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Abstract

Prototype selection on the basis of conventional clustering algorithms results in good representation but is extremely time-taking on
large data sets. kd-trees, on the other hand, are exceptionally efficient in terms of time and space requirements for large data sets, but fail
to produce a reasonable representation in certain situations. We propose a new algorithm with speed comparable to the present kd-tree
based algorithms which overcomes the problems related to the representation for high condensation ratios. It uses the Maxdiff criterion
to separate out distant clusters in the initial stages before splitting them any further thus improving on the representation. The splits
being axis-parallel, more nodes would be required for the representing a data set which has no regions where the points are well
separated.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Data mining may be viewed as applying pattern recogni-
tion and machine learning principles on voluminous (both
in size and dimension) heterogeneous data. The existing
techniques for pattern recognition usually fail to scale up
to large data sets, with the time for analysis becoming a
major issue (Provost and Kolluri, 1999). These problems
are being handled either by designing algorithms that per-
form reasonably well on large data sets or by converting
the larger data sets into smaller ones which are manageable
within the usual pattern recognition framework. In this arti-
cle, we focus on this second aspect and deal with the prob-
lem of reducing the number of samples, which is known as
data condensation, data reduction or prototype selection.
The objective of data condensation is to obtain a sub-

set of the original data which contains almost all the infor-
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mation present in the original data set. In other words, a
representative sample set (or a set of prototypes) of the
original data needs to be obtained. There are several ap-
proaches for obtaining prototypes from a given data set.
The condensed nearest neighbor rule (Hart, 1968) condenses
the data set only from the perspective of the nearest neigh-
bor algorithm. The obtained set of points results in the
same nearest neighbor rule as the one obtained using the
complete data set. In this respect, proximity graphs have
also been employed (Sanchez et al., 1997) where the data
points are first edited before performing the condensation.
In general, it is desirable to select prototypes that would be
useful for all sorts of mining tasks. Randomly selecting
prototypes may result in a loss of information regarding
the structure present in the data unless the size of the
randomly sampled set is quite large (Catlett, 1991). On the
other hand, selecting prototypes randomly after clustering
the data set would preserve the clustering information to
a greater extent. Such an approach for prototype selection
may be found in (Decaestecker, 1997), where gradient des-
cent and deterministic annealing are used to find training
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set consistent subsets. The CFF algorithm provided by
Cuevas et al. (2000) finds the subset of the data belonging
to a level set and computes agglomerative clusters.
It may be noted that the clustering obtained for the pur-

pose of condensation need not be the clustering in the usual
sense, i.e., for the sake of condensation, it is acceptable to
have more number of clusters than are actually present in
the given data. For example, given a data with three appar-
ent clusters, it is acceptable to have twelve clusters by split-
ting each of the original clusters into four subclusters and
thus obtaining twelve prototypes. Henceforth, by cluster-
ing, unless otherwise stated, we would be referring to clus-
tering for the purpose of condensation and not obtaining
the exact number of clusters present in the data.
kd-trees (Friedman et al., 1997) (short for k dimensional

binary search trees) are used for condensation due to the
above mentioned reason. kd-trees are formed by splitting
the data at each node along a particular dimension using
some criterion. Each node owns a hyperrectangle that cov-
ers the data at that node. The split corresponds to parti-
tioning the hyperrectangle of the node with each part
going to a child node. Multiresolution kd-trees (mrkd-
trees) (Moore, 1999) store the first and second order sum-
mary statistics of the data at each node (Moore and Lee,
1998). Each manner of truncating the tree results in a par-
ticular representation of the original data. Generally, the
midpoint or the median along the most spread dimension
is chosen for splitting a node. kd-tree based condensation
is essentially very fast as each split can be performed in
O(kn) time, where n is the number of data points at the cur-
rent node. Thus, a kd-tree can be formed in O(kN logm)
time, where N and m are the number of data points in
the original data set and the number of terminal (or leaf)
nodes, respectively. Hierarchical clustering methods are
relatively slower as they optimize some objective function
while splitting one of the existing clusters at each stage.
As the number of clusters increases, the representation

of the original data by the selected prototypes is expected
to be increasingly better and when the number of clusters
is equal to the number of data points, the representation
is the best possible one. All data condensation algorithms
satisfy the above. The available algorithms differ from each
other in terms of the amount of condensation obtained for
producing the same quality of representation.
We mention some other methods whereby a representa-

tion similar to that by kd-trees may be obtained. AD-trees
store the data set in terms of all the possible feature values
(Moore and Lee, 1998). Tree structured vector quantizers
(Balakrishnan et al., 1995) obtain prototypes at multiple
levels, and speed up the codebook search by searching
through a tree structure.
The amount of condensation is measured in terms of

