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Abstract

The present article describes a method of designing a connectionist model for
selection of cases for decision-making problems. The notion of fuzzy similarity is used
for selecting the same from overlapping regions. Cases are stored as network
parameters. The architecture of the network is adaptively determined through growing
and pruning of hidden nodes under supervised training. The effectiveness of the cases,
thus selected by the network, is demonstrated for pattern classification problem using
I-NN rule with the cases as the prototypes. Results, along with comparisons, are
presented for various artificial and real life data for different parameter values of the
similarity function, controlling the number of cases. © 2001 Elsevier Science Inc. All
rights reserved.

Keywords: Case-based reasoning; Fuzzy similarity; Classification; Node growing; Node
pruning

1. Introduction

A case-based system adapts old solutions to meet new demands, explains
and critiques new situations using old instances (called cases), and performs
reasoning from precedents to interpret new problems [1]. A case may be defined
as a contextualized piece of knowledge representing an experience that teaches
a lesson fundamental to achieving the goals of the system. The system learns as
a byproduct of its reasoning activity. It becomes more efficient and more
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competent as a result of storing the experience of the system and referring to
them in later reasoning. Case-based system, in contrast to the traditional
knowledge-based system, operates through a process of remembering one or a
small set of concrete instances or cases and basing decisions on comparisons
between the new situation and the old one. The task of selection of cases
constitutes an important and integral part of a case-based system, particularly
when the size of the data set is large.

Artificial neural networks (ANNSs), having the capability of fault tolerance,
adaptivity and generalization, and scope for massive parallelism, are widely
used in dealing with learning and recognition tasks. For the last few years,
attempts are being made for developing methodologies integrating case-based
reasoning and ANNSs. The problems include, among others, designing hybrid
case-based connectionist systems [2-4], formulating connectionist indexing
approaches [5,6], retrieval of cases using neural network [7], and learning of
cases in connectionist framework [8].

This article is an attempt in this regard for developing a connectionist model
for selecting cases in pattern recognition problems. Cases are viewed as typi-
cally labeled patterns which represent different regions of the classes. A notion
of fuzzy similarity, using n-type membership function, is incorporated together
with repeated insertion and deletion of cases in order to determine a stable case
base. The architecture of the connectionist model is determined adaptively
through growing and pruning of hidden nodes under supervised mode of
training. In order to demonstrate the effectiveness of the network (methodol-
ogy) for pattern classification, we have considered the principle of k-NN
classifier with £ = 1 and the cases as the prototypes. Results of the algorithm,
along with comparisons, are adequately demonstrated on an artificial data, and
real life speech [9] and medical data [10].

2. Selection of cases and class representation

In this section, we describe how the task of selection of few samples from each
class as cases, is performed. (For the sake of convenience, the samples which
are not selected as cases, are referred to as patterns in the subsequent discus-
sion.) For performing this task, let us, first of all, define a similarity function
for measuring the degree of similarity between a pattern and a case. The
function is such that the higher its value, the higher is the degree of similarity
between a pattern and a case.

Let x = [x1,x2,...,X;,...,X,] be a pattern vector of known classification in
an n-dimensional feature space containing M classes. &, = [£,1,¢0, -,
pis -+ -5 i) denotes [ith case from kth class Ci. p,, (x) represents the degree
of similarity of x to a case &, . d;,(x) stands for the distance between x and

S,



R.K. De, S.K. Pal | Information Sciences 132 (2001) 179-194 181

The degree of similarity between a pattern x and a case &, is defined as

X 2
w0 = 1-2(%2) 0<d,(x) <4,
2
= 2l =R isdw <z W
= 0, otherwise,

where / is the bandwidth of y, (x), i.e., the separation between its two (cross-
over) points where yx, =0.5. Note that g, (x) can be viewed as a m-type
membership function characterizing a fuzzy set of points representing a region
R, with £, as its center [11].

