select the
one that maximizes a given measure of entropy. A parallel procedure is
used in statistical mechanics, where, given the total energy and number of
particles of a gas, entropy maximization is used to deduce a distribution
that is uniform in space and Maxwellian in velocity. We can picture
a complete collection of images corresponding to all possible intensity
distributions. On this, the measurements act as a filter, restricting our
attention to those images that satisfy the data to within the noise. Among
these, the one that could have arisen in the maximum number of ways
(which depends on our counting rule) is a natural choice. Such an approach
to statistical inference was suggested as early as 1763 by Bayes (8) and has
been championed in recent times by Jaynes (67). The basic idea is contained
in the following relation between conditional probabilities :

P(A| B) = P(4)P(B| A)/P(B). 12.

In our application, A4 is the unknown image (represented by the set of
intensities 7;), and the data D, (represented collectively by B) are a noisy
convolution of the image with the psf P,; (Equation 6). In Equation 12 we
are interested in evaluating the conditional probability P(A4 | B) of animage
A given the measurements B. The quantities on the right-hand side have
the following meanings. P(A) is the a priori distribution of images based
on our counting rule and is related to the entropy S of the image by

P(A) = P(I) oc exp [S(T)]. 13.

P(B| A) 1s the conditional probability of obtaining the measurements B
for a given image A, given by

P(B|A) oc [] exp(—N?267) =[] eXP[—(Z_ P,,-I,-—D,)z/263]

for the simple case of uncorrelated Gaussian noise N, with variance ¢?2.
The denominator P(B) is independent of 4 and serves merely to ensure
the correct normalization. Given the data, the most probable image is
obtained by maximizing P(A4|B), or equivalently by maximizing the
product of the previous two equations. Taking the logarithm, we thus
need to maximize

In P(4|B) = SI)— Y (z P,,.I,.—D,>2/2o-3, 14.

which is a linear combination of two terms : (@) the entropy of the image,
and (b) a quantity corresponding to 2 in statistics measuring the dis-
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crepancy between the data and the predictions of the model. Although
we have chosen Gaussian noise for simplicity, the Bayesian approach is
general and has been applied to the Poisson noise case in optical (44)
and gamma-ray (109) astronomy as well.

Thus, the application of the MEM to image reconstruction fits very
naturally into the Bayesian framework. While the underlying Equation 12
is not controversial, the choice of an a priori distribution P(A4) has been
debated in statistics (72) for a long time, and the same is true of P([) in
image restoration.

2.3 Choice of the Entropy Function

In his pioneering work on estimating a power spectrum I(w) from its first
n autocorrelations, Burg (20) used the expression (In [/(w)] dw for the
entropy. To motivate this, one can loosely think of I(w) as the absolute
square of a Fourier coefficient E(w) of a sufficiently long stretch of the time
series. For a Gaussian stationary random signal, the individual Fourier
coefficients are independent Gaussian variables. Then the entropy associ-
ated with each can be shown to be proportional to In (variance), i.e. to
In[I(w)]. (For instance, the entropy associated with the Maxwellian
velocity distribution at temperature 7 is proportional to In 7.) In the case
of aperture synthesis in radio astronomy, the electric field distribution on
the aperture plane is a two-dimensional stationary Gaussian random
function, whose power spectrum is the sky intensity distribution I(x, y).
From this point of view, the entropy expression

S, = Jf In [I(x,y)] dx dy

is applicable to images (1, 93, 122). Another derivation (74) is based
on the thermodynamic entropy associated with the radiation field that
constitutes I(x, y). In the limit of a large number of photons per mode
(n > 1), which is valid in the radio domain, the Bose formula (79) for the
entropy, (1+#) In (14+n)—n In n, reduces to In 7.

In contrast, the early work of Frieden (40) on image reconstruction was
based on the entropy form

S, = —fj[(x,y) In [I(x, y)] dx dy.

In one motivation for this form, the image is built up from equal “lumi-
nance elements” (65) placed at random over the field—in Gull & Daniell’s
(49) picturesque analogy, as if monkeys were given building blocks. For a
map with intensity 7; in the ith pixel, we normalize the intensity by the
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total flux D, = X I; and define the fractional intensity f; =1I,/D,. The
usual combinatorial arguments used in statistical mechanics (79) then

show that the number of ways W that an image can be built up is given
by W =exp(S,), where

S, & —NZfi In f;= —(N/Dy) Y. I, In I,+constant. 15.

(Henceforth we disregard additive constants in the entropy, since they do
not affect the maximization condition.) Another approach (74) considers
the thermodynamic entropy in the limit of a small number n « 1 of photons
per mode, which is usually valid at optical and higher frequencies. This
reduces to the form —# In #. It has been pointed out (50) that the strictly
thermodynamic approach gives different answers in the radio and optical
domains, a result that is undesirable. Yet another approach (108) considers
the entropy associated with the probability distribution for the arrival of
the next photon [see (27) for a recent critical discussion of this approach].

The two distinct entropy expressions S; and S, do not contradict each
other, since they correspond to different probability distributions that
one can associate with the same image. The basic question, as posed by
Wernecke (120), is “Entropy of what?”” This has not yet been conclusively
answered, although for image restoration the form S, seems to have more
supporters at present.

2.4 Axiomatic Approaches to the Inference Problem

Since the Bayesian strategy is impeded by our ignorance of the true entropy
function, many authors have attempted to derive the ME principle from
other considerations. As early as 1957, Jaynes (62) suggested that any
function other than S, may lead to logical contradictions. More recently
(51, 105, 106, 116), formal arguments have been advanced to prove that,
given expectation values of various observables {(A4) = X 4,p;, the only
consistent way to determine the underlying probability distribution is to
maximize —Xp;In p,, The essential point is that when we deal with
measurements on two independent systems with states labeled by X and
Y, there are two approaches that must give the same probability for
the joint system: (@) Maximize the entropy associated with the proba-
bility distributions p,(X) and p,(Y) separately (each constrained by its
own data) and form the product, which by construction will have a factor-
ized form. (b) Construct a joint distribution p(X, Y) by maximizing the
entropy while simultaneously satisfying the measurements on X as well
as Y. Only S, gives a factorized solution by method (b) (51) and could
therefore be singled out as the only consistent choice.

There are three points to keep in mind concerning the axiomatic
approach.
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Figure 2 (Left) Projections on two perpendicular axes of an unknown image. (Middle) A
reconstruction from these projections by the maximum entropy method with — I In I, show-
ing the factorized form with four sources on a perfect rectangle. (Right) An astronomically
more plausible model with only two sources fitting the same data.

1. Itis not obvious that a brightness distribution can be identified directly
with a probability distribution. Hence, a factorized solution is not
necessarily the best choice in image restoration. In fact, Figure 2 gives
an example showing that a factorized image would be most undesirable
in a simple example with two sources and two perpendicular scans.

2. For continuous probability distributions, the form of the entropy is
given by Equation 10 with a general prior distribution p,(X), and even
in the discrete case a degeneracy factor g; is possible (Equation 11).
With this added freedom, there is a wide variety of solutions (48).

3. The a prioriinformation that the two systems are independent should be
included by maximizing the entropy over distributions of the factorized
form p,(X)p,(Y). When this is done, many more expressions, such as
p~* and In p, also lead to consistent results (70).

2.5 Entropy Maximization and A Priori Information

Jaynes (62) and Burg (20) have noted that the MEM gives solutions that
are positive, as required for probabilities, power spectra, and images.
Hogbom (57) pointed out that functions like In 7 and —7 In I have two
vital properties: (a) infinite slope at 7 =0, which enforces positivity;
and (b) a negative second derivative, which discourages ripple. This is
illustrated in Figure 3. Also, Subrahmanya (114) has obtained success-
ful reconstructions from lunar occultations by maximizing a ‘“‘penalty
function™ that discourages negative values and rapid variations. All this
suggests that in favorable cases, very general a priori information like
positivity and absence of ripple may be used to constrain the solution
rather tightly, and that the detailed form of the entropy/penalty function
may not be of much consequence so long as it satisfies the above general
properties. Tests with different entropy forms such as S, and S, with model
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data do indeed confirm that the results are similar (55, 88, 121). More
detailed reasons for this are given in Section 3.1.

