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Abstract

The present article demonstrates a way of formulating a neuro-fuzzy approach for feature extraction under unsupervised
training. A fuzzy feature evaluation index for a set of features is newly defined in terms of degree of similarity between
two patterns in both the original and transformed feature spaces. A concept of flexible membership function incorporating
weighted distance is introduced for computing membership values in the transformed space that is obtained by a set of
linear transformation on the original space. A layered network is designed for performing the task of minimization of the
evaluation index through unsupervised learning process. This extracts a set of optimum transformed features, by projecting
n-dimensional original space directly to n’-dimensional (n’ < n) transformed space, along with their relative importance.
The extracted features are found to provide better classification performance than the original ones for different real life data
with dimensions 3, 4, 9, 18 and 34. The superiority of the method over principal component analysis network, nonlinear
discriminant analysis network and Kohonen self-organizing feature map is also established. (©) 2002 Elsevier Science B.V.
All rights reserved.

1. Introduction

Feature selection or extraction is a process of se-
lecting a map of the form x’' = f(x) by which a

sample x(xj,x,...,x;) in an n-dimensional mea-
surement space (R") is transformed into a point
X'(x{,x},...,x),) in an n’-dimensional (n'<n)

feature space (?R"I). The problem of feature selection
deals with choosing some of x;’s from the measure-
ment space to constitute the feature space. On the
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other hand, the problem of feature extraction deals
with generating new xj’.’s (constituting the feature
space) based on some x;’s in the measurement space.
The main objective of these processes is to retain
the optimum salient characteristics necessary for the
recognition process and to reduce the dimensionality
of the measurement space so that effective and easily
computable algorithms can be devised for efficient
categorization. The present article concerns with
feature extraction.

Different useful classical techniques for feature
extraction are available in [3,6]. Some of the recent
attempts made for this task in the framework of ANN
are mainly based on multilayer feedforward net-
works [5,11,12,18,19] and self-organizing networks
[12,10,9]. The methods based on multilayer feedfor-
ward networks include, among others, development

0165-0114/02/$ - see front matter (©) 2002 Elsevier Science B.V. All rights reserved.

PII: S0165-0114(01)00070-7



278 R.K. De et al.| Fuzzy Sets and Systems 126 (2002) 277-291

of principal component analysis (PCA) network
[17,5,1], nonlinear discriminant analysis network [22],
Sammon’s projection, linear discriminant analysis
(LDA) network [12], whereas those based on self-
organizing networks include development of nonlinear
projection based Kohonen’s self-organizing feature
map (SOM) [12,8], distortion tolerant Gabor transfor-
mations followed by minimum distortion clustering
by multilayer self-organizing maps [10] and a nonlin-
ear projection method based on Kohonen’s topology
preserving maps [9]. Note that, depending on whether
the class information of the samples are known or
not, these methods are classified under supervised or
unsupervised mode. For example, the algorithms de-
scribed in [11,18,22] fall under supervised category
whereas those in [10,17,8] are in unsupervised mode.

Recently, attempts are being made to integrate
the merits of fuzzy set theory and ANN under the
heading ‘neuro-fuzzy computing’ with an aim of
making the systems artificially more intelligent. Incor-
poration of fuzzy set theory enables one to deal with
uncertainties in different tasks of pattern recognition
system, arising from deficiency (e.g., vagueness,
incompleteness, etc.) in information, in an effi-
cient manner. ANNs, having the capability of fault
tolerance, adaptivity and generalization, and scope for
massive parallelism, are widely used in dealing with
learning and optimization tasks. In the area of pattern
recognition, neuro-fuzzy approaches have been at-
tempted mostly for designing classification/clustering
methodologies. The problem of feature selection/ex-
traction, particularly the later task, has not been ad-
dressed much in neuro-fuzzy framework.