condensation ratio which is defined as N�m
N . As mentioned

earlier, for lower condensation ratios, most of the algo-
rithms tend to result in similar quality of representation.
In what follows, we show that the kd-tree based represen-
tation may not be appropriate for high condensation ratios
(though it is acceptable for lower condensation ratios).
When the given data has an inherent clustering in it, and
the clusters possess neither equal size nor do they contain
equal number of data points, the initial splits while forming
a kd-tree are performed in such a manner that some of the
nodes cover portions of two or more clusters. The sum-
mary statistics stored at those nodes are, therefore, inapt.
The above drawback of the kd-tree based condensation

algorithms prompts us to describe a new kd-tree based con-
densation algorithm where the splits are performed at the
positions with the largest difference in consecutive order sta-
tistics (or the sorted data values) along a particular dimen-
sion. Since finding the exact splitting position (or pivot)
involves O(n logn) operations (for each dimension), we sug-
gest an approximate way of finding the pivot in O(n) time.
The time and space complexity of the proposed algorithm
is the same as that of the usual kd-trees.We show, experimen-
tally, that the performance of the proposed algorithm is bet-
ter than other competitive algorithms whenever the data has
well-separated clusters with different sizes (i.e., the sizes of
the regions occupied by the clusters) and unequal a priori
probabilities (i.e., the number of points contained in them).
In the next section, we discuss in detail how kd-trees can

be employed for condensed representation of data. We also
provide examples to show why the existing methods of
splitting may not be appropriate. In Section 3, we describe
the proposed algorithm and explain its advantages over
other methods. We provide the experimental results and
a critical analysis of our algorithm in Section 4. Finally,
we conclude the article with some discussion regarding
the scope for improvement over the proposed method.

2. Condensed representation with kd-trees

The objective of a data condensation algorithm is to
take as input, an original data set and output a smaller
representative data set of the input. There is a trade-off
between the size of the representative data set and its faith-
fulness. The larger the size of the condensed set, the better
is its representation of the original data set.
As mentioned earlier, the cluster centroids (or medoids)

may be considered to constitute the condensed data set.
The problem of data condensation, however, is not the same
as clustering, where it is necessary to have only as many clus-
ters as are present in the data. In data condensation, one can
afford to, and often needs to have many more representative
points in the condensed set than the inherent number of
clusters. This is so as a single point need not necessarily
represent the cluster properly owing to the various shapes
a cluster can have. CURE (Guha et al., 2001) chooses multi-
ple prototypes from each cluster, but the complexity of each
iteration of the algorithm is high, as is the case with the con-
ventional clustering algorithms. These are good at clustering
when the number of clusters and the number of features are
small, otherwise, they fail to provide the output in a reason-
able amount of time. This renders partitional clustering
algorithms infeasible for data condensation.
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Fig. 1. Synthetic data set.
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Hierarchical clustering algorithms are faster than part-
itional clustering algorithms. Moreover, it is not necessary
to specify the number of clusters to be obtained. Instead, a
stopping criterion has to be specified for terminating the
splitting/merging process. Hierarchical clustering can again
be either divisive or agglomerative (Zhao and Karypis,
2002; Karypis et al., 1999). The objective for condensation
being obtaining as small a representative set as possible
from a large data set, agglomerative algorithms would
take much longer to provide the desired condensed set.
Although graph based clustering algorithms can detect
clusters of arbitrary shapes and sizes and may be consid-
ered for hierarchical clustering, they have a high comp-
lexity owing to the complex decision process involved for
splitting/merging at each stage. This makes the application
of such techniques on large data sets unsuitable as the time
taken is too high for data mining applications. In this
context, it is desirable to have a hierarchical clustering
algorithm which needs very little time, say, O(kn), for split-
ting/merging.
The above requirement brings to the fore the need for

using a kd-tree based algorithm for data condensation. A
kd-tree is a data structure that stores a given data set
through its partitioning. It is a binary search tree where
the data belongs to Rk. Each node of the tree contains some
information about a part of the data set. The root of the
tree contains the information about the entire data. The
data at each node is further partitioned into two parts,
and the information about each of them is stored in a child
node. The information stored at a node may be one or
more of the following summary statistics, namely, the num-
ber of data points, the centroid, the covariance, the bound-
ing hyperrectangle, the parameters of the best fitting
distribution, and so forth (Moore and Lee, 1998; Zhang
et al., 1996; Wang et al., 1997).
The partitioning of the data is always performed parallel

