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Abstract Colchicine–tubulin interaction, responsible for the
disruption of microtubule formation, has immense pharmacolog-
ical importance but is poorly understood in terms of its biological
significance. The interaction is characterized by a marked higher
affinity of colchicine for animal tubulins compared to tubulins
from plants, fungi and protists. From an analysis of tubulin se-
quences and colchicine–tubulin crystal structure, we propose that
Pro268b and Ala248b (270b and 250b in the crystal structure
1SA0) in animal tubulin are crucial for the observed differential
binding. We also suggest that mediated by the binding of endo-
genous molecules to the colchicine-binding site, microtubule
assembly in eukaryotes may be modulated in a family specific
manner.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Microtubules play a central role in several basic cellular

functions in all eukaryotes, of which cell division is the most

important [1]. The building block of microtubules, the het-

ero-dimeric protein tubulin [2] (see Fig. 1a), is known to bind

several molecules of pharmacological value [3]. Colchicine, a

plant alkaloid, is one such molecule that can bind tubulin

and inhibit tubulin polymerization in animal cells, leading to

mitotic arrest [4]. Although colchicine itself is not used as an

antimitotic drug due to its severe side effects, several synthetic

antimitotic drugs, derived from colchicine, have immense

pharmacological importance [5–8]. Despite being a well-char-

acterized binding site, for molecules both related to and

unrelated [9] to colchicine, the biological role of the colchi-

cine-binding site in eukaryotes is not clearly understood.

A unique feature of the colchicine-binding site is its striking

animal-specificity. Among the four eukaryotic families (plants,

animals, protists and fungi), colchicine is known to bind most
Abbreviations: PBS, primary colchicine-binding site; DC, DAMA-
colchicine; EBS, extended colchicine-binding site; PCA, principal
component analysis
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strongly to animal tubulins, with an affinity constant

�106 M�1. In comparison, the colchicine-binding affinity of

S. cerevisae (fungus) and T. pyriformis (protist) is �102 M�1,

weaker by �10,000 fold [10–14]. Plant tubulins also bind tubu-

lin only weakly as has been shown from comparative binding

assays [15]. The origin of this animal-specific tubulin affinity

of colchine is not known. An understanding of the molecular

origin of the animal-specificity of tubulin is important not only

because it will broaden our understanding of this pharmaco-

logically important drug–protein interaction, but also because

it might shed light on any biological relevance of the colchi-

cine-binding site. In this work we have addressed the issue of

differential colchicine-binding to tubulin across eukaryotes

from a careful analysis of tubulin sequences across a large

number of eukaryotes and the crystal structure of colchicine-

bound animal tubulin [2].
2. Criterion for identifying amino acids responsible for animal-

specific colchicine-binding

2.1. Distinct clustering of a subset of animal tubulin sequences

In order to identify residues responsible for animal-specific

colchicine binding to tubulin, we need a working hypothesis

that can be used as a criterion for judging whether the identity

of a selected set of residues is sufficient to account for the

experimental observation. We proceed with the hypothesis that

if the ‘‘collective nature’’ of a subset of residues in animal

tubulins is distinct from that of a similar subset in non-animal

tubulins, then one or more of the residues in the animal tubulin

subset is responsible for the animal-specific colchicine-binding.

We use principal component vectors to represent the

‘‘collective nature’’, as has been successfully applied in predict-

ing protein functional residues [16].

2.2. Definition of primary and extended colchicine-binding sites

A second criterion is that the subset of residues must,

directly or indirectly, be involved with colchicine-binding as

evident from the crystal structure or other experimental evi-

dence. Two sets of residues were defined for this purpose,

the primary colchicine-binding site (PBS; residues within

4.5 Å of DAMA-colchicine (DC) in the tubulin-DC crystal

structure 1SA0 [2]) and the extended colchicine-binding site

(EBS; all PBS residues plus residues within 5.0 Å of all PBS

residues). Twenty tubulin residues constituted the PBS
blished by Elsevier B.V. All rights reserved.



Fig. 1. (a) Structure of animal tubulin hetero-dimer (pdb code: 1SA0)
bound to GTP, GDP and DAMA-colchicine (DC) and (b) The
chemical structure of DC with atom numbering.

Fig. 2. Projection of: (a) tubulin PBS and (b) EBS sequences onto the
first and second principal component sequence vectors. Principal
component analysis was performed using a methodology very similar
to published earlier [16]. The dimensionality of the sequence space wasP

Ni where Ni corresponds to the total number of residue types at the
ith site. A binary code (1 or 0) indicated the presence or absence of a
residue type at a given site. The eigen values and eigen vectors
(principal component vectors) were obtained by the diagonalization of
the variance–covariance matrix ðrjk ¼ hð/ij � �/jÞð/ik � �/kÞiÞ, where
the indices j and k run over residue positions, and the index i
corresponds to individual sequences.
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(Table I, Supplementary materials). Unless otherwise stated,

the sequence numbering used in this work, including Supple-

mentary materials, is consistent with that used in the pdb file

1SA0 [2], where the sequence numbering was slightly altered

from the original sequence numbering to accommodate se-

quence alignment of a- and the b-chains. The PBS residues

in tubulin sequences across eukaryotes were then identified

by multiple sequence alignment [17] of 91 a-tubulin and 77

b-tubulin sequences (see Table III Supplementary materials).