The present article is an attempt in this regard and
provides a neuro-fuzzy approach for feature extrac-
tion under unsupervised training. The methodology
involves connectionist minimization of a fuzzy fea-
ture evaluation index. The feature evaluation index is
defined based on the membership functions denoting
the degrees of similarity between two patterns in
both the original and transformed feature spaces.
The lower the value of the index, the higher
is the importance of the transformed features in
characterizing/discriminating various clusters. The
transformed space is obtained through a set of lin-
ear transformations. Computation of the membership
values in the transformed space involves a set of
weighting coefficients which provides flexibility in

@iginal Feature Space]

Compute membership
value 0

ﬁransform by matrix o

Compute membership
value uT incorporating
weighting factor w

Minimize Evaluation Index E
w.r.t.o. and w using
neural network

Extracted Feature Space
with feature importance

Fig. 1. Schematic description of the neuro-fuzzy method for fea-
ture extraction.

modeling various clusters and reflects the degree of
individual importance of the transformed features.
A layered network is designed for performing the
task of minimization of the said index through un-
supervised learning process; thereby extracting the
optimum transformed space along with the weighting
coeflicients. This is described in Fig. 1. The algorithm
considers interdependence of the original features.
The architecture of the network is such that the num-
ber of nodes in its second hidden layer determines the
desired number of extracted features.

The effectiveness of the algorithm is demonstrated
on five different real-life data sets, namely, Iris [4],
vowel [16,15], medical [7,13], mango-leaf [14] and
an ionospheric data [20]. The superior discrimination
ability of the extracted features over the original ones
is established using k-NN classifier for different val-
ues of k. The algorithm is also compared with both
supervised and unsupervised methods including non-
linear discriminant analysis network (NDAN) [22],
principal component analysis network (PCAN) [17]
and Kohonen self-organizing feature map (SOM) [8].
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2. Feature evaluation index

In this section we first of all provide a definition of
the fuzzy feature evaluation index. The membership
function for its realization is then defined in terms of
distance measure and weighting coefficients.

2.1. Definition

Let, ,ugq be the degree that both the pth and gth pat-
terns belong to the same cluster in the n-dimensional
original feature space, and ,u;q be that in the
n’-dimensional (n’ <n) transformed feature space. p
values determine how similar a pair of patterns are in
the respective features spaces. That is, u may be inter-
preted as the membership value of a pair of patterns
belonging to the fuzzy set “similar”. Let, s be the
number of samples on which the feature evaluation
index is computed.

The feature evaluation index for a set (2) of features
is defined as

2 |
E= T 2o 2 gl = 1)

P q#p
+ 19, (1 =yl (1)

It has the following characteristics.

(i) If a9, =}, =0 or 1, the contribution of the pair
of patterns to the evaluation index E is zero
(minimum).

(ii) If ,u[?q = ,u!T,q = 0.5, the contribution of the pair of
patterns to £ becomes 0.25 (maximum).
(i) For uy <0.5 as u), — 0, E decreases.
For ﬂz?q >0.5 as ,u;q — 1, E decreases.
Therefore, the feature evaluation index decreases
as the membership value representing the degree of
belonging of pth and gth patterns to the same cluster in
the transformed feature space tends to either 0 (when
1°<0.5) or 1 (when p©>0.5). In other words, the
feature evaluation index decreases as the decision on
the similarity between a pair of patterns (i.e., whether
they lie in the same cluster or not) becomes more and
more crisp. This means, if the intercluster/intracluster
distances in the transformed space increase/decrease,
the feature evaluation index of the corresponding set
of features decreases. Therefore, our objective is to
extract those features for which the evaluation index
becomes minimum; thereby optimizing the decision

on the similarity of a pair of patterns with respect to
their belonging to a cluster.

2.2. Computation of membership function

In order to satisfy the characteristics of £ (Eq. (1)),
as stated in the previous section, the membership func-
tion (i) in a feature space may be defined as

d
Upg =1 — % if dpq < D,

=0, otherwise. 2)

Here d,, is a distance measure which provides sim-
ilarity (in terms of proximity) between the pth and
qth patterns in the feature space. Note that, the higher
the value of d,,, the lower is the similarity between
pth and gth patterns, and vice versa. D is a parameter
which reflects the minimum separation between a pair
of patterns belonging to two different clusters. When
dpg =0 and d,; = D, we have p,, =1 and 0, respec-
tively. If d,, = D/2, p,, =0.5. That is, when the simi-
larity between the patterns is just in between 0 and D,
the difficulty in making a decision, whether both the
patterns are in the same cluster or not, becomes max-
imum; thereby making the situation most ambiguous.
The term D (in Eq. (2)) may be expressed as

D = fdmax. (3)

where di,x 1s the maximum separation between a pair
of patterns in the entire feature space, and 0<ff < 1
is a user defined constant. § determines the degree of
flattening of the membership function (Eq. (2)). The
higher the value of f, more will be the degree, and
vice versa.