to the coordinate axis. A dimension is first chosen, usually
on the basis of maximum spread or variance. Then, along
the chosen dimension, a pivot is computed. Usually, this
pivot may be the median or the midpoint (of the maximum
and the minimum) of the data along the selected dimension.
All points with values less than the pivot in the selected
dimension are put into the left child node and the rest into
the right child node. The partitioning process proceeds till
such time when it is deemed unnecessary to split the node
anymore, either due to all the points being very close to each
other or the number of points at the node being too few.
The computation of the pivot involves O(kn) operations
(where n is the number of data points at the current node),
whereby, the construction of the kd-tree takes O(kN logm)
time. Usually, some summary statistics are stored at that
node such that a reasonable representation of the data
can be obtained. Once the tree is formed, the data points
contained in each leaf node may be replaced by a single
point (or prototype), thus reducing the size of the data
set. Various representations of the original data set can be
obtained by truncating the kd-tree in different ways.
In general, the above mentioned choices of pivots are
quite efficient, but, when the data is well-clustered with
the clusters having unequal a priori probabilities and differ-
ent sizes, the split performed by kd-trees leads to a loss of
information about this structure. The basic drawback of
dividing the data on the basis of the median (or, for that
reason, any other measure of central tendency) is that,
when cluster sizes are different, a leaf node can consist of
portions of two well separated clusters, thus making the
representation poorer. By choosing the median as the pivot
for splitting, it is being implicitly assumed that the clusters
consist of equal number of data points, which may not be
the case, in general. In the case of choosing the midpoint as
the pivot, an assumption is being made regarding the equal
sizes of the clusters.
As an example, we consider a small synthetic data set

with 90,000 data points and two features. The data consists
of four well-separated clusters. For the purpose of plotting
(Fig. 1), we have reduced the number of data points to
9000. The original data set looks roughly the same except
that it is denser and the number of points in the overlap-
ping region between the neighboring Gaussian subclusters
is higher. The condensed representations obtained by the
kd-tree based methods are shown in Figs. 2 and 3 with
the number of leaf nodes taken to be 4, 16, 32 and 256,
where the midpoint and median, respectively, are used
for splitting. A Gaussian is fitted to the data in each leaf
node and is plotted as an ellipse. The lengths of the major
and minor axes are three times the standard deviation
along the corresponding dimensions. For the sake of clar-
ity, rectangles (cells) corresponding to the leaf nodes are
shown only in Figs. 2a and 3a.
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Fig. 2. Clusters obtained by the kd-tree based method for the synthetic data set using the midpoint for splitting with the number of leaf nodes equal to:
(a) 4, (b) 16, (c) 32 and (d) 256.
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It is seen from Figs. 2 and 3 that the resulting clusters
(cells) do not reflect the inherent structure of the input data
set. For example, some of the cells (or nodes) comprise two
or more groups of points that are apart from each other.
With the increase in the number of splits, the clustering

information that is initially lost is gradually regained as the
partition is refined. This is seen from the sequences Fig. 2a–
d and Fig. 3a–d. Obviously, the initial choice of splits has
an impact on the subsequent condensed representations.
For example, Fig. 2a has better splits than Fig. 3a, thereby
producing a better representation of clusters in Fig. 2d as
compared to that in Fig. 3d. This necessitates the proper
selection of the initial splits.
Let us now consider Fig. 4, as an example. Here, the ini-

tial splits (Fig. 4a) are so chosen that the natural grouping
of the data remains intact. As a result, the subsequent rep-
resentations obtained are also better than those in Figs. 2
and 3. In the next section we describe an algorithm that
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Fig. 3. Clusters obtained by the kd-tree based method for the synthetic data set using the median for splitting with the number of leaf nodes equal to:
(a) 4, (b) 16, (c) 32 and (d) 256.
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can achieve this characteristic in order to represent the data
set for high condensation ratios.

3. Hierarchical data condensation technique

Before laying out the proposed algorithm, we provide
the intuition behind it. Then, we discuss its implementation
aspects.
3.1. Principle

Any given function can be approximated by a mixture of
Gaussians (Broomhead and Lowe, 1988). This approxima-
tion improves monotonically as the number of component
Gaussians is increased. Multimodal data, especially when
the modes are well apart, cannot be satisfactorily approxi-
mated by a single Gaussian function. The data around each
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Fig. 4. Clusters obtained by the proposed method with the number of leaf nodes equal to: (a) 4, (b) 9 and (c) 144.
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mode, however, can be reasonably represented by a Gaus-
sian function. Therefore, for the purpose of representation
of a multimodal data by Gaussians, the patterns around
the different modes should be separated first and the
summary statistics be obtained from each of the clusters.
Valley-seeking (Fukunaga, 1990) is widely used for isolat-
ing such modes while clustering. This procedure, however,
is extremely time consuming and, therefore, not suitable
for large data sets.
In the proposed methodology, we employ an approxi-
mate version of the valley-seeking algorithm. This involves
determining the position along each dimension where the
difference between the values of consecutive data points
(when ordered along that dimension) is maximum. Let
Maxdiff denote the maximum of such differences over all
the dimensions. Maxdiff is considered to be significant if
its value exceeds some pre-determined threshold t0. If it is
significant, it indicates multimodality and the data in the
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node is split about the Maxdiff position. Otherwise, split-
ting is performed by taking the mean along the dimension
with maximum variance as the pivot. The splitting is termi-
nated when the maximum variance along each dimension is
found to be less than another threshold, say t1.
We now present the algorithm in detail.

3.2. Algorithm

(1) Input number of features (k), number of data points
(N) and an N · k data matrix X = ((Xij))i=1,. . .,N,
j=1,. . .,k. The ith row of X consists of the feature
values of the ith sample.