In implementing the penalty function approach, one maximizes a linear
combination of the y? statistic and the penalty function in order to satisfy
both the data and the a priori information. This is rather similar to what
is done in the Bayesian approach (Equation 14) if we identify the penalty
function with the logarithm of the a priori distribution. Experimenting
with different penalty functions can thus be regarded as equivalent to
exploring the consequences of different a priori distributions, which is
regarded (68) as an important part of the Bayesian framework.

3. GENERAL PROPERTIES OF MAXIMUM
ENTROPY IMAGES

Having decided to maximize a suitable entropy function, one would like
to know what kind of imiages to expect. The standard statements that the
image is ‘“‘maximally noncommittal’’ or “‘as featureless as the data allow”
are too general to be useful. Fortunately, as we show in this section, the
actual condition for the entropy to be a maximum allows a rather detailed
analysis of the general properties of ME images (just as Newton’s laws
give a better feeling for the motion of a particle than does the principle of
least action). The material that follows is unavoidably long and technical,
since we feel that the nature of ME images deserves a detailed and self-
contained treatment. Hopefully, the following preview will help readers
locate the main results. The form of the ME image is described by Equa-
tions 18 and 19 below and is illustrated in Figure 4, on the basis of which
many properties of the restoration become rather easy to understand.
These are listed in Section 3.1.1 under points (1)-(10) for the conceptually

Figure 3 Graphs of the functions In I and
—1I In I, showing the infinite slope at 7 =0
and negative second derivative that make
— them suitable as penalty functions for image
restoration (57). The function I'2, which
shares these properties and represents an
intermediate case, is also shown.
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simplest case, namely noise-free interferometric data. Section 3.1.2 is
devoted to the effect of noise and the important question of the residuals,
while Section 3.1.3 deals with the single-aperture case. The properties
(1)10) retain their validity even in these more general situations, while
additional features are listed under points (11)(15). Section 3.2 describes
various suggestions that have been made to overcome the defects of the
MEM. The different choices of entropy function are compared in Section
3.3, and from this comparison the unique properties of —/7In I are
revealed.

3.1 Form of the ME Image

3.1.1 NOISE-FREE INTERFEROMETRY In order to introduce the ideas one
at a time, we start with the simplest situation here and generalize in later
subsections. Consider the problem of reconstructing I(x, y) from noise-
free interferometric measurements D(u,v) over the “known” spatial fre-
quencies (#,v) € K. Each data constraint is of the form (Equations 4 and 5
with N = 0)

I(u,v) = D(u,v), (u,v)€K, 16.

where I(u,v) is related to the reconstructed image through Equation 3.
Introducing Lagrange multipliers A(x, v) for the data constraints (31), we
then have to maximize a linear combination of the entropy (Equation 7)
and the constraints, i.e.

S = JJf(I) dx dy+ ). Au, v){jjl exp [ —2ni(ux+vy)] dx dy

u,pek

— D, v)} . 17.
If we differentiate with respect to I(x, y), this gives

fHx, )] = — ) Mu,v)exp[—2ni(ux+vy)] = J(x,), 18.
u,vek
where 1" is the derivative of f. (The symbol = denotes a definition.) When
this solution is substituted in the constraints (Equation 16), we obtain a
set of nonlinear equations for the A(u,v). For our purposes, the crucial
observation is that the function J(x, y) in Equation 18 is ““band limited,”
i.e. it has only a finite set of Fourier frequencies [in this case the set (v, v) e K
corresponding to the measurements]. The ME image 7 can now be found
by formally inverting the function f” in Equation 18, i.e.

I(x,y) ="~ '[J(x, )] = glJ(x, y)]. 19.
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For the two standard forms of entropy (f; =In I, f; = —I In I), we have
g1 =1,  g,(J)=exp(—1-J).

Thus, the image is a nonlinear function (reciprocal or exponential) of the
band-limited function J(x, y). (The exponential function is responsible for
the factorization property of ME images constructed with the —71n 7
entropy mentioned in Section 2.4 and Figure 2.)

The transformation between the image I(x, y) and the associated band-
limited function J(x, y) is illustrated in Figure 4, which can be used (88)
to bring out the following properties of ME images :

1. Since there are no Fourier components in J(x, y) corresponding to
the unmeasured spatial frequencies («, v ¢ K), these can be generated in the
restored image only by the nonlinearity of g(J), or equivalently of f”(1).
Thus, for Fourier extrapolation and interpolation, the slope f”(I) of the
“transfer function” in Figure 4 should vary significantly over the range of
values of 7 in the restoration.

2. If the data correspond to a map I(x, y) with a large constant baseline,
we have I, — i, < I,i,. We then operate on a small linear section of the
curve I(J), and there will be no generation of unmeasured spatial fre-
quencies (9), i.e. we get back to the principal solution. As a corollary, if
we add a constant C to the map before processing [equivalent to increasing
1(0,0) by C or to doing ME with f(I+ C)] and subtract it out at the end,
the resulting image will depend strongly on C.

-3. The two functions f; and f, of Equation 8 have the common features

ff(H<o0, f"U)>0. 20.

Therefore, the slope of the curve f’(J) in Figure 4 has a small magnitude
at large I. The peaks in the image are thus sharper than those in a band-

£(1)=1

Figure 4 The relationship (Equations 18
and 19) between a one-dimensional /(x) and
J(x) for the entropy form f(I) =In I The
band-limited “input signal” J(x) at top left
(x increasing to the right) is modified by the
“transfer function” I = g(J) at top right to
produce the maximum entropy image I(x) at
bottom right (x increasing downward). Note
the flattening of the baseline and the sharp-
ening of peaks in I. These effects would occur
for all choices of f(I) that satisfy Equation
20, including the forms — 7 In I and ' dis-
cussed in the text.
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limited function, i.e. we have “‘superresolution.” The reason for this is, of
course, the Fourier extrapolation caused by the nonlinearity. Note that
the sign of f(I) or f’(I) is immaterial for this argument.

4. Since the slope has a large magnitude at lower values of I, the
oscillations present in the baseline of I are weaker than those in a band-
limited function, i.e. we have ripple suppression. This implies Fourier
extrapolation and, more importantly, interpolation when there are gaps
in the data at low spatial frequencies.

These properties of the MEM are illustrated in Figure 5, which shows
a model source that is complex enough to resemble real cases. A com-
parison of region A in the true map, the principal solution, and the
ME reconstructions brings out the basic peak-sharpening tendency of the
MEM. Similarly, region B illustrates the baseline-flattening effect. These
two fundamental properties of the MEM were clearly stated in Frieden’s
1972 paper (40).

5. The two entropy functions (Equation 8) give similar results when the
degree of nonlinearity, measured by the parameter

R = f"(Lnin)[f" (Lmax); 21.

has similar values (88). In fact, one could consider other functions sharing
the same general properties as those given in Equation 20. In Table 1, the
three functions In I, I'?, and —I In I are compared, and it is clear that
I'"? represents an intermediate case between the usual In 7 and —I'ln /
entropies. This is also seen directly in Figure 5 from the reconstructed
images produced by the three forms of f(I). The success of I'/2, which has
no information-theoretic backing (no logarithms!), is a strong point in
favor of the penalty function interpretation mentioned in Section 2.5. This
similarity of reconstructions made with different choices of f(I) was first
noted by Wernecke (121 ; see also 55, 88).

6. Around a maximum or a minimum, the band-limited function J(x, y)
can be Taylor expanded up to quadratic terms. For the f; and f, cases,
the form of the restoration I(x, y) near such a point (x,, y,) would then be

Ii(x, y) = 1/[a(x — x0)* + 2b(x — x,) (¥ — yo) + c(y — yo)* + dI,
22.

L(x,y) = exp[—a(x—x0)* —2b(x —X0) (¥ — yo) — c(¥y — yo)* — (d+ 1)],

respectively. We thus have anisotropic Lorentzian ( f;) and Gaussian ( f3)
peaks (88). This argument is applicable to sharp peaks, where the function
I(x, y) has fallen appreciably while the change in J(x, y) is still small enough
to be described by the quadratic terms.