The distance d,, (Eq. (2)) can be defined in many
ways. Let this, for example, be the Euclidian distance.
Then,

1/2
dpg = lz (Xpi xq,-)2] > (4)

i
where x,; and x,; are values of ith feature (in the cor-

responding feature space) of pth and gth patterns, re-
spectively. dyax 18 defined as

12
Amax = lz (Xmax i _xmini)zl s (5)
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where Xpax; and xpnin; are the maximum and minimum
values of the ith feature in the corresponding feature
space.

2.2.1. Incorporating weighting coefficients

In the above discussion, we have measured the sim-
ilarity between two patterns in terms of proximity, as
conveyed by the expression for d,, (Eq. (4)). Since,
d,, is an Euclidian distance, the methodology implic-
itly assumes that the clusters are hyperspherical. But
in practice, this may not necessarily be the case. To
model the practical situation we have introduced the
concept of weighted distance such that

1/2
dpg = Z Wiz(xpi — X )2‘|

i

- 12
- 2.2 = (X — Xo: 6
= Z Wi Xi s i = (xpt xqz): ( )

where w; € [0, 1] represents weighting coefficient cor-
responding to ith feature.

The membership value p,, is now obtained by
Egs. (2), (5) and (6), and becomes dependent on
w;. The values of w; (<1) make the u,, function of
Eq. (2) flattened along the axis of dj,,. The lower the
value of w;, the higher is extent of flattening. In the
extreme case, when w; =0, Vi, d,; =0 and pu,, =1
for all pair of patterns, i.e., all the patterns lie on the
same point making them indiscriminable.

The weight w; (in Eq. (6)) reflects the relative im-
portance of the feature x; in measuring the similarity
(in terms of distance) of a pair of patterns. The higher
the value of w;, the more is the importance of x; in
characterizing a cluster or discriminating various clus-
ters. w; = 1 (0) indicates most (least) importance of x;.

Note that, one may define p,, in a different way
satisfying the above mentioned characteristics. The
computation of yu,, in Eq. (2) does not require class
information of the patterns, i.e., the algorithm is unsu-
pervised. It is also to be noted that, the algorithm does
not explicitly provide clustering of the feature space.

3. Feature extraction

In the process of feature extraction, the input fea-
ture space (x) is transformed to x’ by a matrix o

( = [‘in]n’ ><n)a i'e-a

o 7
X— X.

The jth transformed feature is therefore,
xj/' = Z %;iXi, (7)

where o;; (j=1,2,...,n", i=1,2,...,nand n>n") is
a set of coefficients. The membership values (u) are
computed using Eq. (2) based on the derived feature
values. The distance d,, between pth and gth patterns
in the transformed space is, therefore,

- 12
dpg = Z W_12' <Z %i(Xpi xqi))

j i

1/2

i 2
= Z sz- (Z ajiXi) )
L '] i

Ai = Xpi — Xgi»

12
= ng‘/’/z] ; tﬁj:Zocﬁ(xpi—xqi) (8)

L J i

and the maximum distance dpax as

- 1/2

2
dmax = Z (Z ‘aji‘(xmaxi _xmini)>

J i
1/2

= Z ¢5] 5 d’j :Z |O‘ji‘(xmaxi_xmini)~ (9)
L J i

Weighting coefficients (w;) representing the impor-
tance of the transformed features, make the shape
of clusters in the transformed space hyperellipsoidal
instead of hyperspherical.

The membership u' is computed using dpg and
dmax (Egs. (2), (8) and (9)), while u© is done by
Egs. (2)—(5). The problem of feature extraction there-
fore reduces to finding a set of «; and w; for which £
(Eq. (1)) becomes a minimum. This is schematically
explained in Fig. 1. The task of minimization has been
performed under unsupervised mode by gradient-
descent technique in a connectionist framework. This
is described below.
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2nd Hidden Layer

1st Hidden Layer

Fig. 2. A schematic diagram of the proposed neural network model.