(2) Input thresholds t0 and t1.
(3) Normalize X.
(4) Create a root node that contains all the data points.
(5) Find the maximum difference between consecutive

order statistics with respect to feature i (i.e., Max-
diffi = maxj{X(j+1),i � X(j),i}), i = 1,2, . . . ,k, and note
its position (i.e., Posi = argmaxj{X(j+1),i � X(j),i}).
Here, X(j),i denotes the jth element, after the X values
are sorted in ascending order along the ith feature.
Determine the maximum of such differences over all
the features (Maxdiff = maxi{Maxdiffi}). Compute
the splitting dimension, F = argmaxi{Maxdiffi}. Then,
X ðPosF Þ;F represents the value of the Pivot.

(6) If Maxdiff criterion is satisfied, (that is, if Max-
diffP t0), decide to split the current node. The left
child node contains the points {Xi :Xi,F 6 Pivot}
and the right child contains the remaining data
points.

(7) Else (i.e., data is not well separated), check if the var-
iance of the data along some feature is greater than
the threshold t1. If yes, split node with respect to
the mean of the feature with highest variance. Else,
declare that the node cannot be split further.

(8) Repeat Steps 5, 6 and 7 for each newly formed
node.

We now provide an example, for the sake of illustration,
where the proposed algorithm is applied to the synthetic
data (Fig. 1) with t0 and t1 both chosen to be 0.1. The data
has two features, say X and Y. All the points are first ar-
ranged in increasing order of their X values. The MaxdiffX
value is computed as the maximum difference between two
consecutive X-values. It turns out to be 0.16 in this case,
and occurs at the location. Similarly, MaxdiffY is computed
by considering the Y values of the data points, which hap-
pens to be 0.155. Maxdiff is taken to be the maximum of
the two and equals 0.16 and is greater than t0, and hence
the data points would be split into two parts. Since Max-
diffX > MaxdiffY, we choose X as the dimension for split-
ting. So, all points with X-values less than 0.35 (points to
the left of the vertical line in Fig. 4a) are kept in one node,
whereas, the rest are stored in a different node. The above
process is repeated on these two nodes and, this time, both
of them are split on the basis of the Y values, because Max-
diffX is close to 0 for both of them. The four nodes obtained
in this manner are shown in Fig. 4a. No further splitting is
possible either on the basis of the Maxdiff or variance. So,
the algorithm terminates.
We now discuss the implementation aspects.

3.3. Implementation aspect

Here, we explain some of the computational aspects,
namely, normalization, computation of Maxdiff, comput-
ing t0, robustness to outliers and the complexity of the
algorithm.

3.3.1. Normalization
The algorithm being very much dependent on the spread

of the feature values, we first normalize them by dividing
the values of each feature by its range. This is performed
only once, at the beginning of the algorithm.

3.3.2. Computation of Maxdiff

Computing Maxdiff involves determining Maxdiffi for
each i = 1, . . . ,k. Let us now consider a particular feature
axis i for the following discussion. The computation of
Maxdiffi is based on the order statistics and it requires
sorting of data along the ith feature axis. Since it is time
consuming, we find an approximate value (Maxdiff ðHÞ

i ) of
Maxdiffi by forming a histogram along ith axis with a large
number of equal sized bins and then looking for the loca-
tion of the maximum number of consecutive empty bins.
Maxdiff ðHÞ

i is calculated as
Maxdiff ðHÞ
i ¼ ðMaximum number of consecutive

empty binsÞ � ðbin widthÞ. ð1Þ
This idea is similar to that of the Maxdiff histograms de-
scribed in (Poosala, 1997), except that we fix the number
of bins to be more than the number of points. This keeps
the computational complexity of the proposed scheme the
same as that of kd-trees (as finding Maxdiff ðHÞ

i involves
O(n) operations). Note that, higher the number of bins,
the better the approximation.
If n is the number of data points in a given node, and a

histogram with n + 1 bins is formed, then, by the pigeon-
hole principle, at least one bin would be empty. Moreover,
the following inequality holds:
jMaxdiff ðHÞ
i �Maxdiff ij < Rangei �

2

nþ 1 ; ð2Þ
where Rangei is the range of the ith feature values of the
data contained in the node under consideration. This
inequality has the following implication. If the maximum
number of consecutive empty bins in the histogram is M
and there are no other M � 1 consecutive empty bins,
then the position of Maxdiff ðHÞ

i is the same as that of
Maxdiffi.
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3.3.3. Computing t0
t0 is the threshold considered for checking the signifi-

cance of Maxdiffi. Equivalently, since Maxdiffi and M are
related, we can consider a threshold, say t00, for checking
the significance of M. If the data is uniformly distributed,
then the histogram would have almost all the bins occupied
and a few bins empty (i.e.,M is small). On the other hand,
if a large number of consecutive bins are empty (i.e., M is
large), with bins on both sides occupied, then a multimodal
distribution becomes likelier than a unimodal distribution.
Let us assume that the data set arises from a uniform

distribution and that there are n + 1 bins in the histogram.
Under this assumption, the probability of having a partic-
ular set of M consecutive empty bins, denoted by pM, is

equal to 1� M
nþ1

� �n
. Note that, if M 
 n, and n is large,

then 1� M
nþ1

� �n
� 1þ 1

nþ1

� ��Mn
� e�M .