7. The resolution is greatest for the highest peaks in the map and
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Figure 5 (Top left) A model source. (Top right) The principal solution (dirty map) when
the coverage is limited to (22 +1v%)"? < 8.5. The size of the psf at half-maximum is shown by
the hatched circle. (Center) ME restorations with —1I ln I (left) and ' (right). (Bottom left)
The In I restoration. (Bottom right) A typical restoration with the Clean algorithm. The
contour levels in the figures are as follows : solid contours at 1, 2, 4, 6, 8, 10, 15, 20, 25, 30,
40, 50, 60, . . ., dashed contours at —1, —2, —4, . . ., in units where the main peaks in the
model have height 100. The ME restorations, which all correspond to R = 100 (see Equation
21), resolve the two peaks in region A of the model, remove the ripple in the baseline (region
B), have reduced resolution for the lower peaks in region C, and create spurious peaks near
the absorption feature in region D. Note the remarkable similarity among the three ME
restorations.

Table 1 Properties of three choices of entropy function

) frin=J i) =g0) AU A0}

In I 11 1/J —1r 2P
1”2 1/21'2 1/4J> —1/41°2 3/81°%2
—Iln7t —1—-InI | exp(—1-J) -yr 1/?
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progressively decreases for lower ones (32, 76, 88), as is seen by comparing
regions A and C of Figure 5. Because of this variable resolution, it is
dangerous to attach too much significance to the heights of restored peaks.
Integrated fluxes are likely to be more reliable.

8. Ripple suppression on a plateau is less effective than on the baseline
(13, 76, 88). Thus, the sidelobes of an isolated source are better suppressed
than those of a point source embedded in an extended region of emission.

9. Points (3) and (4) above show that forms of entropy that satisfy
Equation 20 implicitly assume that the source of interest occurs with high
values of I and the background with low values of I. If we consider the
opposite case, where a smooth background continuum is absorbed by
compact foreground sources, all such forms of the MEM will give poor
results (85). This is illustrated in region D of Figure 5, where spurious
peaks appear on either side of the absorption feature.

10. The condition f”(I) < 0 in Equation 20 ensures that the entropy is
a convex function of the intensity. It can then be shown (21, 121) that the
maximum of §” in Equation 17 is unique.

One can regard the functional form (Equation 18 or 19) of the MEM
image as a model that the method fits to the measurements. The various
items listed above are then properties of this model, which may or may
not be desirable for a specific problem.

3.1.2 INTERFEROMETRY WITH NOISY DATA Ables (1) suggested that for
noisy data, Equation 16 should be replaced by a single constraint that sets
the x? term equal to its expected value Q, so that the predictions of the
model deviate from the data by the expected noise. We thus have the
constraint

=Y [H(u,v)—D(u,v)}6*u,v)] = Q ~ m, 23.

u,veK

where 6%(u, v) is the variance of the measurement D(x, v). The last relation
says that Q (the expected value of x?) is equal to m (the number of

independent data) when m is large. Using the method of Lagrange multi-
pliers once more, we now have to maximize

S = j f) dx dy—A(x*—Q), 24.

which, for f(I) = —I In I, appears very similar to the quantity that had
to be maximized in the Bayesian framework (Equation 14 with S given by
Equation 15). However, there is a crucial difference, namely that the
relative weight of the two terms in the Bayesian case is not an adjustable
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parameter but instead depends on N (the number of luminance elements
or building blocks involved). There is thus no guarantee that the residuals
will have the right magnitude. O’Sullivan & Komesaroff (91) have pointed
out that when N becomes large, the a priori distribution P(Z;) of Equation
13 will peak so sharply at the flat map [I(x, y) = constant] that the data
will be almost entirely disregarded and the residuals will be enormous.
While there have been various suggestions about a choice of N in the
Bayesian framework (68), it appears that this paradox is still unsolved in
principle. In practice, users of the MEM follow Ables and adjust the
Lagrange multiplier to obtain the expected level of residuals. For brevity,
we refer to this procedure as least-squares MEM.

Returning then to our aperture synthesis example with the inclusion of
noise, we now have to maximize Equation 24. Substituting Equation 3 and
differentiating with respect to an unmeasured Fourier coefficient of the
image [i.e. I(u,v), (u,v) ¢ K], we find that

j /(D exp [2ni(ux+vy)] dx dy = J(—u, —v) =0, (w,v)¢ K. 25.

[The measured set K is symmetric (i.e. if ,v are in K, then —u, —v are
also in K).] The above equation states that the Fourier coefficients J(u, v)
of J(x,y) vanish except for those spatial frequencies (u,v)eK that are
measured.

11. Thus, J(x,y) is a band-limited function as before (87), and all the
consequences of this statement discussed in Section 3.1.1 hold.

The new feature in least-squares ME is that over the measured spacings,
the model predictions I(u,v) differ from the data D(u,v). Differentiating
Equation 24 with respect to I*(u, v) = I(—u, —v), (u,v) €K, we find that

J(u, v)— AlI(u, v)— D(u, v))/6*(u,v) =0,  (u,v)ek. 26.

12. The residuals I—D between the model I and the measurements D
are thus far from random (18, 88). In the simple case when 6(u,v) is
independent of (u,v), the residuals are proportional to the Fourier
coefficients of the band-limited function J(x, y) = f'[I(x, y)]. Equivalently,
in the map plane these residuals are given by J(x, y). In actual practice,
since the total flux in the map is usually independently constrained [see
(14) below], the residuals are given by J(x, y)—J, where J is the average
value of J. Figure 4 thus shows that the residuals will be highly correlated
with the map, being systematically negative at the peaks. In the baseline
region, the residuals have a positive average and tend to smooth out
fluctuations, since excursions in / and J have opposite signs.
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13. Since the residuals are negative at the peaks, they transfer flux from
the peaks to the background. The effect is proportional to J(x, y) locally.
Since peaks in 7 with a wide range of heights correspond to a much smaller
range in J (e.g. see Figure 4), the amount of flux transferred is not very
sensitive to peak height. Thus, the fractional flattening is more pronounced
for the smaller peaks (32, 91).

The systematic behavior of the residuals can be called bias in the same
sense that the term is used in statistics. A point to be emphasized is that
one is not solving for the noise by doing least-squares MEM. In fact, it
can be shown (88) that for a high signal-to-noise ratio, the ME model
predictions for the visibilities T are farther from their true values than were

the original noisy data by a factor ~ \/5 (The case of low signal to noise
is discussed in greater detail in Section 3.1.3.) This is in contrast to usual
applications of the method of least squares, where one determines a small
number of parameters from a large number of measurements and the
residuals really do represent the noise.

14. The total flux 1(0,0) = [[I(x,y) dx dy has a special role. If it is
included in the %? term of Equation 24, then Equation 26 implies that we
have a residual 1(0,0)—D(0,0) that is proportional to J(0,0) =J, the
average of the band-limited function J(x, y). Most users of the MEM
would hesitate to modify the measured value of the flux in a systematic
manner, and it is usual to add a separate equality constraint for the total
flux (see Equation 30). This will ensure that the average of the residuals
over the map, 1(0, 0) — D(0, 0), vanishes.

The systematic behavior of the residuals in a least-squares ME image
becomes clear in a geometric picture [after Bryan & Skilling (18)] illustrated
in Figure 6 for the case of constant 6(u,v) = 0. In the space of all maps

Figure 6 A geometric picture of ME res-
toration from noisy data [after Bryan & Skil-
ling (18)]. The perpendicular distances of a
point inside the triangle from the three sides
of the triangle represent the intensity values
in a three-pixel map with a given total flux.
Points outside the triangle violate the posi-
tivity constraint. The circle represents maps
that differ from the measurements (P) by
the expected noise. Here Q and R are both
stationary points of the entropy subject to

R this constraint, but only Q is a maximum.
In certain circumstances, there may even be
multiple maxima.
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with a given total flux, the entropy is highest for the flat map (I = constant)
represented by the point M. This is enclosed by convex contours of pro-
gressively lower entropy out to the boundary, beyond which positivity is
violated. Our noisy data are represented by the point P, and all maps
satisfying the y? constraint lie on a generalized sphere centered on P of
radius a./m, where m is the number of independent data. When we allow
for the unmeasured data, this surface is like a generalized cylinder. The
least-squares ME map consistent with the data to within the errors is the
point Q where this cylinder touches a constant entropy surface. We see
that the vector PQ, which is the residual, points along the direction of
increasing entropy. This geometric statement is equivalent to Equation 26
and makes it clear that the residuals conspire to take one toward the totally
flat map M.