3.1. Connectionist model

The network (Fig. 2) consists of an input, two hid-
den and an output layers. The input layer consists of a
pair of nodes corresponding to each feature. The first
hidden layer consists of 2n (for n-dimensional origi-
nal feature space) number of nodes. Each of the first
n nodes computes the part y; of Eq. (8) and the rest
compute z?. The value of (Xmax; — Xmin;) iS stored in
each of the first n nodes. The number of nodes in the
second hidden layer is taken as »’, in order to ex-
tract n’ number of features. Each of these nodes has
two parts; one of which computes lp}. of Eq. (8) and
the other qS]z of Eq. (9). The output layer consists of
two nodes which compute u" and u© values. There is
a node (represented by black circle) in between the
output node computing u!-values and the second hid-
den layer. This node computes dmax (Eq. (9)) in the
transformed feature space and sends it to the output
node for computing u'. The value of f3 is stored in
both the output nodes. The feature evaluation index £

(Eq. (20)) is computed from these p-values off the
network.

Input nodes receive activations corresponding to
feature values of each pair of patterns. A j;th node in
the first hidden layer is connected to an ith (1 <i<n)
input node via connection weight +1, and to the
(i + n)th (1 <i<n) input node via connection weight
—1. A j,th node in the second hidden layer is con-
nected to a jjth node in the first hidden layer via
connection weight «;,; . The output node computing
p-values is connected to a jrth node in the sec-
ond hidden layer via connection weight W, (= wjf ),
and that computing u°-values is connected to a j;th
(n + 1<, <2n) node in the first hidden layer via
connection weights +1 each. The node represented
by the black circle is connected via weights +1 with
the second hidden layer and also with the output node
computing u'-values.

During training, each pair of patterns are presented
to the input layer and the evaluation index is com-
puted. The weights «;,;, and W,,’s are updated using
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gradient-descent technique in order to minimize the in-
dex £. When pth and gth patterns are presented to the
input layer, the activation produced by ith (1 <i<2n)
input node is

o =u”, (10)
where
u® =x, for 1<i<n and

u),) =xg for 1<i<n. (D

u,(-o) (1<i<2n) is the total activation received by an
ith input node. The total activation received by j;th
node in the first hidden layer (connecting ith and
(i + n)th input nodes) is given by

1y _
u; = 1

X vfo) +(—1)x 0

iy for 1<i<n,  (12)

and the activation produced by it is

(1) = (u(l)) for 1 </ <n,

_ (, (D2 : (13)
= (u;,")" forn+ 1</ <2n.

The total activation received by j,th node in the second
hidden layer is given by

Uy = E:%ﬁ”- (14)

The activation produced by j>th node in the second
hidden layer is given by

o = () (15)

The total activation received by the output node which
computes p'-values is

uy) = Z Wv?, (16)

and that received by the other output node computing
uC-values is

3) _ (2)

uy) = Z v, (17)
2

3

represent d2 as given by
(3)

Therefore, uy ) and u(S)

Egs. (8) and (4), respectively. The activations, vy

and vg ), of the output nodes represent ,u;q and “19(1 for
pth and gth pattern pair, respectively. Thus,

(3)\1/2
I (18)
and

(3)\1/2
o =1- %. (19)

The evaluation index, in terms of these activations,
can then be expressed as (from Eq. (1))

E(, W) =

s(sfl) ZZ

P q#p

P (1=05) 06 (1= i),

(20)

The task of minimization of E(a, W) (Eq. (20)) with
respect to o, ;, and W;,, for all j; and j, is performed
using simple gradient-descent technique where the
changes in o), ;, (Aay,;, ) and W, (AW;,) are computed

as
oF .
Royjy = =tz — Vji.j2 (21)
J2J1
and
oF )
AW, = LT Vja, (22)

J2

where 71 and 7, are the learning rates.
For computation of 0E/da;,;, and 0E/0w;,, the fol-
lowing expressions are used.

OE
}:Z}ufz“ﬁ ,(B)
aajl]l s(s— 1) P atp %jrjy
Ov(Ts)
a{szjl
DY) 2 0ul) j0a,, — () 20D) 00,
_ 2 ,
(24)
3 (2)
a”‘(T) v vj,

=W; (25)
aafzjl ” aa]l/l
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2 (2) 7
_J2 —2u42 %’ (26)

2 Uﬁ'll)’ (27)

ﬁ (Z ‘O(jzi'(xmaxi _Xmini)> (xmale — Xmin j, ),
(28)

E 2 1 3), 00
W, s(s — 1)2;2[1 ~ 20 Igpe (29

3)\— 3
e P o,

— 0
A - (30)
and
o

= . 1
T (31)