The distance d), (x) may be expressed in many ways. Considering Euclidian
norm, we have

n

1/2
Z(xi - fzki)2] . (2)

i=1

d/k (X) =

It is clear from Eq. (1) that y, (x) decreases with the increase in d;, (x) and vice-
versa. It is maximum (= 1.0), if d;,(x) is zero (i.e., if a pattern x and the /;th
case are identical). The value of g, (x) is minimum (= 0.0), if d;, (x) > 4. When
dy, (x) =4, p;, (x) is 0.5, i.e., an ambiguous situation arises. y, (x) implies that
there is a crisp region R;, centered around a case &, , beyond which a pattern x
is said to be dissimilar to &, . Note that, one may define y, (x) in a different way
satisfying the above mentioned characteristics.

A pattern x is selected randomly from any class C;. x is considered as the
first case if the case-base B; corresponding to class C; is empty. Otherwise,
1, (x) (Eq. (1)) corresponding to the the cases &, in the case-base By, are
computed. x is selected as a new case, if

1, (x) <05 Y I

When a case is selected, it is inserted into the case-base. After repeating this
process over all the training patterns, a set of cases constituting the case-base
for each class is obtained. The case-base B for the entire training set is the
union of all Bys, i.e., B = U} B.

After the formation of this case-base B, a case §; for which y, (x) <0.5 is
minimum, is deleted from B, if the number of patterns with u, (x) > 0.5 (or
with d;, (x) < %). The processes of insertion and deletion are repeated until the
case-base becomes stable, i.e., the set of cases does not change further. This
deletion process reduces the possibility of a spurious pattern being considered
as a case.

Therefore, the class C; can be viewed as a union of all the crisp regions R;,
around its different cases, i.e.,

— Sk
Ci = U} Ry,
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where s, is the number of cases in class Cy. Note that as the value of A increases,
the extent of R, s representing different regions around &, s increases, and
therefore, the number of cases s, decreases.

Effect of A: As A increases, the extent of the region around a case increases,
and therefore the number of cases required for representing a class decreases.
This implies that the generalization capability of an individual case increases
with increase in A. Initially, although the number of cases decreases with the
increase in 4, the generalization capability of individual cases dominates. For
further increase in A, the number of cases becomes so low that the general-
ization capability of the individual cases may not cope with the proper rep-
resentation of the class structures.

3. Formulation of the network

Let us describe here the design of the network model, based on the meth-
odology of case selection described in Section 2. Its architecture is determined
adaptively through growing and pruning of hidden nodes. Note that these
growing and pruning phenomena correspond to the tasks of insertion and
deletion of cases.

3.1. Architecture

The connectionist model (Fig. 1) consists of three layers: input, hidden and
class. The input layer represents the set of input features, i.e., for each feature
there is a node (called input node) in the input layer. Similarly, for each case
there is a node in the hidden layer. For each hidden node, there is an auxiliary
node which makes the hidden node ON or OFF. An auxiliary node corre-
sponding to a hidden node sends back signal to the input layer only when it
sends a signal to the hidden node for making it ON. The hidden nodes are
made ON one at a time keeping the remaining OFF. For the purpose of
keeping class information of the cases, we have considered class layer con-
sisting of several nodes; each node (class node) representing a class.

The input nodes are connected to the hidden and auxiliary nodes by feed-
forward and feedback links, respectively. The weight of a feedforward link
connecting ith input node and /,th hidden node is

wil =1 Y I (3)

The weight wﬁf;) of a feedback link connecting the auxiliary node corre-
sponding to /;th hidden node and ith input node is the same as the ith feature

value of the /;th case (&;;). That is,
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Fig. 1. A schematic diagram of the neural network model. Black circles represent the auxiliary
nodes, and white circles represent input, hidden and class nodes.

5?,?) = é/ki' (4)
The hidden layer is connected to the class layer via feedforward links. The
weight (WEZ) of the link connecting /;th hidden node and kth class node is 1, iff
the case corresponding to the hidden node belongs to class C;. Otherwise, there
is no such links between hidden nodes and class nodes. That is,

w

wyy) 1 ifg, € Gy, (5)
0, otherwise.

