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THE study of anharmonic oscillator does reveal many interesting aspects
of various branches of physics. To give you an example let me mention
the use of anharmonic contribution to explain the vibrational spectra of the
diatomic molecules in chemical physics. Another example in classical
physics is the understanding of thermal expansion by considering the pre-
sence of a term Bx® in the one-dimensional anharmonic oscillator Hamil-
tonian. The main reason why I am motivated to investigate the problem
of anharmonic oscillator is the fact that some one-dimensional model field
theory of the A$* type can be easily understood through a study of quantum
mechanical anharmonic oscillator problem.

To be exact let us consider a model Hamiltonian given by
H = 34* + fmp* + g

when ¢ is a field variable and it is only a function of time alone and of no
space-dimension. Obviously, then, we have a particle situated at a parti-
cular point and interacting with itself through a ¢* seif-interaction. Since
the asymptotic field does not exist, we have no scattering. We, then, are
only interested in solving the equation

H[)=E[H).

An exact knowledge of E in this one-dimension would give us a complete
understanding of the exact mass shift in this model field theory. It is hoped
that such knowledge would in future give a lead to discuss the real 4-dimen-
sional field theory of nature. To see the connection of the one-dimensional
field theory with wave-mechanical anharmonic oscillator in one-dimen-
sion we use interaction representation and set

= ;\_/_121_’_7; [ae"imt + a‘}~eim't]
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and
= d " [— iaeimt 4 jareimt).
This immediately reduces the Hamiltonian H into
H=m(aa+ %) + Zﬁ%’g (@ + a)t

To solve the mass-shift equation we put

|§) = ? Cp (ah)™ | 0)

in H|y)=E|¢). This gives the following difference equation for C,
ECh=n+PDCn+gM4[Chat+4dn—2)ap+6n (n— 1) Cyp
+4nm+ 1D +2DCra+ @+ @+2@E+3)

X (n+ 4) Cppul )
Write the one-dimensional anharmonic oscillator Hamiltonian in the form
d2
H = __3}5-{— m?x% + Axt; A =2g.

We now see that this Hamiltonian equation Hy = Eif is again leading to
the difference equation (1) if we solve this by making the ansatz

b= 3 CpHey (x)

where He, (x) are the standard hermite polynomials. I need not elaborate
this further here. This identification is, however, of immernse help. For
we now can have Feynman diagram techniques available to us for th. evalua-
tion of many physical processes. For example, for a vertex we put a factor
of A, and for a propagator we write the expression (E? — m*® + ie)~* while

for a loop integration we should perform an integration TdE/eri. Using

—oo

these tricks we can easily calculate the ground state energy shift AE for the
anharmonic oscillator problem by noting that AE receives contribution
from all connected closed loop diagrams. The result of this is the following:
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It is interesting to note that the above perturbation series (in the anharmonic
strength) is a divergent one although every term is finite. Bender and Wu'
have calculated the first 75 terms and showed that, in fact, thc s-th term
behaves as 3™ I'(n). Thus this one-dimensional problem teaches a very
interesting thing, namely, that, in one-dimension model field theory, there
is no finite mass-shift. This also implies that perturbation scrics calculation
of the cnergy shift of the harmonic oscillator by Ax? anharmonic perturba-
tion leads to a divergent expression. Question then immediately occurs,
how then one can use this for description of physical phenomena cven at the
quantum mechanical level ? The next-half of the tatk would be devoted
to this. To make physical processes understandable we first look if at all
one can find 2 way to give meaning to this divergent expansion. Somc
people have used the Pade-approximation techniques to sum such divergent
series. The method consists of approximating a series by a series of rational

functions. That is, by replacing ¢ (Z) = Y apZ™ in terms of P,, (2)/Q,, (Z)

where P, and Q,, are polynomials of degree m. The mmay be 1, 2,3 ... K.
The various K-values lead to [K, K]-diagonal Pade approximants. The
hope is that [K, K]-approximant in the limit of large K would give the correct
value of ¢ (Z) beyond points where ¢ is not ordinarily defined. Thus Pade
approximation provides a way of analytic continuation of a serics, outside
its radius of conveigence. In general the [N, M] Pade approximant for

f= 3 apx™ is

n

P
f - Q(N)
where
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and
Oy-N41 y App1.
QM =
dy ces Apen
xN e 1

This approximation scheme for analytic continuation reminds us of the
associated technique of continued fraction method of analytic continuation.
For example, let Cy(x) be the N-th convergent for f(x)= 3 bpx™

That is
S
Cy(x) = 1+ a(x—x)
Pk ay (x — x)
L+,
\\\aN

where x;, xaf ... xy are N-points for which we have
Cy(x) =f(xp); i=1,...N

If f(x;)) (i=1....N) are known, then the coefficients a,, a, ..., etc., are
all known. For example we have

— f(xp)
(%, 1+ a; (xs — x7)

f(x)
flr) =T 6= %)
1+ a5 (x; — Xo), etc.

These then determine, a,, a,, etc.,

(=5 = =1+ 7
ay (xg — 1) = — 1 + @b = x)
o ) 1+f(x1)

f (xo) ete.
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The various convergents are nothing but the various Pade approximants:
The continued fraction method requires the knowledge of f(x) at some
points like x = Xy, Xa --- xy. This is particularly useful when one knows
in advance that the series is an asymptotic one, in that case, the Vah'les Qf
f(x) is known for many sufficiently small values of the parameter which in
turn enable one to obtain the value of f(x) at points beyond (x; - -+ xy)
through the various convergents of the continued fraction.