3.2. Algorithm for learning o and W

e Calculate dyax (Eq. (5)) from the unlabeled training
set and store it in the output node computing u°
values. Store 5 (user specified) in both the output
nodes.

e Initialize o, ;, and W}, with small random values in
[0, 1].

e Repeat until convergence, i.e., until the value of
E becomes less than or equal to certain predefined
small quantity, or number of iterations attains cer-
tain predefined number of iterations:

o For each pair of patterns:
— Present the pattern pair to the input layer.
— Compute Aoy, ;, and AW;, for each j; and j,,
using the updating rules in Egs. (21) and (22).
o Update a;,;, and W}, for each j; and j, with the
average values of Aow;,;, and AW,,.

After convergence, E(a, W) attains a local minimum.

Then the extracted features are obtained by Eq. (7)

using the optimum a-values. The weights of the

links connecting the output node computing u'-values,
to the nodes in the second hidden layer indicate the
order of importance of the extracted features.

4. Results

Here we demonstrate the effectiveness of the above-
mentioned algorithm on five data sets, namely, Iris [4],
vowel [16,15], medical [7,13], mango-leaf [14] and an
ionospheric data [20].

Anderson’s Iris data [4] set contains three classes,
i.e., three varieties of Iris flowers, namely, Iris
setosa, Iris versicolor and Iris virginica consisting
of 50 samples each. Each sample has four features,
namely, sepal length (SL), sepal width (SW), petal
length (PL) and petal width (PW). Iris data has been
used in many research investigations related to pattern
recognition and has become a sort of benchmark-data.

The vowel data consists of a set of 871 Indian
Telugu vowel sounds collected by trained personnel.
These were uttered in a consonant—vowel-consonant
context by three male speakers in the age group of
30-35 years. The data set has three features, F|, F>
and F; corresponding to the first, second and third
vowel formant frequencies obtained through spectrum
analysis of the speech data. Fig. 3 shows a 2-D pro-
jection of the 3-D feature space of the six overlap-
ping vowel classes (0, a, i, u, e, 0) in the F;—F; plane
(for ease of depiction). The details of the data and
its extraction procedure are available in [16]. This
vowel data is being extensively used for more than
two decades in the area of pattern recognition.

The medical data consisting of 9 input features
and 4 pattern classes, deals with various Hepatobil-
iary disorders [7,13] of 536 patient cases. The input
features are the results of different biochemical tests,
viz., glutamic oxalacetic transaminate (GOT, Karmen
unit), glutamic pyruvic transaminase (GPT, Karmen
Unit), lactate dehydrase (LDH, iu/l), gamma glu-
tamyl transpeptidase (GGT, mu/ml), blood urea nitro-
gen (BUN, mg/dl), mean corpuscular volume of red
blood cell (MCV, fl), mean corpuscular hemoglobin
(MCH, pg), total bilirubin (7Bi/, mg/dl) and
creatinine (CRTNN, mg/dl). The hepatobiliary dis-
orders alcoholic liver damage (ALD), primary hep-
atoma (PH), liver cirrhosis (LC) and cholelithiasis
(C), constitute the four output classes.
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Fig. 3. Two dimensional (F;—F,) plot of the vowel data.

Mango-leaf data [14], on the other hand, provides
information on different kinds of mango leaf with
18 features, (i.e., 18-dimensional data) for 166 pat-
terns. It has three classes representing three kinds
of mango. The feature set consists of measurements
like Z-value (Z), area (A4), perimeter (Pe), maxi-
mum length (L), maximum breadth (B), petiole (P),
K-value (K), S-value (S), shape index (S7), L + P,
L/P, L/B, (L + P)/B, A/L, A/B, A/Pe, upper
midrib/lower midrib (UM/LM) and perimeter up-
per half/perimeter lower half (UPe/LPe). The terms
‘upper’ and ‘lower’ are used with respect to maximum
breadth position.

The ionospheric data was collected by a system in
Goose Bay, Labrador [20]. The system consists of a
phased array of 16 high-frequency antennas with a
total transmitted power on the order of 6.4 kW. The
targets were free electrons in the ionosphere. The data
set consists of 351 instances. Each data point has 34
features and may be either “good” or “bad”. “Good”
data points are those which show evidence of some
type of structure in the ionosphere. On the other hand,
“bad” points do not show such structure; their signals
pass through the ionosphere. The signals received
by the radar were processed using an autocorrelation
function whose arguments are the time of a pulse and
the pulse number. There were 17 pulse numbers for

the Goose Bay system. Each instance in this database
is described by two attributes per pulse number cor-
responding to the complex values returned by the
function resulting from the complex electromagnetic
signal; thereby resulting in 34 (=17 x 2) features for
an instance.