While four residues (out of 20) in the a-chain constituted the

PBS, sequence alignment showed that only one out of these,

180a, exhibited some family-specific conservation (Fig. 1, Sup-

plementary materials). However, the observed conservation

was not strictly animal-specific. Therefore, only the remaining

b-chain residues (16 residues) were considered to constitute the

PBS for subsequent analysis presented here.

2.3. Structural changes compatible with experimental binding

energies

The colchicine–tubulin association constant is higher in ani-

mals by about three orders of magnitude as compared to other

eukaryotes. Using the relationship DGo = �RTlnK, this trans-

lates to about 4 kcal/mol extra stabilization of the animal

tubulin–colchicine complex (at 25 �C). The magnitude of the

energy suggests the disruption of specific interactions like H-

bonds [18] in non-animal tubulin-colchicine complexes. Tubu-

lin PBS contains a H-bond between the Cys241b side-chain

and the colchicine O2 atom (Fig. 1b), disruption of which

was shown to result in very little binding of a colchicine analog

to rat brain tubulin [19].
3. Principal component analysis in the primary colchicine-

binding sequence space

Principal component analysis (PCA) [16] was performed on

the PBS set across eukaryotes to ascertain eukaryotic family

specific clustering. As shown in Fig. 2a, when projected on

the first and second principal component vectors (associated

with the highest and the second-highest mean square

fluctuations), the four families separate into two subgroups:

animals-fungi and plants-protists. Without any distinct group

for animals, the PCA result is similar to what has been

observed for the phylogenetic analysis of whole tubulin

sequences [20]. Several members of the fungi family, viz. C.

albicans, S. cerevisiae, S. pombe, P. carinii, and E. nidulans,

were found to overlap with the mostly-animal cluster. At

least one of these (S. pombe) is known to bind colchicine only

weakly [11]. Thus, the identities of amino acid residues com-

prising the PBS are not sufficient to reflect the animal-specific

colchicine-binding trait of tubulin. This led us to look beyond

the PBS.
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4. Principal component analysis in the extended colchicine-

binding sequence space

PCA was performed for the 65 residues (Table II, Supple-

mentary materials) defining the EBS set. Unlike the case with

PBS residues (Fig. 2a), tubulin sequences corresponding to the

EBS clearly clustered according to their eukaryotic family ori-

gin, when projected onto the first two principal component

vectors (Fig. 2b). Specifically, the animal tubulin EBS residues

were distinct—suggesting that the identity of EBS is sufficient

to explain the origin of the animal-specificity of colchicine–

tubulin interaction.

Residue variations at 21 sequence positions, found to change

along PC1 or PC2, are shown as sequence logo plots [21] in

Fig. 3a. Two sequence positions are animal-specific: A250b
and P270b. Of these, the identity of 250b position changes to

Ser from Ala, and, the identity of 270b position changes to

Val/Ile from Pro for non-animal tubulins. We also compared

the sequence conservation at binding sites of two other ligands:

GTP and GDP (see Fig. 1a), bound to a- and b-tubulin,

respectively. As shown in Fig. 3b,c no residue positions show

family-specific conservation. In what follows, we consider

structural changes and its effect on colchicine-binding upon

A250Sb and P270I/Vb mutations.
Fig. 3. (a) Sequence logo plots [21] depicting sequence variations at:
(a) residue positions in EBS that change along PC1 and PC2 (Fig. 2b),
(b) GTP-binding residues in the a-tubulin, and (c) GDP-binding
residues in b-tubulin.
5. Structural consequences of A250bS mutation

The A250Sb mutation in non-animal tubulins can alter a

specific colchicine–tubulin interaction present in the crystal

structure, the C241b-colchicine H-bond, in two ways

(v1250b = trans or gauche-). In the colchicine-free state, S250b
in the trans isomeric state can form a H-bond with the Sc atom

of C241b (Fig. 4a). This H-bond and the C241b-colchicine

H-bond are mutually exclusive, implying that A250Sb muta-

tion has the potential to counter any energetic advantage of

C241b-colchicine H-bond in the colchicine-bound state. In

the gauche-isomeric state, S250b can form a ST-turn H-bond

[22] with the backbone amide hydrogen atom of L252b
(Fig. 4b). Upon colchicine-binding, if the ST-turn H-bond is

retained, it will disrupt favorable L242b–colchicine interac-

tions (Fig. 4b). On the other hand, if the H-bond gets dis-

rupted, the colchicine-bound state will become energetically

less favorable than the colchicine-free state by a H-bond that

will counter any favorable energy from the C241b–colchicine

H-bond.
6. Structural consequences of P270bV/I mutation

The other unique residue in animal colchicine, P270b, is a lit-

tle removed from the colchicine molecule in the crystal struc-

ture. Proline is rarely found in regular secondary structural

elements [23], both in a-helix and b-sheet. This is due to the

restricted nature of its allowed backbone dihedral angle /
(��63�) and the lack of backbone amide hydrogen necessary

to participate in H-bonding networks. However, Pro is consis-

tently present in the center of a b-strand (/ = �92�; w = �158�
in 1SA0) at position 270b in animal tubulins. In all non-animal

eukaryotes the position is occupied by either Val or Ile, both

ranked as top b-strand formers.