At the beginning, since the case-base is empty, there is no hidden node. Hence,
the connectivity between the layers is not established. When there is at least one
hidden node, a pattern x is presented to the input layer of the network. The
activation of ith input node when /;th hidden node is ON, is given by
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0 0)\2
o) = (u)))’. (6)

ugff is the total input received by the ith input node when the /;th hidden node
is ON, and is given by

0 b
ugkl) = x[?i - ugki)7 (7)

™) — (=1) « w,kl (-1 being the feedback activation value of the

where u,
auxiliaryknode corresponding to the /,th hidden node) is the feedback input
received by the input node. The total input received by the /;th hidden node

when it is made ON, is
ulk Z vlkz * Wlkz (8)

The activation functlon of an /;th hidden node is the same as g, (x) (Eq. (1)).
Thus, the activation (v, ) of I;th hidden node is given by

(1) (i,t)wz ()\1/2
i) = 12 M) o< @) <2,

(1)y1/2 (9)
- 2|:1L:| , %g(u )1/2

< 4,
= 0, otherwise.

Here the value of / is stored in all the hidden nodes.

3.2. Training and formation of the network

The network described in Section 3.1 is formed through growing and pruning
of the hidden nodes during the training phase under supervised mode. Initially
there is only input and class layers. The patterns are presented in a random
sequence to the input layer of the network. The first pattern presented to the
network is considered as a case. A hidden node along with its auxiliary node
representing this case is added to the network. The connections of these aux-
iliary and hidden nodes with the input and class layers are established as de-
scribed by Egs. (3)-(5).

For the remaining patterns, their degrees of similarity with the cases rep-
resented by existing hidden nodes are computed, and if they are decided to be
new cases (Section 2), hidden nodes are added through growing operation.
After the process of addition is over, it is checked if there is any redundant
hidden node. This is done through pruning operation depending on the crite-
rion mentioned in Section 2. In this connection, one may note that as 4 in-
creases, the number of cases and hence the number of hidden nodes decreases.
These two operations, which together constitute a single iteration, are con-
tinued until the structure of the network becomes stable, i.e., until
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Z > i () Z > i = 1) (10)

Iyi Iyi

where ¢ is the number of iterations.

The aforesaid growing and pruning operations are described below.

Growzng of hidden nodes: For a pattern x € G, if vg <0.5 and
wgk = ¢, € C; for all the hidden nodes, x is selected as a case. A ‘hidden node
along with its auxiliary node is added to the network for representing this case
and the links are established accordingly, using Eqs. (3)—(5). This process is
called growing of hidden nodes. Note that the task ‘insertion’ of cases described
in Section 2, is performed through this process.

Pruning of hidden nodes: An [;th hidden node is deleted, if

1 . 1
vgk) = min U§k> <0.5
b=

and the number of training samples for which v, )'> 0.5 is less than a pre-de-
fined value. In this way, the network is pruned. Note that the task ‘deletion’ of
cases described in Section 2, is performed through this process.

4. 1-NN classification using the cases

In order to demonstrate the effectiveness of the network model (i.e., the
capability of the cases in representing respective classes) for pattern classifi-
cation, we have considered the principle of 1-NN rule with the cases as the
prototypes. According to this rule, an unknown sample x is said to be in class
C; if for an L;th case

vg) = rg{lz}x{vg:)}, Jk=12,....M
: 2k
For performing this task, each node in the class layer (Fig. 1) is considered to
function as a Winner-Take-All network. A kth class node receives activations

only from the hidden nodes corresponding to the cases in C;. That is, the ac-
tivation received by the kth class node from the /;th hidden node is

2 1 1
u,((,z = vgk) * w,(d]z. (11)
The output of kth class node is
2 2
o = max{ug}, (12)

where vff) represents the degree of belongingness of x to class C;. Therefore,

decide x € C; if

0P >0, jk=1,2,...,M, j#k
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5. Experimental results

In this section, the effectiveness of the network (methodology) for automatic
selection of cases is demonstrated by making the cases function as prototypes
for a 1-NN classifier. Artificially generated data Patl, and the real life vowel [9]
and a medical data [10] are considered as input. In all the cases, the data set has
been divided into two subsets — training and testing. While perc% samples are
considered during training, the remaining (100 — perc)% is used for testing.
The synthetic data Patl (Fig. 2) has two input features, two classes and 557
pattern points.