As mentioned in Section 3, the number of nodes in
the second hidden layer determines the desired num-
ber of extracted features. That is, in order to extract
n’ number of features, one needs to employ exactly
n’ nodes in the second hidden layer. For each data
set, we performed experiments for different number of
nodes in the second hidden layer for finding different
sets of extracted features. The particular set for which
E-value is minimum in a fixed number of iterations is
considered to be the best set of extracted features.

Let us consider the case of Iris data. Table 1 shows
the values of oj; (in Eq. (7)) for different sets of
extracted features along with their E-values. The ex-
tracted features are obtained by Eq. (7). Note that, the
set containing two extracted features results in mini-
mum E-value, and therefore, is considered to be the
best of all. The expressions for these two extracted
features are then written, from Eq. (7), as

1, =0.040649SL — 0.000405SW
+0.168035PL + 0.164546PW
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Table 1

a-values corresponding to different sets of extracted features with their E-values for Iris data

Extracted Coefficients (o) of E
feature set (Eq. (1))
containing SL Sw PL Pw
One feature 0.071854 —0.028614 0.195049 0.139982 0.102437
Two features 0.040649 —0.000405 0.168035 0.164546 0.099286
—0.118670 —0.000103 —0.012020 —0.123748
Three features —0.017140 0.005148 —0.123089 —0.152892
—0.003976 —0.024542 —0.005904 —0.084350 0.104762
0.023984 —0.004368 0.237469 0.199510
Table 2
o-values corresponding to the best set of extracted features with their w-values for vowel data
Extracted Coefficients (a) of w Rank
features
Fi F F3
2 —0.005676 0.050687 0.000573 0.710050 2
V) 0.000755 —0.159839 0.000934 0.737597 1
Table 3
a-values corresponding to the best set of extracted features with their w-values for medical data
Extracted  Coefficients (o) of w Rank
features
GOT GPT LDH GGT BUN MCV MCH TBil CRTNN
H, —0.193 —0.020 —0.155 —0.059 —0.081 0.096 0.135 0.193 —0.096 0.705 4
H —0.046 0.097 0.035 —0.045 0.070 0.082 0.042 0.088 —0.136 0.711 1
H; —0.163 0.102 —0.122 —0.124 —0.155 —0.106 —0.110 0.101 —0.004 0.703 6
Hy 0.123 —0.170 —0.028 —0.107 0.142 0.043 —0.194 0.162 0.035 0.706 3
Hs 0.142 0.173 0.132 0.073 —0.045 —0.177 —0.188 —0.032 —0.030 0.705 4
He —0.208 —0.003 0.083 0.102 0.013 —0.030 0.132 0.032 —0.081 0.707 2
Hy —0.160 0.116 —0.163 0.082 —0.146 0.094 0.052 —0.142 —0.078 0.704 5
Hg 0.137 0.002 0.125 0.047 —0.078 —0.047 —0.164 0.125 0.053 0.707 2
and medical and mango-leaf data. (In order to restrict the

I, =—0.118670SL — 0.000103SW — 0.012020PL
—0.123748PW.

w-values representing the importance of the features
Iy and I, are found to be 0.992983 and 0.744317
respectively.

Similarly, the dimension of the best extracted fea-
ture space is found to be 2 for vowel data, 8 for both
medical and mango-leaf data, and 10 for the iono-
spheric data. Tables 2—4 show « and w-values for
the best extracted feature sets corresponding to vowel,

size of the article, we have not included the table for
the ionospheric data.) Note that, in these experiments
the values of f§ are found to be 0.33, 0.16, 0.25, 0.33
and 0.5 for Iris, vowel, medical, mango-leaf and the
ionospheric data, respectively.