Threshold t00 should be such that the above probability is
very small if M > t00. Given a value �, pM < � is equivalent
to M > �log �. So, t00 may be chosen to be �log � where �
is a predetermined error value (or p-value). This threshold
is seemingly free of n because of having the number of bins
almost the same as the number of data points. The proba-
bility, however, is not free of n as we have assumed that
M 
 n.

3.3.4. Robustness to outliers

To make the algorithm more robust to outliers and also
to preempt the formation of a degenerate tree, we split a
node only if each of the child nodes inherits at least a% of
the number of points at the present node. When the number
of points in a node is small enough (i.e., n < 100/a), the
restriction no longer holds as a

100n becomes 0. Note that this
does not add to the complexity of the algorithm since the
search for consecutive empty bins starts after the total count
of points in the bins to the left becomes greater than a

100n, and
proceeds till this count reaches n� a

100n. In our experiments,
we have chosen the value of a to be 5.

3.3.5. Complexity

The complexity of the algorithm is O(kN logm). This is
so because we need to go down the tree only an O(1) num-
ber of levels (assuming that the number of well-separated
clusters is less than logm), performing O(kN) number of
operations at each level, before the tree structure becomes
the same as that for the usual kd-trees.

4. Experimental results

We have conducted extensive experiments to demon-
strate the aforesaid features of the algorithm and its supe-
riority in comparison to other competitive algorithms. Five
data sets are chosen for our experiments. Among them, two
are real life data sets (forest covertype and multiple fea-
tures) and the remaining three have been artificially gener-
ated by us. The description of the data sets is as follows:
• Synthetic: A simple two-dimensional data set to show
the motivation behind the proposed algorithm (Fig. 1).
It consists of 90,000 data points. There are four well sep-
arated clusters of different sizes. The number of points in
the four clusters are 10,000, 20,000, 20,000, and 40,000.
Each cluster consists of Gaussian subclusters of size
2500. All the Gaussian subclusters have the same vari-
ance–covariance matrix. During our experiments, we
have also treated each of the Gaussian subclusters as a
different class (that is, we considered the data set to have
36 classes).

• Forest covertype: This data, collected by the Depart-
ment of Forest Sciences of Colorado State University,
consists of 581,012 points with 54 feature values. Of
these, the last 44 feature values are binary. Binary fea-
tures are invariant under normalization, and hence
these features always have the Maxdiff property. Any
of these features may be randomly chosen as the split-
ting dimension. Hence, all the initial splits would be per-
formed in terms of the binary features only, and the
results would vary with the order of the chosen binary
features. So, we have made use of only the first 10 fea-
ture values, which are all real-valued. The objective is
to classify the samples into 7 land cover types.
About 80% of the patterns is concentrated in just two
of the classes. Classes are not well separated. This data
set is available from the UCI KDD Archive (URL:
http://ftp.ics.uci.edu/pub/machine-learning-databases/
covtype).

• Multiple features: Digit data set consists of handwritten
numerals extracted from a collection of Dutch utility
maps. There are ten classes, each with 200 patterns
and 649 features. Classes are well separated along cer-
tain features. This data set too, is available from the
UCI KDD Archive (URL: http://ftp.ics.uci.edu/pub/
machine-learning-databases/mfeat/).

• Twonorm: Data set containing 100,000 points with 20
features is generated from an equal mixture of two mul-
tivariate normals with means l and �l, and unit vari-

ance–covariance matrix, where l ¼ 2ffiffiffiffi
20

p ; 2ffiffiffiffi
20

p ; . . . ; 2ffiffiffiffi
20

p
� �0

.

We have generated this data set because the earlier two-
norm data (Breiman, 1998) has only 7400 data points
which is too small. Misclassification rate with respect
to the Bayes decision rule for each of the 2 twonorm
data sets has been theoretically computed as 2.3% (Brei-
man, 1998).

• Shapes: This is an artificially generated data set of size
100,000 with 16 features containing different clusters of
various shapes. The two-dimensional projections of the
various shapes are shown in Figs. 5 and 6. The constit-
uent shapes, their positions and the number of data
points in them are summarized in Table 1. The coordi-
nates of the centers along all the remaining 13 axes have
been taken to be 0 and hence the shapes are separable
only with the first three features. The second set of
shapes has been superimposed on the first set along

http://ftp.ics.uci.edu/pub/machine-learning-databases/covtype
http://ftp.ics.uci.edu/pub/machine-learning-databases/covtype
http://ftp.ics.uci.edu/pub/machine-learning-databases/mfeat/
http://ftp.ics.uci.edu/pub/machine-learning-databases/mfeat/
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the third dimension (Fig. 7). Five of the seven clusters
are well separated.