3.1.3 THE SINGLE-APERTURE CASE Consider, finally, the single-aperture
case discussed at the beginning of Section 1.1 (Equations 1 and 4). Here,
data are in principle available at all spatial frequencies less than the
diffraction limit, but the signal-to-noise ratio reduces catastrophically
beyond the seeing cutoff, which usually occurs at much smaller spatial
frequencies. We now have to maximize

S’ =J f{) dx dy—l[z | P(u, v)I(u, v) — D(u, v)|%/6*(u, v)—Q].

(Equation 24 is clearly a special case of this, corresponding to the psf of
Equation 5.) As before, by varying with respect to /(—u, —v), we obtain

J(u, v) — AP(u, v) [P(u, v) I(u, v) — D(uv)]/6*(u, v) = 0, 27.

where J is again the Fourier transform of J = f”(I). [We have assumed a
symmetric psf, so that p(—u, —v) = p(u, v).] We expect the residuals to be
of order ¢ and hence find that

| T (u, )| ~ AP(u, v)/6(u, v),

i.e. the spatial frequencies of J(x,y) corresponding to data with poor
signal-to-noise ratios (low values of P/¢) are attenuated.

15. While J(x, y) is thus no longer strictly band limited as in Sections
3.1.1and 3.1.2, it still is a tapered function, with a resolution approximately
equal to that of the original psf. As before, any increase in the resolution
of the final map can arise only because of the nonlinearity of f” or g, and
so the properties discussed earlier continue to be valid. (Ripple suppression
is, however, no longer an issue, because there is no sharp boundary between
measured and unmeasured frequencies.) It is satisfying that the situation
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with very noisy data (P/¢ small) goes over into the case of missing data
(J/ =0; see Section 3.1.2) as the signal-to-noise ratio goes to zero.

The systematic nature of the residuals in Equation 27 is again obvious
because PI— D is seen to be proportional to J, which is intimately related
to the restored image. The nature of the bias in this case is best understood
by going to a limit in which the image has weak structure on a strong, flat
background. As discussed in point (2) of Section 3.1.1, the transformation
J =f(I) then becomes linear, i.e. we have J = o — flor J(u, v) = — BI(u, v),
(u,v) # (0,0). (The sign of B1is appropriate for f”(I) < 0.) Substituting this
in Equation 27, we find that
1 D 1 D

1= 0T3P B~ [+ (Bl P sl P

The second relation above is approximate. It is obtained by estimating A
from the % constraint on the assumption of unresolved sources and con-
stant 6(u, v). Here P/P, is the normalized psf and the signal-to-noise ratio
PI/é has been assumed to attain its maximum value s,,, near u = v = 0.
As P/P,—0 (poor signal to noise), this formula gives 7— 0. Thus, the
linear limit of least-squares MEM discards poor data, a very sensible
procedure and one that is closely related to many other linear image-
processing algorithms [e.g. the Wiener filter (6)]. However, when the signal-
to-noise ratio is good (P/P, ~ 1), I takes on a value D/P (the noise-free
solution) multiplied by a factor that is always less than 1. This is the bias
we discussed earlier, seen now in a linear situation. It means that the least-
squares MEM puts less structure in the reconstruction than the data
warrant. This errs on the conservative side, but it is still a systematic error
that we feel should be avoidable.

16. In the full nonlinear MEM with the ¥? constraint, the data with
poor signal-to-noise ratios are not set to zero as in the linear case discussed
above; instead, they are essentially superseded by an extrapolation from
better data. This is a desirable feature of the method. The systematic
modification of good data, however, continues to be an undesirable side
effect.

3.2 Controlling the MEM

The purely behavioristic analysis of the MEM given in the previous
sections has brought out its strong points, namely its ability to flatten the
baseline, to resolve peaks, and to supersede excessively noisy data. Some
undesirable features (such as resolution increasing with peak height,
inability to clean up ripple in regions of extended emission, and biased
residuals) have also emerged. Practical users of the MEM are becoming
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aware of its weaknesses, and various suggestions to control them have
been made. These are mostly ad hoc schemes that go beyond the ME
principle but often give excellent results.

Bhandari (9) suggested that the sensitivity of the ME reconstruction to
an additive constant could be exploited by maximizing f(/+ C) with a
suitable constant C. This has been used in practical implementations (55,
88). One scheme (88) is to adjust C until the nonlinearity parameter R
defined in Equation 21 attains a suitable value, say 100 (see Figure 5), so
that one obtains ripple suppression and useful but not excessive resolution
enhancement. This approach ensures that the restoration is independent
of the dc level in the map, a desirable feature (2). A more general scheme
due to Frieden & Wells (44) is to subtract out a slowly varying background,
which will eliminate the dependence of ripple suppression on background
level (Section 3.1.1). These authors give examples to demonstrate that peak
sharpening too depends on the background level, as we would expect.

We saw earlier that the bias in least-squares MEM has the effect of
transferring flux from the source to the background, and therefore it
behaves somewhat like the additive constant C discussed above. It has
been found (13) that a realistic value for the noise can sometimes lead
to excessive peak sharpening, as one expects for too low a baseline, or
equivalently for too high a value of the parameter R. In such cases, one
could deliberately use a larger value of ¢ in order to achieve the desired
level of resolution [see the examples in (87)]. However, it appears more
direct to simply add a constant as described above.

It is frequently the practice to specify a window around sources of
interest in the field and to constrain the intensity to be zero outside this
window. An important consequence is that sidelobes outside the window
are completely suppressed, which helps the algorithm to concentrate on
restoring the source of interest. Another side effect is that the flux trans-
ferred from the source to the background by the least-squares method has
a greater effect on the baseline because it is concentrated in a smaller area.
Thus, the noise parameter selected will have a greater influence on the
resolution enhancement in the final map.

The presence of spurious features in MEM maps of extended regions of
brightness (13, 76, 88) can be handled (51) by maximizing — I In (I/1;) (see
Equation 10) with a “default map” [y(x, y) that includes known extended
structure. The image then takes the form

I(x,y) = I(x,y)exp[— 1 =J(x, y)]. 28.

It has been suggested (13, 48) that the map obtained with 7, = constant
could itself serve as the default for further processing by the MEM.
However, notice that both factors in Equation 28 would be exponentials
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of band-limited functions, and the resulting map would be no different
from the one obtained with constant default when taken to full conver-
gence. (When the y? constraint is included, the residuals will have some
dependence on [(x, y), but this is a weak effect.) This objection does not
hold if the constant default map is smoothed in some way before being
used as Ipin the next iteration. The qualitative effect of the default approach
is that the second factor in Equation 28 is only asked to represent peaks
on a flat baseline and thus will not have excessive ripple in regions of
extended emission. However, since this factor is finally multiplied by
Iy(x, y), it is not clear that a great deal is gained. The approach of Frieden
& Wells (44) of subtracting the background appears to be superior to the
default idea of dividing by it.

Horne (59) has successfully used the default idea in mapping accretion
disks from eclipse data. Artifacts that appeared in the constant default
reconstruction were suppressed by using a circularly symmetrized version
as the new default. Another use of the default approach is described in
Section 5.2.

A possible way of handling ripple on regions of extended emission is to
first use Clean (Section 6.1) to remove obvious point sources in the prin-
cipal solution (T. J. Cornwell, private communication). The remaining
map could then be processed by the MEM. This is another ad hoc pre-
scription like many of the others discussed in this section, but it has the
virtue of recognizing the strengths and weaknesses of the two methods
and making the best of both.

The variation of resolution with peak height is intrinsic to the method,
and it would appear that nothing much can be done within a pure ME
framework. Braun & Strom (13) have suggested that the final MEM
restoration could be convolved with a function of similar resolution to the
psf and the residuals added back, just as in Clean (see Section 6.1 for
details on Clean). Thus all peaks in the final restoration will have approxi-
mately the same resolution. Also, gradients will be better represented and
the noise will be more uniform. However, the map will no longer fit the
data, and the discrepancy will systematically increase at larger spatial
frequencies. A related scheme is to apply the convolution to the principal
solution before deconvolving with the MEM (or, equivalently, to suitably
taper the data). This appears to converge faster and to give better results
(T. J. Cornwell, private communication).