In order to demonstrate the effectiveness of the fea-
ture extraction method, we have compared the dis-
criminating capability of the extracted features with
that of the original ones, using £-NN classifier for
k=1, 3 and 5. For Iris and vowel data, Tables 5 and
6 demonstrate the percentage classification using the
extracted feature set and all possible subsets of the
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Table 4

a-values corresponding to the best set of extracted features with their w-values for mango-leaf data

Rank

w

Extracted Coefficients (o) of

features

UM/LM UPe/LPe

A/Pe

(L+P) LIP LB (L+P)B 4L  A/B

SI

Pe

0.710 5

0.002
—0.002
—0.001
—0.002

0.135  0.192 —0.094 —0.039  0.010 0.001  0.001 0.003  0.047 —0.001 —0.003
0.100 —0.005 0.004 —0.134
0.001

0.095

71 —0.001 —0.168 —0.075 —0.079

0.713 4

0.024 0.027

0.102 —0.097 —0.001 —0.070

0.085 —0.133 —0.168 —0.155 —0.109 —0.111

0.141

0.069 —0.002 0.708 6

0.040 0.001
0.001

0.002

0.001

0.124 —0.001

0.100 —0.047 —0.177 —0.188 —0.031 —0.031 —0.200

0.098 —0.148

0.126

RK

0.716 1

0.003 —0.002 —0.086 —0.004

—0.030

0.021

0.052 —0.142 —0.078

0.093

0.099 —0.200
58 —0.065 —0.070

0.047

0.708 6

0.048
—0.003

0.002

0.112 —0.000

0.185 —0.170 —0.021 —0.081 —0.114 —0.001 —0.138

0.073 —0.011 —0.126

—0.
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0.707 7

0.042 —0.003

0.001 —0.127

—0.002
—0.001

0.129  0.001 —0.002 —0.020
0.096  0.002 —0.030
—0.020 —0.027

0.179

0.142

0.110 —0.153 —0.164 —0.122

0.119

0.106

0.714 3

0.003
0.003

0.079 —0.025 —0.003
0.057 —0.035

0.001

0.103 —0.096

0.145

0.024 —0.001

0.116 —0.223 —0.079

0.085

0.084
—0.149

My

0.715 2

0.003

0.024

0.031 —0.151

0.174 —0.068

0.166 —0.067

0.234 —0.089

My

original feature set. In the case of Iris data, the recog-
nition score using the extracted feature set is found to
be greater than or equal to that obtained using any set
of the original features, except for one case (e.g., the
set {SL,SW, PL, PW } with k =5). Similar is the case
with the vowel data, where the extracted feature pair
performs better than any other set of original features,
except the set {Fy, F», F3}.

For medical, mango-leaf and the ionospheric data,
comparison is made only between the extracted
feature set and the entire original feature set (Tables
7-9). Tables 8 and 9 show that the classification
performance in the 8 and 10-dimensional extracted
feature space of mango-leaf and the ionospheric data
are better than those of the 18 and 34-dimensional
original feature space for all values of k. Similar find-
ing is obtained in the case of medical data, except for
k=1 (Table 7).

In a part of the experiment, the neuro-fuzzy method
for feature extraction is compared with the well-
known principal component analysis (PCA) and
nonlinear discriminant analysis (NDA) in connection-
ist framework, called principal component analysis
network (PCAN) [17] and nonlinear discriminant
analysis network (NDAN) [22], respectively. (For
the convenience of readers, PCAN and NDAN are
described briefly in Appendices A and B, respec-
tively.) The method is also compared with Kohonen
self-organizing feature map (SOM) [8]. For all these
cases, we provide the comparative results, using
k-NN classifier and scatter plots, on Iris data only. As
far as classification ability is concerned, the neuro-
fuzzy method has extracted much stronger features
than both PCAN and SOM, but slightly weaker fea-
tures than NDAN (Tables 10 and 5). Note that unlike
the proposed method, PCAN and SOM, NDAN is
supervised.

Scatter plots in Figs. 4—7 show the class structures
in the two-dimensional extracted planes obtained by
the proposed neuro-fuzzy method, PCAN, NDAN and
SOM, respectively. From these figures, it is observed
that the extracted plane (Fig. 4) obtained by the pro-
posed neuro-fuzzy method is much better than those
of others (Figs. 5-7) in terms of cluster separability.
Note that, an array of 100 x 100 nodes was considered
in the output layer of SOM.