These data sets have been normalized prior to their use.
Normalization involves obtaining the range of the data
along each feature and dividing by it.
Table 1
Constituents of the shapes data set (100,000 · 16)

Class Shape Center Len

X Y Z

0 Horseshoe 0 1 0 1
1 Horseshoe 1 1.2 0 1
2 Hypercross 4 1 0 1
3 Q-shape 2 �2 0 1
4 Two hollow hypercubes 0 0 3 1.5
5 Hollow hypercube 3 �1 3 1.5
6 Hypercube 3 �1 3 0.3

–1 –0.5 0 0.5–2

0

2
2

2.5

3

3.5

4

Y

Z

Fig. 6. Three dimensional projection of the

–2
1

0
1

2
3

–2

–1

0

1

2

X

Z
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In order to measure how good the representation is, we
have computed, for various values of condensation ratios,
the entropy and purity values for the resulting clusters. The
entropy and purity at leaf node Sj are defined as

EðSjÞ ¼ � 1

log q

Xq

i¼1
pðjÞi log p

ðjÞ
i

gth/radius Width No. of points Comments

0.2 10,000 Top
0.2 10,000 Bottom
– 30,000 33 Hypercubes
0.2 20,000 Ring + cylinder
0.3 20,000 Two holes
0.2 5000 One hole
– 5000 Within class 5
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Fig. 7. Three dimensional projections of the shapes data set.
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and

PðjÞ ¼ max
16i6q

pðjÞi ;

respectively, where, q is the number of classes present in the
data set and pðjÞi is the proportion of points from the ith
class at the jth leaf node.
The entropy values at all the leaf nodes can be combined

into a single value of entropy (E(T)) as

EðT Þ ¼
Xm
j¼1

Nj

N
EðSjÞ;

where, Nj is the number of points at the jth leaf node, and
m is the total number of nodes in the tree T.
The purity values can be combined similarly.

P ¼
Xm
j¼1

Nj

N
PðjÞ

The purity and entropy values signify the amount of confu-
sion at each node. If most of the points at a node belong to
the same class, the purity for that node is high while the en-
tropy is low. In such a case, the chosen prototype can be
said to be a better representative of the points in that node.
On the other hand, if a node consists of data from several
classes, the summary statistics or the prototype at that
node would not be quite appropriate and this would be
reflected by the high entropy and low purity values.
We have provided the comparisons with two kd-tree

based algorithms, one employs the median for splitting
and the other uses the midpoint of the maximum and min-
imum of the data. The performance of our algorithm is also
compared with the results obtained by the software CLU-
TO (version 2.1, August 2002). We have run only the part-
itional clustering algorithms provided in the package that
are comparable to the suggested algorithm in terms of
the time and space complexity. These algorithms formulate
the clustering as an optimization problem and have
been shown to provide superior performance for high-
dimensional data sets (Zhao and Karypis, 2002). The
methods that have been chosen are ‘‘Repeated Bisection’’
(RB) and ‘‘Direct’’ with the similarity measure taken as
‘‘cosine’’. As the names suggest, the Direct method obtains
the direct partitioning, whereas the Repeated Bisection
method bisects one of the current clusters, thus increasing
the number of clusters by one each time. The optimizing
criterion is chosen to be I2 ¼

Pk
i¼1

P
di2Sr cosðdi;CrÞ (Zhao

and Karypis, 2001), where Cr is the centroid of the cluster
Sr. I2 has been shown to be an extremely good choice in
(Zhao and Karypis, 2001). Some other direct clustering op-
tions are available in CLUTO, which differ from the above
in terms of the criterion functions being used (Zhao and
Karypis, 2001). One such criterion measures the similarity
in terms of correlation instead of the cosine.
It may be noted that the condensation ratios mentioned

in the first column of each table are approximations. For
example, the condensation ratios of 99.99%, 99.90% and
99.00% for the forest covertype data indicate that the con-
densed sets consisted of around 60, 600 and 6000 points,
respectively.
We make the following observations from the results

shown in Tables 2–7:

• The results on the synthetic data set (Tables 2 and 3)
bring out the positive aspects of our algorithm. We have
considered two cases here. When the number of classes
in the original data has been taken to be 4, the proposed
algorithm had immediately (that is, after three splits),
managed to separate out each of the individual classes.
Then it goes about splitting in the usual kd-tree like
manner. For 36 classes too, the splitting is performed
in exactly the same manner. The first three splits result
in distinguishing between the four groups of subclusters