A scheme for imposing a Gaussian distribution of residuals as an added
constraint has been used (9) as a cure for bias. However, the spatial
distribution still has some nonrandom features, and the method has not
been used very much since. From the discussion of the linear limit of least-
squares MEM in Section 3.1.3, we see that what is needed is a prescription
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whereby poor data are handled by least squares, but good data are fitted
exactly. It is relatively straightforward to develop such an approach for
the linear case. Application to the full nonlinear algorithm is a challenging
problem.

3.3 Comparison of Different Entropy Forms

It is clear from the discussion in Sections 3.1 and 3.2 that one can regard
the MEM as a model that fits a function of a specified form (e.g. the
exponential of a band-limited function) to the measurements as modified
by the least-squares residuals. Such a view does no justice to the origins
and motivations of the method discussed in Section 2 but instead focuses
on its behavior in practical situations. Within this framework, one could
ask whether, purely as a model, one form of entropy is better than another.
We saw in Equation 22 that —7 In I has the desirable property of pro-
ducing Gaussian peaks. We now show that there are other reasons why
this form of entropy may be considered superior to other contenders.

We first give a semiquantitative estimate of the resolution enhancement
in ME images. Consider the restoration of a two-dimensional image using
the — I In I form of entropy. Let a peak have intensity 7, at its maximum,
and let I, represent the average intensity in the baseline. Let us define
r = I,/1,, a sort of “dynamic range” appropriate to the peak. We have seen
in Section 3.1 that the form of the image is given by I = exp (—1—J), with
J having a resolution appropriate to the psf. For the peak of interest, J
varies over a range ~ In r, and so the coefficients a, b, cin Equation 22 have
typical values ~In r/wj, where w, is the width of the psf. The width of
the peak in the restored image is then w(r) ~ wy/(In r)'2, i.e. the degree of
sharpeningis s = wy/w(r) ~ (In r)"2. Thus the resolution increases with r, as
shown earlier, but only weakly as the square root of a logarithm. [We
further see that a peak of given height would be more sharpened on a low
baseline than on a plateau, as was also noted in (44).] A similar analysis
shows that s ~ r'/* for f(I) = I'? and s ~ r'? for f(I) =1n I. These show a
greater sensitivity of the resolution to peak height, and thus the —71n 7
form of entropy should be preferred on this account.

We now ask whether the model that is fitted by the MEM gives a
solution for all physically realizable data. Since we are dealing with a set
of nonlinear equations, this question is not entirely straightforward. Let us
consider the maximization of the entire family (88) of “entropy” functions

f) =1'""¢/e(l1—¢). 29.

This includes In I for ¢ — 1 and — I In I for ¢ - 0 (apart from constants
and terms linear in I, which are irrelevant and are assumed to have been
eliminated). This gives a unified discussion of these two standard forms,
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and it also includes cases like I'?, which would be allowed from the
penalty function approach of Section 2.5. (One could call this a maximally
noncommittal approach to the MEM!)

The convexity property f”(I) < 0 only guarantees the uniqueness of a
maximum if one exists. However, there can be cases where there is no
maximum within the domain of nonnegative images. As an illustration,
consider ¢ = — 1 in Equation 29, which gives the function f(I) = —I%/2.
In this case, I = g(J) = —J, and so [ is itself a band-limited function, and
there is no nonlinearity or extrapolation. The (unique) “MEM” solution
with this function is directly the principal solution, which can go negative.
The same holds for all functions of the above family with ¢ < 0, because
none of these has the infinite slope at I = 0 that is necessary for imposing
positivity (57). The function — I In I, corresponding to ¢ = 0, has a deriva-
tive going to infinity as In 7, and therefore it does not suffer from the above
problem. Functions for ¢ > 0 have more strongly divergent derivatives,
but they suffer from a different shortcoming because they enforce positivity
too strongly. This has been illustrated (88, Appendix B) for ¢ =1, corre-
sponding to f; =1n I, for the case of three-dimensional imaging, as could
occur in spectral line mapping (Section 5.2). Let the data correspond to a
peak on a baseline. As the strength of the baseline decreases relative to the
peak, the reconstructured peak narrows and develops a é function even
when the baseline is nonzero. This is a case of infinite superresolution with
perfectly reasonable data. The effect, which is mathematically similar to
the appearance of a ¢ function in the momentum distribution of a Bose
gas (79), depends on dimension d and occurs for all 4 > 2/e. Thus, it occurs
at a finite dimension for every member of the family in Equation 29 with
¢ > 0. The —I1n I entropy, corresponding to ¢ =0, is free from this
problem and is once again seen to be superior to the other forms.

4. ALGORITHMS

Two factors simplify the solution of the system of nonlinear equations that
express the ME image in terms of the data. Firstly, the solution is unique
(20, 88) for a given entropy form f(I) [satisfying f”(/) < 0] whenever the
data are fitted exactly. (The situation with the %? constraint is shown in
Figure 6.) Consequently, algorithms are likely to be robust. Secondly, the
measured data considered so far are linear combinations of the unknown
map intensities, with a Fourier relation connecting the two spaces. There-
fore, the Fast Fourier Transform (15, 25) helps to reduce the computation
time considerably.

Two types of algorithm are discussed in Sections 4.1 and 4.2. One
technique is to iterate using an implicit relation connecting the unknown
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map intensities. Such “fixed-point” methods are often extremely fast but
can be unstable. The other method is to directly maximize the chosen
entropy (with the x? term if least-squares MEM is being implemented)
using one of the variants of the gradient method.

Clever algorithms have been developed for ME spectral analysis (20,
52), where given the first n autocorrelations of a time series, one is interested
in estimating the underlying spectrum. Attempts have been made (86) to
generalize these algorithms to two dimensions, but these have run into
difficulties (88, Appendix C). In any case, such approaches are not always
suitable for image restoration, since they require the data to be available
on a rectangular array in Fourier space.

4.1 Fixed-Point Methods

As we have seen in Sections 3.1.1 and 3.1.2, the ME image from inter-
ferometric data has the property that the auxiliary function J(x, y), which
is related to the map I(x, y) by J =f’(I), is “band limited.” This leads to
the following fixed-point scheme for noise-free data (80, 88) (the case
discussed in Section 3.1.1):

Step 0 Start with an initial map that is constant everywhere.

Step 1 Calculate a misfit factor ¢ between the Fourier coefficients 7(u, v)
of the current map and the data D(u,v):

=3 |I~(u,v)—D~(u,v)|2/ Y |D(u, v)|2

u,vek u,vek

If ¢ is small enough (say < 10~%), stop the refinement. If not, go to step
2.

Step 2 Move the current I(u, v) a fractional distance 1 — o toward D(u, v):
fnew(u: U) = (1 - a)ﬁ(u: U) + aiold(ua U), (u: U) ek.
Unmeasured coefficients I(u, v), (u, v) ¢ K, are left alone.

Step 3 Compute the new map I(x,y) and calculate J =f’(J) and its
Fourier coefficients J(u, v).

Step 4 For all (u,v)¢K, move J a fractional distance 1—f toward the
expected value of 0, i.e.

jnew(ua U) = ﬁjold(u: U), (ua U) ¢K

Step 5 Compute the new J(x,y) and calculate I = g(J) and its Fourier
coefficients I(u, v). Go to step 1.
The key to a successful implementation of this algorithm is the choice
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of the “damping factors™ «, . The straightforward choice « = f = 0 works
well when the map is not strongly constrained by positivity, i.e. when the
nonlinearity parameter R (Equation 21) is small. However, in realistic
cases, when the map has large empty regions, the scheme could diverge
even with values of o, § ~ 1. When it works, the algorithm usually converges
rapidly.

A fixed point-scheme has also been developed for least-squares MEM.
Using the notation of Equation 6, we need to maximize

2
- s pion| s (sraneah o
where a separate constraint has been introduced for the total flux, as is
the usual practice (see Section 3.1.2, point 14). The last term corresponds
to the %2 constraint. The condition 05’/dI; = 0 gives an implicit relation
for the ;. This leads to an iterative algorithm (49, 124), where the map
estimate I{"*D at the (n+ 1)th iteration is given by

I[+D = (1=p)I® +yg[u+ 24 (PRI — P,,-D,)/of]-

As before, g = f’~!. The Lagrange parameters u and A need to be adjusted
during the course of the computations to satisfy the corresponding con-
straints. Once again the choice of the damping factor 1 —y is critical, and
convergence is not assured.