The vowel data [9] consists of a set of 871 Indian Telugu vowel sounds.
These were uttered in a consonant-vowel-consonant context by three male
speakers in the age group of 30-35 years. The data set has three features, F, F>
and F; corresponding to the first, second and third vowel formant frequencies
obtained through spectrum analysis of the speech data. Fig. 3 shows the
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Fig. 2. Scatter plot of the artificially generated Patl data. Here ‘1’ and ‘2’ represent patterns in
classes 1 and 2, respectively.
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Fig. 3. Scatter plot of the vowel data in Fi—F, plane.

overlapping nature of the six vowel classes (viz., 0, a, 1, u, e, 0) in the F|-F,
plane (for ease of depiction). The details of the data and its extraction pro-
cedure are available in [9]. This vowel data is being extensively used for more
than two decades in the area of pattern recognition.

The medical data consisting of nine input features and four pattern classes,
deals with various Hepatobiliary disorders [10] of 536 patient cases. The input
features are the results of different biochemical tests, viz., Glutamic Oxalacetic
Transaminate (GOT, Karmen unit), Glutamic Pyruvic Transaminase (GPT,
Karmen Unit), Lactate Dehydrase (LDH, iu/l), Gamma Glutamyl Transpep-
tidase (GGT, mu/ml), Blood Urea Nitrogen (BUN, mg/dl), Mean Corpuscular
Volume of red blood cell (MCYV, fl), Mean Corpuscular Hemoglobin (MCH,
pg), Total Bilirubin (TBil, mg/dl) and Creatinine (CRTNN, mg/dl). The he-
patobiliary disorders Alcoholic Liver Damage (ALD), Primary Hepatoma
(PH), Liver Cirrhosis (LC) and Cholelithiasis (C), constitute the four classes.

Tables 1-3 depict some of the results obtained with the above data sets for
different values of 4 when perc = 30 is considered. The first column of these
tables indicates the number of iteration(s) required by the network until it
stabilizes during training. It is found from these tables that the recognition
scores on the training set, as expected, are higher than those on the test set. The
recognition score during training decreases with the increase in the value of 4.
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Table 1
Classification performance for different 4 using Patl for perc = 30.
Number of A Class Number of Recognition score (%)
iterations hidden nodes Training set Testing set
1 150.0 1 54 100.0 100.0
2 12 100.0 100.0
Overall 66 100.0 100.0
1 200.0 1 45 100.0 100.0
2 11 100.0 100.0
Overall 56 100.0 100.0
1 250.0 1 29 100.0 100.0
2 7 100.0 100.0
Overall 36 100.0 100.0
1 300.0 1 23 100.0 99.69
2 6 100.0 94.12
Overall 29 100.0 98.72
1 350.0 1 16 98.91 97.55
2 5 89.47 87.18
Overall 21 97.30 95.74

On the other hand, for the test data, the recognition score increases with 4 up
to a certain value, beyond which it decreases. This can be explained as follows.
During training, the recognition score increases with decrease in 4 due to
better abstraction capability. While for the test data, as A decreases, the
modeling of class structures improves because of the increase in the number of
cases, and therefore, the recognition score increases up to a certain value of 1.
Beyond that, as mentioned in Section 2, the number of cases with poor gen-
eralization capability (i.e., similarity functions with very small bandwidth)
increases. As a result, the recognition score decreases due to overlearning.