As an interesting application of continued fraction? in physics let me
point out how one can obtain various bound state solutions of Schrodinger
equation. Consider the differential equation for f(x) when i = ¢ %%2 f(x)
aﬁd )y is the solution of the Hamiltonian equation Hyi = E, with H standing
for the harmonic oscillator problem namely

P?2m + % mw?x®
With
£ = +/mofi; <= 2E[hw
we have for f(x)
J'=26f"+(e=1)f=0,
which gives the following continued fraction for f7/f ;

A 1— e
F T =28+ 3— ¢
—2f+5— €
—“2£+\\

Putting e =1, ¢ =3, etc., one easily discovers the various Hermite poly-
nomials as solutions.

Another interesting method known as Borel transform has become very
useful in connection with the suramation of a divergent perturbation series.
This has recently found interesting application not only in perturbation ex-
pansion but also in non-polynomial field theory. Let me illustrate the power-
fulness of the method in connection with non-polynomial theory. Suppose
we consider a Lagrangian

— L = fu (x)
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where

and we are particularly interested in calculating the propagator for the field
U (x) it being given that ¢ (x) is a mass-less scalar field. Our method, how-
ever, is quite straightforward, to generalize the massive ¢, field. For sim-
plicity we put G =g =1; and write to calculate

CU@E: tU)Dy,

l.e., the vacuum expectation value of the time ordered product of the super-
field U(x) and U(x"). We consider the normal ordered fields, namely:
U (x): and : U(x"): This is to avoid the divergences which occur in ¢2 (x),
that is

$2(x) = 142 (x): + A (0).

Noting

-

1 — —1 (1+¢)
i f e

we can easily write
GU@: U= _fo :foe_t et dt dt’ (1ete: ete@), b
0
Using
(retor L gUREN ) = ot Ar (-2
we find for
Flx—x)=GU): U,
the following,
F(x—x)= z‘o n!l At (x— X);

n=0

we can sum this series by taking Borel transform.
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So we re-write

F(x— %)= 5 | et(EADdE

= T etf(x— x)de

where

fx—x)= X (fAF (x — x.'))n,

From now on we take x" = 0, so that we have

f(x) = 2 gn AFﬂ (JC),

Many ways have now been suggested to sum this and then to take its fourier
transform. This is necessary as the physical problems require handling in
momentum space for correct interpretation. We do like to consider the
f.t. of f(x) here because we would then discover an interesting physical con-
sequence regarding non-polynomial theory. For example, write

fx) =14 EAr(X)F(X)

going over to momentum space we have

@) = @p 5 () + gy [ TR o

where we used ¢ for a massless scalar field. The above integral equa-
tion has an immediate solution. Hence F (p) can be easily written down.
For example it is equal to

j°f<p> et de.

Without going into detail we find that

oo

=N 1 o (9
F(p)~p2+fﬁ2—+—*—z‘dt

0o

where

c(@=@—2et;, 0<t< oo
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Thus the spectral function o (7) is indefinite showing the presence of a state
with negative norm,* since we can identify |

(t=2et=c(t)= 3 [(0]v]|n)

2

Thus the present example of the superficld U (x) produces a ghost state
through Borel transform, etc. I need only mention that Borel technique
and a combination of Borel-Pade technique have been of good use in pro-
ducing AE for the anharmonic oscillator case. To complete my talk I
consider a purely non-perturbative technique in connection with anharmonic
oscillator case. This has been investigated® by Datta, Saxena, Srivastava,
Varma and myself for the last few years. This is the Hill determinant
approach. We consider the equation:

(m£§+x2+hx4)yﬁ=e¢.

TR,

R et R

Assume that

nﬁ =3 Cne_x"z x2n

be the solution for even-parity case. Tn that case Cy’s should satisfy the
following difference equation.

2(n+1)(2n+1)c1;+1+(€"‘1"‘4n) CnZACn_g.

The eigenvalue condition now emerges from this if we demand under
what condition the above difference equation has a solution. The condition
is the vanishing of an infinite determinant

e—1 2 0

oooooooooooooooooooooooooooo

------------------------------------------------

To accelerate the determination of the eigenvalues we note that if Dy stands
for nxn approximant of this determinant then

| Dy = (G — 1 - 4”) Dpy — 16Mn (n - 1) (’1 - ‘k) (n“" 3/2) Dn-—s-

From a simple knowledge of a few lower-order D’s one can recussively deter-
mine various higher order Dy’s. The zeros of D,;’s for #—» co on the eigen-
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values. Obviously the lowest root will correspond to the ground state
energy shift. We have calculated these eigenvalues. Our results are in
remarkable agreement with those obtained by Pade or Borel-Pade methods.
We find that for sufficiently small values of A the exact result is just obtained
from a sum of a first few terms cf the perturbation series, showing that the
perturbation series for the anharmonic oscillator is just an asymptotic series
in the sense of Watson. A rigorous demonstration of this fact has recently
been shown by Simon. We are now carrylng out to obtain some criteria
to normalize the respective eigen functions. We hope to discuss many

applications of our result in the near future.
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