Because they lack robustness, fixed-point schemes have been limited
to special applications. Present-day general-purpose routines are mostly
based on gradient techniques.

4.2 Gradient Methods

To maximize a nonlinear function of several variables, a standard tech-
nique is to retain up to quadratic terms in the Taylor expansion and to
solve the resulting set of linear equations for the location of the maximum.
This is equivalent to solving the nonlinear equation defining the maximum
(e.g. Equations 25 or 27) by the Newton-Raphson method (31). Thus, to
maximize S in Equation 30, one computes both its gradient VS’ (= 05"/01)
with respect to the intensities 7; at the n pixels in the map as well as the so-
called Hessian matrix made up of second derivatives, VV.S’ (= 0°S’/0L,01).
The shifts in the intensities are then given by

AL = =Y (VVS); 1(VS)); 31.
J

The formal geometric statement of this equation would be that the
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contravariant shift vector Al is related to the covariant gradient vector
VS’ by the “metric” VVS'.

The above strategy cannot be directly implemented, since the Hessian
has n? elements, and with present-day maps (where »n could be a million
or more) the storage and inversion of such a matrix would be prohibitively
expensive [see the algorithm in (44), however]. The conjugate gradient
methods (31, 37) are, however, quite convenient and were applied to the
MEM by Wernecke & D’Addario (122). Here, information about the
Hessian is progressively built up as the calculation proceeds, and in each
iteration the direction of the shifts in #-dimensional 7 space is taken to be
a suitable linear combination of the current and previous gradients. It can
be shown that the maximum of a quadratic function is reached in n
iterations. However, most of the gain appears to occur in the first few
iterations. Also, when one is well away from the quadratic region near
the maximum of the function, the technique becomes ineffective after a
few iterations, since the partial information about second derivatives is
obtained at different points and thus quickly gets out of date. It is therefore
more efficient to restart the conjugate gradient algorithm every few cycles.
In practice it has been found that over a wide range of n, about 50 iterations
in all are adequate to carry out the full nonlinear maximization.

A change of variables can significantly speed up the course of a gradient
search by making the contours of the function being maximized more
nearly spherical. For example, a change to In 7 as the variables was
suggested by Wernecke & D’Addario (122). The corresponding search
directions in a simple steepest-ascent algorithm would be 7, 3S’/dI. This
could be regarded as a metric ;7' in Equation 31 and has the advantage
that pixels with intensity close to zero do not experience large shifts.

A robust algorithm, involving use of the I;-! metric and searching in a
three-dimensional subspace, has been described by Skilling & Bryan (107 ;
see also 19) and has been widely used. Here, we illustrate the variable
metric idea using the simplified approach of Cornwell & Evans (28).
Equation 30 shows that

(VVS'); =f"(I)5,—24Y P,.P,|c?.

Since the entropy enters only in the diagonal elements, one could neglect
the off-diagonal terms that come from the psf and write

(VVS)5 ! ~S,lf ") —ad]~". 32.

The parameter « has to be suitably selected to include the full effect of the
central peak in the psf. Substituting Equation 32 into Equation 31 and
comparing with Table 1, we see that the magnitude of the shifts is reduced
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in those regions of the map where I(x, y) is small, which thus prevents the
algorithm from being unduly preoccupied with near-zero regions of the
map.

Gradient schemes are also possible in data space (88). This is a useful
strategy when one wishes to fit the data exactly. One then varies only the
unmeasured visibilities, and so the algorithm operates throughout in the
space of images that are consistent with the data. The generalization to
include the y? constraint is straightforward (88). However, in this approach
one loses the flexibility of being able to impose windows in the restored
map, which is easy with gradient schemes in I space.

The schemes described so far deal directly with the map intensities or
the visibilities and apparently have to solve for a large number » of para-
meters (where # is the number of pixels). However, the true number of
unknowns is actually the number of independent data points m, since this
is the number of parameters in the band-limited function J(x,y) that
completely characterizes the MEM map. This could be significantly less
than » in interferometric applications. Agmon et al. (3) and Alhassid
et al. (4) have given an interesting variational principle that involves these
parameters and the data alone. Their original scheme was for noiseless
data, but it has since been extended to include the %2 constraint (123). For
the specific case of — I In [ entropy, the maximization of S’ in Equation
30 is equivalent to maximizing

S=-YILhn L—Zvr[Z Pri1f+Nr—Dr]—#[Z L—Do}

| S oven-al,

where Q ~ m corresponds to one standard deviation. Now, S is a
maximum with respect to variations in I; and N,, since this is the least-
squares MEM condition. In addition, we also have 0S’/dv, = 0S’/ou =
0S’/04 =0, which gives back the constraint equations. It is then per-
missible to eliminate 7;, N,, and u from S’ using the conditions 05’/0I; = 0,
0S’/0N, =0 and X I; = D,. Omitting constants, we then obtain a varia-
tional principle for v, and A in terms of the function

F(v,,A) = Dy In [Z exp ( =) v,P,i)} +Y.v,D,+Y v:o2[4A+ Q.

The ME solution corresponds to an extremum of F, and thus we have an
optimization problem in only m dimensions. As a bonus, no search is
required to attain the required %2 value. It is not immediately obvious that
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this algorithm will be significantly faster than the earlier ones, since the
number of iterations for convergence of the gradient algorithms in image
space seems to be independent of n, the dimensionality of the problem. A
real virtue of this scheme, however, is that any set of values for the
Lagrange multipliers gives a valid positive map, and so there are no
boundaries in this space. In contrast, gradient algorithms that work in 1
space need various controls to prevent negative intensities. We note that
it is not straightforward to include windows in the map in this scheme.

5. EXTENSIONS OF MAXIMUM ENTROPY
IMAGING

We have so far considered an image characterized by a single scalar
intensity at each pixel and by data related to these intensities by a linear
transformation. When we deal with polarization, multifrequency data, and
interferometry with incomplete phase information, these requirements are
not met. The new techniques required for these more general situations
are just now being explored.

5.1 Polarization

When one includes the polarization of the radiation field, a map of the sky
comprises four Stokes parameters 7, Q, U, and V at each pixel (22). Here,
I is the total intensity, Q and U describe the linear polarization parallel to
and at 45° with respect to (arbitrary) orthogonal axes, and V describes
circular polarization. The 2 x 2 correlation matrix constructed from the x
and y components of the complex electric field is related to the Stokes
parameters as follows :

o |:EE E;Ex] 1 [ I+0Q U+iV]
- LEVE, EJE, | 2\U-iV I-Q |
In interferometry, each telescope of a pair receives two polarizations,
which gives a 2 x 2 matrix of correlations at each spatial frequency (u, v).
There is a Fourier transform relation between the image plane and the uv
plane (83).

It is clearly incorrect in principle to process the I, Q, U, and ¥ maps
independently. Firstly, the positivity constraint is inappropriate for Q, U,
and V (e.g. the two signs of V' describe opposite circular polarizations).
Secondly, independent processing ignores the physical constraint that the
total intensity should be greater than or equal to the polarized intensity
(Q*+ U2+ V%2, Ponsonby (93) suggested a reasonable extension of the
MEM to the polarization case. For the In 7 entropy, he proposed that one
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should maximize

S= Jf In (4,4,) dx dy,

where A,, A, are the eigenvalues of the correlation matrix defined above,
i.e.

Ao =+ (Q*+ U*+ V31722,

The generalization to an arbitrary entropy form f(I) gives (89)

S = H [f()+f(A)] dx dy = H Trace [f(D)] dx dy.