As mentioned in Section 3.2, the number of hidden nodes of the network
decreases with the increase in A, for all the cases (Tables 1-3). Since class 1 of
Patl is more sparse than class 2 (Fig. 2), it needs more cases (and hence more
hidden nodes) for its representation. This is reflected in Table 1. Similar ob-
servations hold good for vowel and medical data where class ‘e’ for vowel and
PH for medical data, being most sparse, have the maximum number of hidden
nodes. Note from Tables 1-3 that, for all the data sets, the stability of the
architecture of the networks is achieved with a very few iterations.
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Number of A Class Number of Recognition score (%)
iterations hidden nodes Training set Testing set
3 100.0 0 21 95.24 41.18
a 22 100.0 84.13
i 42 98.04 72.73
u 31 97.78 81.13
e 53 98.39 67.59
o 38 94.44 89.68
Overall 207 97.30 75.0
3 150.0 0 18 95.24 64.71
a 13 96.15 93.65
i 23 96.08 86.78
u 20 88.89 86.79
e 37 96.77 80.0
o 26 92.59 85.71
Overall 137 94.21 83.82
3 200.0 0 16 80.95 64.71
a 13 92.31 90.48
i 21 98.04 87.60
u 19 91.11 85.85
e 36 93.55 81.38
o 25 90.74 86.51
Overall 130 92.28 83.99
1 250.0 0 12 71.43 58.82
a 9 88.46 80.95
i 11 92.16 85.95
u 9 84.44 72.64
e 20 91.94 80.69
o 14 81.48 74.60
Overall 75 86.49 77.29
1 300.0 7] 10 57.14 52.94
a 8 92.31 80.95
i 10 92.16 86.78
u 8 97.78 83.96
e 20 88.71 80.69
o 11 64.81 59.52
Overall 67 83.78 75.82
3 350.0 0 8 52.38 52.94
a 7 92.31 95.24
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Table 2 (Continued)

Number of A Class Number of Recognition score (%)
iterations hidden nodes Training set Testing set
i 9 94.12 90.08
u 8 97.78 89.62
e 13 70.97 66.21
o 8 46.30 42.86
Overall 53 75.68 72.06
1 400.0 0 8 57.14 56.86
a 7 96.15 95.24
i 7 88.24 86.78
u 6 97.78 84.91
e 10 69.35 65.52
o 8 72.22 64.29
Overall 46 80.31 75.16
1 450.0 0 7 71.43 70.59
a 5 84.62 68.25
i 5 58.82 61.16
u 6 93.33 83.02
e 9 83.87 76.55
o 6 68.52 67.46
Overall 38 76.45 71.41

In order to demonstrate the effect of the size of a training set on the per-
formance of the network, we have considered only the vowel data. Different
values of perc considered are 10, 20, 30, 40, 50, 60 and 70 with A = 150.0,200.0
and 250.0. (Note that the network achieves the best generalization capability
for 2 =200.0 (Table 2).) Table 4 shows that the recognition score on the test
set, as expected, increases in general with the size of the training set.

Comparison: In a part of the experiment, we have compared the perfor-
mance of the said classifier (where the cases are considered as prototypes) with
that of the following ones:

(i) A standard &-NN classifier with k£ = /s (s being the number of training

samples) where all the perc% samples, selected randomly, are considered

as prototypes. (It is known that as s goes to infinity, if the values of & and

k/s can be made to approach infinity and zero, respectively, then the perfor-

mance of k-NN classifier approaches that of the (optimal) Bayes classifier

[12]. One such value of k£ for which the limiting conditions are satisfied is

Vs.)

(i1) Bayes maximum likelihood classifier where a multivariate normal distri-

bution of samples with different class dispersion matrices and a priori prob-



Table 3

Classification performance for different 4 using the medical data for perc = 30

R.K. De, S.K. Pal | Information Sciences 132 (2001) 179-194

191

Number of A Class Number of Recognition score (%)
iterations hidden nodes Training set Testing set
1 150.0 ALD 17 61.76 3293
PH 30 81.13 48.80
LC 19 91.89 73.56
C 13 42.86 27.71
Overall 79 71.07 46.42
1 160.0 ALD 20 71.43 56.79
PH 35 70.37 29.84
LC 17 78.95 66.28
C 8 58.33 57.32
Overall 80 69.94 50.13
1 170.0 ALD 20 71.43 58.02
PH 34 68.52 29.03
LC 17 78.95 66.28
C 8 55.56 54.88
Overall 79 68.71 49.60
1 180.0 ALD 20 68.57 56.79
PH 34 72.22 31.45
LC 16 71.05 61.63
C 8 55.56 54.88
Overall 78 67.48 49.06
1 190.0 ALD 19 80.00 61.73
PH 33 77.78 36.29
LC 14 76.32 68.60
C 6 8.33 12.20
Overall 72 62.58 43.97
7 200.0 ALD 15 76.47 58.54
PH 25 71.70 45.60
LC 14 72.97 68.97
C 11 25.71 9.64
Overall 137 62.89 45.89