Table 2
Entropy and purity values for the synthetic data set

C.R. (%) Measure Proposed kd-tree RB Direct

Midpoint Median Cos Cos

99.995 Entropy 0.000000 0.296187 0.459148 0.315925 0.324103
Purity 1.000000 0.844700 0.694411 0.866389 0.861089

99.990 Entropy 0.000000 0.212901 0.287021 0.290798 0.297284
Purity 1.000000 0.869600 0.805311 0.866389 0.862600

99.980 Entropy 0.000000 0.136256 0.229567 0.274186 0.274911
Purity 1.000000 0.898256 0.840311 0.867411 0.875233

99.965 Entropy 0.000000 0.118930 0.129321 0.266798 0.266811
Purity 1.000000 0.905111 0.909433 0.875089 0.872156

99.720 Entropy 0.000000 0.002020 0.032130 0.258943 –
Purity 1.000000 0.998745 0.977145 0.876056 –

Table 3
Entropy and purity values for the synthetic data set (36 classes)

C.R. (%) Measure Proposed kd-tree RB Direct

Midpoint Median Cos Cos

99.995 Entropy 0.644755 0.684629 0.620069 0.665241 0.661717
Purity 0.111111 0.111111 0.111111 0.111111 0.111111

99.990 Entropy 0.393711 0.498080 0.491094 0.530422 0.532435
Purity 0.250000 0.250222 0.221567 0.220644 0.220767

99.980 Entropy 0.272053 0.415538 0.362149 0.448190 0.445646
Purity 0.467878 0.346667 0.441644 0.343041 0.354356

99.965 Entropy 0.027762 0.288461 0.273382 0.409388 –
Purity 0.983611 0.533422 0.551522 0.411956 –

99.720 Entropy 0.024437 0.043149 0.083838 0.385748 –
Purity 0.983611 0.939600 0.855189 0.437422 –

Table 4
Entropy and purity values for the shapes data set

C.R. (%) Measure Proposed kd-tree RB Direct

Midpoint Median Cos Cos

99.995 Entropy 0.106839 0.241239 0.427238 0.193112 0.263869
Purity 0.848731 0.763460 0.581940 0.840170 0.799270

99.990 Entropy 0.100798 0.220158 0.260392 0.191196 0.257943
Purity 0.884010 0.770730 0.756310 0.840170 0.799710

99.980 Entropy 0.041009 0.083621 0.189572 0.166943 0.248269
Purity 0.946665 0.917010 0.798290 0.853050 0.804520

99.700 Entropy 0.040998 0.035684 0.062650 0.085124 –
Purity 0.946669 0.958380 0.937730 0.928610 –

Table 5
Entropy and purity values for the twonorm data set

C.R. (%) Measure Proposed kd-tree RB Direct

Midpoint Median Cos Cos

99 Entropy 0.631685 0.428959 0.430268 0.149530 –
Purity 0.829389 0.867729 0.868521 0.976450 –

90 Entropy 0.280813 0.283638 0.288154 0.097862 –
Purity 0.910843 0.908509 0.907166 0.976568 –
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Table 6
Entropy and purity values for the multiple features data set

C.R. (%) Measure Proposed kd-tree RB Direct

Midpoint Median Cos Cos

99.50 Entropy 0.463810 0.603196 0.649859 0.413146 0.394242
Purity 0.524000 0.477000 0.431000 0.654000 0.634000

98.75 Entropy 0.297209 0.475559 0.536370 0.271233 0.219438
Purity 0.763500 0.579000 0.532000 0.770500 0.821500

90.00 Entropy 0.104486 0.311849 0.338157 0.077724 –
Purity 0.898000 0.687500 0.668000 0.930000 –

Table 7
Entropy and purity values for the covertype data set

C.R. (%) Measure Proposed kd-tree RB Direct

Midpoint Median Cos Cos

99.99 Entropy 0.440437 0.423651 0.420830 0.443468 –
Purity 0.540266 0.557610 0.623676 0.556083 –

99.90 Entropy 0.373562 0.368220 0.375693 0.368620 –
Purity 0.629824 0.634780 0.654592 0.643112 –

99.00 Entropy 0.285360 0.273801 0.293886 – –
Purity 0.721487 0.726596 0.715214 – –
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from each other. Having done that, the data being
homogeneous at each of the four nodes, the usual kd-
tree based algorithms perform well.

• The proposed algorithm has performed extremely well
on the shapes data set (Table 4) which has exactly the
same characteristics where the proposed algorithm is
expected to work better than the kd-tree based algo-
rithms. Despite the complicated nature of the shapes of
the classes involved, our algorithm, whenever possible,
has managed to separate out the classes first. The horse-
shoe type structures could not be separated from each
other using Maxdiff as the criterion, but they are gradu-
ally segregated as the number of clusters increased.