Physically, 4, and A, represent the intensities of the two orthogonally
polarized, mutually incoherent components into which the radiation emit-
ted from each point in the source can be resolved, and the final expression
is the sum of the entropies of these two components. It should be noted
that even though the entropy is written in terms of A, and 1,, the final
solution does not consist of images for 4, and 4,, but rather of four images
for I, Q, U, and V, respectively, as required. |

The algorithms discussed in Section 4 can for the most part be gener-
alized for polarization by simply replacing the scalar quantities 7, D,
etc., by appropriate 2 x 2 matrices I, D, etc. (89). In interferometry, the
reconstructed polarized ME image is now a nonlinear transform of a band-
limited Hermitian 2 x 2 matrix (89), a natural generalization of the scalar
(unpolarized) case. We expect that the general properties of recon-
structions discussed in Section 3 will hold. In the scalar case, the entropy
function provides a barrier at 7 = 0 that is responsible for the suppression
of ripple. In the present case, we have an additional barrier at
I = (Q*+ U*+ V?)'2 that corresponds to 100% polarized radiation. Thus,
the suppression of ripple in the degree of polarization will not be effective
for a weakly polarized source. For example, we expect a strongly polarized
region against an unpolarized background to be surrounded by spurious
oscillations in the degree of polarization (for the same reason that absorp-
tion features are reconstructed poorly; see Section 3.1.1). Similar effects
may occur at a sharp junction between two orthogonally polarized regions
of the map (as is sometimes found in radio jets) if the degree of polarization
is weak. These conclusions are based on the general nature of the function
being maximized, but they can be confirmed by a detailed analysis of the
exponential of a band-limited matrix in the — 7 In I case.

Polarized MEM has been studied in a few computer simulations (85,
104) with rather strongly polarized model sources, and the results are in
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general very similar to those shown in Figure 5 for the scalar case. There
have been no applications to real data so far, and such applications should
be of great interest.

5.2 Spectral Imaging

In certain applications, a region of sky is imaged at several frequencies in
order to obtain spectral information as a function of position. In the
simplest case, the source has a smooth spectrum and measurements are
made at a few widely separated frequencies v. One then attempts to recon-
struct a map of spectral index o [where I(v) oc v—*]. Note that in general, the
coverage of the uv plane could be different at the different frequencies.
Because of the various nonuniformities in ME restorations discussed in
Section 3, it is dangerous to estimate o by taking ratios between inde-
pendently restored images. Clearly the problem arises because the a priori
information that the frequency dependence of the map is smooth has not
been put in. One way to do this using defaults has been suggested by Guil
& Skilling (51). Denoting the maps at two frequencies by 7,; and I, each
can be normalized as before by its total flux:

fAi = IAi/Z IAia fBi = IB;’/Z I,

A common default image for the two frequencies can then be obtained by
averaging

Joir = (futS5)/2. 33.

This particular way of constructing the default ensures that multiplication
of the A or B data by a constant only affects the scale of the final
maps and not their shapes. An alternative choice is discussed in (51). The
function to be maximized is now

S = —ZfAi In (fAi/fOi)“Z S 10 (fi/ fo))-

Clearly, this will encourage the 4 and B images to resemble each other
(apart from their overall scale) to the extent allowed by the data.

An apparently natural implementation of this scheme would be to aver-
age the MEM images for 4 and B from one iteration to obtain the new
default f, for the next iteration (starting with f,; from the constant default
A and B images in the very first round). However, the two images f; and
f5 must have the form given in Equation 28, and Equation 33 requires
two such functions to add up to a constant over the whole map, which is
generally impossible. What is therefore required is that one must explicitly
substitute Equation 33 into S and vary both the numerator and denomi-
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nator within the logarithms. The general arguments used to derive the
entropy form (Section 2), as well as the experience with algorithms (Section
4), do not apply to this kind of floating default. Tests of this multifrequency
technique should therefore prove very interesting.

Another application is spectral line mapping with a large number of
frequency channels, where one has a “data cube.” The obvious approach
again would be to make an independent image in each channel, but this is
dangerous when the lines are weak compared with the continuum (33),
since small errors in the restoration in adjacent channels can badly corrupt
the line information. A possible solution is to subtract the continuum
before ME restoration, but this will not work when absorption lines are
present, since these will not be consistent with the positivity constraint.
Since the frequency information is also usually obtained through auto-
correlation data, this problem should really be considered to be a case of

three-dimensional restoration, with one frequency and two spatial dimen-

sions. Depending on the details of the source structure, the image would
consist of peaks, lines, or sheets in this space. The In 7 form of entropy
has strange artifacts in three-dimensional image restoration (Section 3)
and should probably be avoided.

5.3 Determination and Refinement of Visibility Phases

In aperture synthesis, telescope-based errors arising from fluctuations in
the atmosphere or from the electronics can corrupt the quality of the
data, especially the visibility phases. In such cases, the recovery of phase
information during the process of image reconstruction is particularly
important because phases are known to be much more important than
amplitudes (90, 94). Since n telescopes give correlations on n(n—1)/2
baselines but -have only # errors, the corrupted visibilities do have partial
phase information in the form of closure phases (69). (The sum of the
phases on three baselines that form a triangle is called a closure phase.)
Powerful “‘self-calibration” algorithms have been developed (29, 92) that
make use of closure information to correct for telescope errors. Presently,
these algorithms are mostly based on the Clean technique. Attempts to
directly substitute the MEM for Clean in the standard self-calibration
packages have not been very successful and have sometimes led to an
unphysical restoration where all the visibilities are given zero phase (112).
A more successful strategy is to clip the ME image at each iteration, leaving
only the bright features (112). Thus one is effectively using the positivity-
enforcing and peak-sharpening properties of the MEM. A more direct
approach that seems to work quite well is to maximize the entropy using
the closure phases as additional constraints (92, 97, 103).

With adequate closure information, it seems that the entropy maximum
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is usually unique, barring a trivial ambiguity as to the position of the
source. (There is no formal proof of uniqueness, only empirical evidence
from simulations.) When no phase information at all is available, as in
the case of Michelson interferometry (30), intensity interferometry (16),
primitive speckle interferometry (7, 77), or earlier VLBI experiments, the
uniqueness of the MEM reconstruction is not guaranteed. Some arguments
suggest that when the positivity constraint is included and the spatial
extent of the image is strongly confined, restorations from pure amplitude
data are nearly always unique (17, 60). However, nontrivial ambiguities
might still creep in when the effect of noise in the data is included (47). A few
astronomical applications of the MEM to the problem of reconstruction
without phases have been made (49). The method has been pursued more
actively in other fields such as crystallography (14, 84), where it shows
good promise.

6. COMPARISON WITH OTHER NONLINEAR
METHODS

6.1 Clean

The most widely used nonlinear restoration scheme in radio astronomy is
Clean, introduced in 1974 by Hogbom (56). Here the sky is modeled by a
collection of point sources. At each iteration, the maximum I,, in the
current map is located and a point source of strength gl,,.,/Pnmax 1s fitted
at that location, where P,,, is the height of the central maximum in the
psf and g is an adjustable parameter (‘“loop gain”) typically chosen in the
range 0—1. A copy.of the psf corresponding to this point source is now
subtracted from the current map, and the difference map is taken as the
current map for the next iteration. The algorithm is stopped when the
difference map has been reduced to the noise level. In the final step, the set
of point sources is convolved with a ‘“‘clean beam” having a Gaussian or
similar smooth shape of width comparable to the psf in order to get an
image with the same resolution as the original data, and then the residual
difference map is added. Figure 5 shows a Clean restoration of the model
discussed in Section 3. Note the efficient removal of ripple but the rather
modest resolution enhancement. The initial applications did indeed involve
unresolved radio sources surrounded by large empty regions, in close
agreement with the Clean model, and the method was remarkably success-
ful. As discussed in Section 3, the MEM can also represent sharp peaks
on a flat background. Numerical simulations comparing the performance
of the two techniques have been carried out (32, 88), and they agree more
than perhaps one might expect. We make a general comparison of the two
methods below.
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The major advantage of Clean over the MEM is its simplicity and
intuitive appeal. A major disadvantage is its sequential nature, which is
an obstacle to a deeper understanding of its properties. Schwarz (99) has
shown that the position and strength of each point source identified by
Clean can be understood as a least-squares fit to the current difference map.
However, there is no least-squares interpretation of the entire collection of
point sources. The MEM, on the other hand, is a clearly formulated
variational problem that may ultimately prove easier to understand.

With bigger telescope arrays coming into operation, radio sources are
routinely being resolved and do not conform to a point source model.
Both Clean and the MEM do cope with this complication, but both have
some difficulties. Clean images of extended sources often have “stripes”
arising from the sequential nature of the algorithm (100). Modifications
of the basic Clean algorithm to deal with such problems have been pro-
posed and implemented (26, 58, 111) with some success, but the simplicity
of the original scheme is lost. On balance, the MEM seems to be better
equipped to handle extended sources. The basic MEM has problems with
sidelobes when point sources are superposed on extended structure. Some
suggestions to overcome this defect were discussed in Section 3.2.