abilities (= s;/s, for s; patterns from class C;) are assumed, and all the perc%

samples are used to compute the mean vectors and the covariance matrix.
Table 5 depicts that the network (CBNN) performs better than k-NN (k = /s)
and Bayes maximum likelihood classifiers for Patl and vowel data. In the case
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Table 4
Classification performance for different 4 and perc on vowel data

A Recognition score (%)

perc =10 perc =20 perc =30 perc=40 perc=50 perc=060 perc=70

150.0 70.99 81.55 83.82 80.42 84.67 86.29 87.01

200.0 75.70 82.12 83.99 83.27 84.67 85.71 86.20

250.0 75.06 80.11 77.29 80.23 82.38 83.43 84.03

Table 5

Comparative recognition score of various classifiers on different data sets

Data set  Class Recognition score (%)

CBNN Bayes k-NN
Training  Testing Training  Testing Training  Testing

Patl 1 100.0 100.0 100.0 100.0 100.0 99.38
2 100.0 100.0 34.48 19.12 96.55 100.0
Overall 100.0 100.0 88.62 85.90 99.40 99.49

Vowel 0 80.95 64.71 38.10 43.14 23.81 33.33
a 92.31 90.48 88.46 85.71 80.77 85.71
i 98.04 87.60 90.20 85.12 88.24 85.12
u 91.11 85.85 91.11 90.57 86.67 76.42
e 93.55 81.38 75.81 80.69 75.81 77.93
o 90.74 86.51 92.59 85.71 92.59 88.89
Overall 92.28 83.99 83.01 81.70 79.92 78.43

Medical ALD 71.43 56.79 61.76 50.00 52.94 46.34
PH 70.37 29.84 54.72 64.80 69.81 77.60
LC 78.95 66.28 51.35 36.78 21.62 29.89
C 58.33 57.32 91.43 75.90 54.29 61.45
Overall 69.94 50.13 63.52 57.56 51.57 56.23

of medical data, while the performance of CBNN on the training set is better
than those obtained by the others, the reverse is true on the test samples.

6. Conclusions

We have described a method of designing a connectionist model (CBNN)
for the selection of cases. A notion of fuzzy similarity, using m-type member-
ship function, is incorporated together with the process of repeated insertion
and deletion of cases in order to determine a stable case base. Cases are stored
as network parameters during its supervised training for pattern recognition
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problems. The architecture of the network is determined adaptively through
growing and pruning of hidden nodes. The effectiveness of the cases, thus se-
lected by the network, has been demonstrated for pattern classification prob-
lems by considering them as prototypes of a 1-NN classifier.

Experimental results demonstrate that the number of hidden nodes increases
with the decrease in extent A of the m-function (Eq. 1). As 1 decreases, the
performance during training increases because of the higher number of rep-
resentative cases. On the other hand, during testing, it increases with the de-
crease in A up to a certain value, beyond which the performance deteriorates
because of overlearning (poor generalization capability of the cases). Note that
here 1 is the same for all the classes and is chosen empirically. However, A
might be distinct for individual classes. Its value could either be estimated from
densities of individual classes, or be determined adaptively from the data set.

It has been found that CBNN performs better than &-NN, with £ = /s, and
Bayes maximum likelihood classifiers for Patl and vowel data. In other words,
the class representation capability of the fewer cases selected by the CBNN is
seen to be superior to those of the entire perc’ samples selected randomly for
k-NN, with & = /s, and Bayes classifiers. However, for medical data, the
generalization capability of CBNN is seen to be poorer.

One may further note a drawback of the £-NN classifier that it needs to store
all the prototypes (and hence to compute the distances from all of them). In
this respect, the merit of the CBNN in selecting cases out of all the training
samples is evident from the point of space and time complexity.
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