In the crystal structure (1SA0), the b-strand (267–272b) con-

taining P270b is flanked by two (374–381b and 200–205b)

other b-strands connected by inter-strand H-bond network

(Fig. 4c). The network gets disrupted due to the lack of a back-

bone amide hydrogen atom of P270b, which could have been

H-bonded to the backbone carbonyl of C203b. As shown in

Fig. 4d, the lack of this potential backbone–backbone H-bond

is somewhat compensated for by the presence of a Cd–H� � �O
H-bond between Cd–H (P270b side-chain) and O‚C (C203b
backbone), similar to what has been observed for Pro in a-heli-

ces [24]. Upon a P270bV/I mutation, the Cd–H� � �O‚C H-

bond is likely to be replaced by a NH� � �O‚C H-bond, bring-

ing the backbones of 270b and 203b closer, thereby also bring-

ing the two b-strands closer. In addition, with a non-Pro (V/I)

residue at position 270b, the constraint on the backbone dihe-

dral angle / will be relaxed, leading to the possibility of form-

ing one extra inter-strand H-bond (between 205bNH and

270bC‚O). This extra H-bond may cause significant rearrange-

ment of the backbone, especially in the context of b-strand H-

bonding network around 270b.

In addition to the backbone rearrangement, a P270bV/I

mutation will also introduce changes in the side-chain packing

interaction around 270b to accommodate a V/I residue at that

position. Residues that are in proximity of 270b (202b, 234b,

238b, 378b) are shown in Fig. 4c. Of these, 238b directly con-

tacts C241b, a crucial residue for a side-chain mediated



Fig. 4. (a) Effect of A250bS (t conformer) substitution in the PBS. C241b side-chain is shown in trans (crystal structure) as well as in gauche-
conformation. (b) Formation of a Type-I ST-turn [22] upon A250bS (gauche-conformer) substitution in the PBS; in the gauche-conformation, S250b
side-chain hinders close contact of L242b side-chain and colchicine. (c) Disposition of Pro 270b and neighboring residues, including C241b and DC,
in the crystal structure (1SA0). (d) Cd–H� � �O‚C hydrogen bond (Cd� � �O‚C = 3.2 Å; Hd� � �O‚C = 2.7 Å; Cd–Hd� � �O = 111�; Hd� � �O‚C = 138�)
between C203b backbone and P270b side-chain.
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H-bond with colchicine. The other three residues (202b, 234b,

378b) make secondary contact with C241b via 238b. There-

fore, a P270bV/I mutation might also disrupt the colchicine-

241b H-bond interaction by modulating side-chain packing

around C241b.
7. Summary and perspective

The recent 3.58 Å X-ray structure of colchicine-bound ani-

mal tubulin [2] provided the first comprehensive picture of

the colchicine–tubulin interaction. In addition to pinpointing

specific and non-specific interactions, the structure can lead

to the prediction of common themes in colchicine–tubulin bind-

ing. For example, a recent study [25] used the crystal structure

as a template to derive a common pharmacophore for a diverse

set of colchicine site inhibitors using molecular docking and

molecular dynamics studies. The animal-specificity of tubulin

affinity of colchine can also be understood from a similar ap-

proach, albeit in a reverse sense. Instead of studying the inter-

action of tubulin with a diverse set of molecules that bind the

colchicine-binding site, the interaction of colchicine with a di-

verse set of eukaryotic tubulins can provide clues about the ori-

gin of the animal-specific colchicine-binding of tubulin, as was

attempted recently [26] to identify the molecular origin of

biphasic kinetics of colchicine-binding to animal tubulin,

originating from tubulin isoforms. In this work we have

demonstrated that two residues in b-tubulin, at sequence posi-

tions 250 and 270, whose identities show animal-specific con-

servation (A250b and P270b in animals; S250b and V/I270b
in plants, fungi and protists), are critical for the observed ani-

mal-specific colchicine-binding to tubulins across eukaryotes.

The idea that endogenous molecules might bind the colchi-

cine-binding site has been suggested before. The family-specific

conservation of colchicine-binding site in tubulins, pointed out

in this paper, further suggests that the endogenous molecules

may actually be family-specific (Roy, S. personal communica-

tion). Our results also call for the elucidation of non-animal

tubulin structures for capturing subtle but important changes

in the core tubulin structure, especially in the vicinity of the

colchicine-binding site, as a result of sequence changes re-

ported here, especially P270bV/I.
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Appendix A. Supplementary data

Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.febslet.

2007.09.047.
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