For a map with n pixels, Clean requires of order n? operations, since the
number of point sources fitted as well as the number of operations per
point source are proportional to n. Recent modifications have made Clean
more computer efficient (23, 24), but they do not alter the »#? scaling.
Experience has shown that the number of iterations required in the MEM
(~50) is essentially independent of n, and since each iteration consists
mainly of a few fast Fourier transforms, the computational load goes
as nIln n. Consequently, it appears that nonsequential schemes like
the MEM will ultimately win if the present trend toward larger images
continues.

It should be noted that Clean as presently implemented does not fit the
data because of the final step of convolving the point source model with
a “clean” beam. This step, which effectively multiplies the data by the
transform of the clean beam in the uv plane, is necessary to avoid extra-
polating the data too far. It would be interesting if a modification of
Clean could be found that produced an image fitting the data. Present
implementations of least-squares MEM also do not fit the data, but the
discrepancy is only of the order of the noise as against the much larger
discrepancy with Clean.

Another point to be noted is that Clean does not assume positivity of
the image and might therefore be more suitable than the MEM for spectral
imaging, where emission and absorption features can occur simultaneously
(Section 5.2).

© Annual Reviews Inc. * Provided by the NASA Astrophysics Data System



1986ARA&A. . 24. . 127N

MAXIMUM ENTROPY IMAGE RESTORATION 165

6.2 Positivity-Enforcing Algorithms

The Gerchberg-Saxton algorithm (45) is one of the simplest and best
known among nonlinear algorithms that enforce positivity of the recon-
structed image. This is an iterative scheme that repeatedly transforms
between the image and data planes, enforcing image positivity (and pos-
sibly restricted spatial extent) in one plane and agreement with the data in
the other. (The practical implementation of the algorithm is very similar
to the iterative scheme described in Section 4.1.) Since the algorithm
enforces nothing more than positivity (and image diameter where known),
it makes fewer assumptions than the MEM. However, the method will
find the “‘closest” positive map to the initial guess that is consistent with
the data, and it is therefore sensitive to the initial conditions. Global
maximization schemes like the MEM have the virtue that they produce
the same final image regardless of the initial guess. Applications of the
Gerchberg-Saxton algorithm in astronomy have been suggested for the
phase problem in speckle interferometry (36) and VLBI (39).

One of the earliest applications of positivity in astronomy was by Biraud
(10), who demonstrated significant resolution enhancement of a one-
dimensional image in the presence of noise. The idea is to write the positive
image in the form I(x) = [i(x)]* so that, by the convolution theorem, the
Fourier transforms ; and 7, of I(x) and i(x) satisfy the following relation

O

I= 3 i, 34,
k=—
Iterative schemes have been developed (10, 98) to solve for the z';, given
data on some of the . The key result is that even when the data are band
limited, one is usually forced to extend the band of the restoration in order
to satisfy Equation 34, and this leads to superresolution. We are not aware
of applications to two-dimensional image restoration.

In an interesting application of the decomposition given in Equation 34,
Komesaroff & Lerche (75) considered a one-dimensional problem where
measurements on I: are available only for |j| < n. They find (75 see also
76) that the positivity constraint forces I, ; to lie within a circular region
in the complex plane. The radius of this circle is clearly a measure of how
stringent the positivity constraint is. When [, is given a value cor-
responding to the center of its circle, the constraint on [, , is another
circle of the same radius, and so on. The natural choice of the centers of
all the successive circles leads to an extrapolation of the i; that is identical
to that obtained by maximizing the In I form of entropy. Unfortunately,
there seems to be no simple generalization of this beautiful result to two
or more dimensions, perhaps because there is no longer a natural sequence
in which to arrange the data.
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Two other nonlinear positivity-enforcing restoration schemes deserve
mention. Jansson et al. (61) have developed an iterative scheme that forces
the restored intensity to lie between user-specified minimum and maximum
values. It is a simple nonlinear modification of a previously known linear
algorithm. Another iterative scheme based on positivity was suggested
independently by Richardson (95) and Lucy (81). In this algorithm, the
“likelihood” of the observed data increases with each iteration (81). Both
methods have been remarkably successful in restoring optical images of
planets (53, 54). Application to the M87 jet of Figure 15 (53) suggests that
the methods are competitive with the MEM. Both schemes are fast and
easy to implement, with the Jansson et al. method being somewhat superior
in resolution enhancement (probably because the upper bound on the
restored intensity is a powerful additional constraint, particularly in the
case of planets). Further work on these algorithms seems to be worthwhile.

7. SUMMARY AND OUTLOOK

There is no doubt that ME image reconstruction has come to stay in
astronomy. It is able to compete with other techniques based on positivity
and gives results comparable to Clean for maps dominated by point
sources. At the same time, it can be extended to handle more complex
situations using the default map idea or one of the other suggestions
discussed in Section 3.2. Moreover, being based on a variational principle,
the MEM is easier to analyze than other methods.

The thrust of much ME research has so far been toward clarifying the
conceptual and statistical foundations of the method, issues that we dis-
cussed in Section 2. The form of entropy to be maximized has been a thorny
question in the past, but the majority opinion seems to be converging on
—1I1n (I/I;) with a suitable default I,(x,y). However, examples like the
one shown in Figure 2 and the failure of the MEM with absorption features
(Section 3.1.1; see also 85) indicate that the method should not be used as
a black box. This is because the basic qualities of “good” images are in
general complex and may be hard to quantify in some situations. Even
though most astronomers would agree on identifying an obvious artifact
(like the four sources on an exact rectangle in Figure 2), an automatic and
machine-implementable procedure to do this is an unrealized goal of
research into pattern recognition and artificial intelligence.

Regardless of one’s confidence in the foundations of the MEM, it is
important to understand the properties of ME images. This is an area
where a fair amount of empirical knowledge has accumulated, and we
have tried to systematize this information in Section 3. We identified
the peak-sharpening and baseline-flattening tendency of the MEM and
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discussed the sensitivity of the results to the background level. These led
to suggestions for improving the MEM such as using an additive constant
or subtracting a suitable background or combining the MEM and Clean.
Many of these extensions would be regarded by purists as going beyond
the MEM proper, since they end up with various knobs that the user can
tune depending on his application. However, a close analysis reveals that
most current image restoration schemes do indeed contain user-selectable
parameters.

A somewhat unwelcome feature of the least-squares modification of the
MEM is the biased nature of the residuals between the data and the
reconstruction (Section 3). We find it disturbing that the method modifies
good data in such a manner as to actually increase the noise. On the other
hand, the method treats poor data in a reasonable way. An interesting
area for future research is to develop a variant of the MEM that retains
its least-squares character with poor data without systematically modifying
good data. The understanding gained from the linear limit of the MEM
(Section 3.1.3) may be useful for this.

The various schemes of Section 3.2 for controlling the MEM need to be
extended to polarized maps (Section 5.1), which have a richer variety of
possible structures. Combinations of emission and absorption features (as
encountered in work with the 21-cm line) are likely to stretch the MEM
or any other reconstruction technique to its limits. The same is true of
visibilities with phase errors. These and other topics discussed in Section
5 are virtually unexplored and promise to be interesting areas of future
research.

As presently formulated, the entropy of an image depends only on the
frequency with which various intensity values occur and not on their
spatial distribution. The a priori knowledge or belief that adjacent pixels
tend to be correlated will undoubtedly be incorporated in the future. A
beginning has already been made (114) by including derivatives of the
intensity into the function being maximized. This acts to discourage ripple
independently of its height from the baseline. It is possible that encouraging
such correlations between neighboring pixels, especially along the fre-
quency axis, will help in the spectral imaging problem (Section 5.2).

We have not found it necessary or even possible to single out one
particular image restoration scheme from the many that are available.
Ultimately, in our view, any image consistent with the data and free
from obvious artifacts must be taken seriously. The goal of restoration
techniques is to produce such images. When the results are relatively
independent of the method, we gain confidence in them. However, if we
obtain significantly different restorations, the places where they agree
should tell us what we can really believe, and the differences should indicate
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what extra data are needed. Such interaction with observations would be
a most constructive role for image reconstruction.
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