• All the methods that split parallel to the rectangular
coordinate axis do not perform well on the twonorm
data set (Breiman, 1998). Our algorithm too, is no
exception (Table 5). It may be noted that this is an
extreme example, where the data points are not separa-
ble along any of the dimensions, even after being parti-
tioned a few times. In general, after a few initial splits,
individual nodes may contain data points that satisfy
the Maxdiff criterion. In the case of the twonorm data
set, the Maxdiff criterion is never satisfied and all the
splits are performed with respect to the mean along
the axis with maximum variance. The repeated bisection
method using the cosine value as the similarity manages
to separate the two classes very well. This is reflected by
the purity value (0.976568) when the condensation ratio
is 90% as this means that only around 2.3% of the data
has been wrongly classified. This error is very close to
the Bayes error.
• For the forest covertype data (Table 7), splitting with
respect to Maxdiff has not taken place due to the lack
of separation between the various classes. All the exist-
ing methods have resulted in similar entropy and purity
values.

• The quality of the representations obtained by the pro-
posed algorithm for the multiple features data set (Table
6) is fairly superior to those of the kd-tree based algo-
rithms while being comparable to those of the algo-
rithms in CLUTO. The proposed algorithm is much
faster compared to the algorithms in the CLUTO
package.

• The direct clustering approach (Zhao and Karypis,
2002) is not appropriate, both in terms of time and
the quality of clustering, when the number of clusters
is large, say, greater than 20. Therefore, the results
have not been shown in such cases. Also, when the
data size and the number of desired clusters are both
large, the repeated bisection method takes too long
to provide the output. Such entries, too, have been left
blank.

• We provide the time taken by the various algorithms
applied to the given data sets in Table 8. As expected,
the proposed algorithm requires almost the same time
as the kd-tree based methods, which is far less than that
needed by the other methods. The proposed algorithm,
in its present state, requires memory large enough to
accommodate the data set. The leaf nodes of the con-
structed tree store the indices of the all the data points
in that node. So, the tree data structure requires space
proportional to the sum of the number of data points



Table 8
Time requirements

Data set C.R. (%) Proposed kd-mid kd-median RB (cos) Direct (cos)

Synthetic 99.995 0.363 0.351 0.281 3.744 5.19
99.720 1.201 1.050 1.119 14.922 >1000

Shapes 99.995 3.226 3.120 2.496 33.280 46.136
99.700 10.869 9.489 10.139 135.186 >1000

Twonorm 99.000 16.457 14.254 15.544 207.258 >1000
90.000 21.641 18.574 20.729 276.384 >1000

Covertype 99.990 29.198 25.900 26.548 353.970 >1000
99.000 59.319 51.000 56.668 755.577 >1000

Multiple features 98.75 0.161 0.169 0.101 1.34 0.936
90.00 0.498 0.450 0.438 5.834 40.440
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and the number of selected prototypes. Hence, for data
sets with several features, the space requirement is
O(Nk).
4.1. Some remarks

The representation obtained by each of the algorithms
steadily improves with the number of points in the con-
densed data set. For very large values of the condensation
ratio, when the number of clusters obtained is smaller than
the number of classes, all the algorithms tend to perform
similarly. For example, in the synthetic data set with 36
classes, all the algorithms start off with similar values of
purity and entropy. As the number of points in the con-
densed data set increases to the total number of data
points, the entropy and purity values obtained by each
algorithm tend to 0 and 1, respectively. When the data
has well separated clusters, the fall in the entropy values
corresponding to the proposed algorithm is very high
initially. A similar phenomenon has been observed by
Kanungo et al. (2002), where the clustering process was
faster if the chosen data set had well-separated clusters.
We have observed that the proposed method outper-

forms other methods whenever the Maxdiff criterion is sat-
isfied. When the given data set has no significant Maxdiff
value, the results obtained are comparable to those pro-
vided by the other methods.
Categorical data have not been considered for our

experiments as they require some special treatment during
the process of normalization. When a data set having both
continuous and binary features is normalized, the binary
features would dominate in terms of the Maxdiff value
and hence, the initial splits, inevitably, would be performed
with respect to the binary features. This might not be suit-
able in certain situations.
As the proposed algorithm preserves the inherent

clustering information, it can be employed for nearest-
neighbor searching in the context of nearest neighbor clas-
sification, where one only needs to know the class to which
the nearest neighbor belongs. Due to the reduction in con-
fusion in the initial stages itself, the class information may
be extracted more accurately employing the proposed
method than by using the usual kd-tree based techniques.

5. Conclusions

We have put forward a methodology for obtaining a
reasonable representation of the original data where the
time and space requirements are approximately the same
as that for the construction of the usual kd-trees. Since
splits with the choice of the pivot as the median or the mid-
point produce nodes with portions of distant clusters in
them, the summary store at the node is unable to represent
the data in that node. We preempt the creation of such
nodes by initially splitting the nodes using the Maxdiff cri-
terion. If the Maxdiff criterion is not satisfied at a node, the
subtree formed at that node is the usual kd-tree. The algo-
rithm does not take care of problems arising out of being
confined only to the splits parallel to the coordinate axis.
The approximate valley seeking techniques can, possibly,
be extended to data with classes that are not well separated.
Moreover, modifications for the case of categorical vari-
ables is needed.
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