In order to compare the said class structures of
the extracted planes (Figs. 4—7) with that of the
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Table 5

Recognition score with £-NN classifier for different feature sets of Iris data

Data set Feature set % classification
k=1 k=3 k=5
Original {SL} 48.67 66.67 67.33
{sw} 55.33 52.67 52.67
{PL} 93.33 95.33 95.33
{PW} 89.33 96.00 96.00
{SL,sw'} 74.67 76.67 76.00
{SL,PL} 95.33 93.33 95.33
{SL,Pw} 94.67 94.00 94.00
{Sw,PL} 94.67 92.00 93.33
{Sw,pw} 90.67 94.00 94.67
{PL,PW} 93.33 96.00 96.00
{SL,Sw,PL} 94.00 94.00 94.00
{SL,Sw,PW} 93.33 93.33 92.00
{SL,PL,PW} 96.00 96.67 96.00
{SW,PL,PW} 94.00 96.67 95.33
{SL,Sw,PL,PW} 95.33 96.00 96.67
Extracted {I,L} 96.00 96.67 96.00
Table 8
Table 6 Recognition score with A-NN classifier for extracted (obtained by

Recognition score with k-NN classifier for different feature sets
of vowel data

the neuro-fuzzy feature extraction) and original feature sets of
mango-leaf data

Data set Feature set % classification Feature set % classification
k=1 k=3 k=5 k=1 k=3 k=S5
Original {F1} 26.52 27.21 27.21 Extracted 85.71 88.10 92.86
{F,} 38.58 38.23 47.76 Original 71.69 68.67 70.48
{F3} 26.06 33.41 33.87
{F1,F>)} 56.37 68.20 76.35
(FI.F;} 44.32 46.84 55.80 Table 9
{F2,F3} 58.21 63.03 63.95 Recognition score with k-NN classifier for extracted (obtained by
{F1,F2, F3} 78.42 81.29 82.43 the neuro-fuzzy feature extraction) and original feature sets of the
Extracted {V], Vz} 74.63 75.78 76.35 ionospheric data
Feature set % classification
Table 7 Extracted 85.23 85.80 85.23
Recognition score with k-NN classifier for extracted (obtained by Original 84.66 84.66 82.95

the neuro-fuzzy feature extraction) and original feature sets of
medical data

Feature set % classification
Extracted 53.92 56.34 59.89
Original 55.22 56.16 59.14

original feature space, we provide the scatter plot for
PL-PW in Fig. 8. (Note that {PL,PW} is known
to be the best feature pair [21,2] for Iris data.) The
extracted feature plane /;—/, (Fig. 4) is seen to have
more resemblance with that in Fig. 8, as compared to
Figs. 5-7.
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Table 10
Recognition score with £-NN classifier for various extracted feature
sets of Iris data

Feature set % classification

obtained by

k=1 k=3 k=5
PCAN 92.00 92.00 92.00
NDAN 98.67 97.33 96.00
SOM 66.67 68.00 72.00
2
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Fig. 4. Scatter plot /;—I, in the extracted plane obtained by the
neuro-fuzzy method, of Iris data. Here ‘.", ‘4’ and ‘o’ represent
classes Iris Setosa, Iris Versicolor and Iris Virginica, respectively.
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Fig. 5. Scatter plot PCA;—PCA;, in the extracted plane obtained
by PCAN, of Iris data. Here “.’, ‘+” and ‘o’ represent classes Iris
Setosa, Iris Versicolor and Iris Virginica, respectively.
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Fig. 6. Scatter plot NDA|—NDA;, in the extracted plane obtained
by NDAN, of Iris data. Here “.”, ‘4’ and ‘o’ represent classes Iris
Setosa, Iris Versicolor and Iris Virginica, respectively.
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Fig. 7. Two-dimensional feature map obtained by SOM, of Iris
data. Here ‘.’, ‘“+’ and ‘o’ represent classes Iris Setosa, Iris
Versicolor and Iris Virginica, respectively.

5. Conclusions and discussion

In this article we have demonstrated how the con-
cept of neuro-fuzzy computing can be exploited for
developing a methodology for feature extraction un-
der unsupervised mode. The methodology developed
involves connectionist minimization of a fuzzy fea-
ture evaluation index; thereby extracting an optimum
transformed feature space along with the importance



R.K. De et al. | Fuzzy Sets and Systems 126 (2002) 277-291 289

25 T T T T T —9
o o
am 000 o
0o o
QOO O (o)
2F [seee] o o
@ o o
00 OO O
e} *
++ o+ o
1.5F + O Bl
LI X o
o
o
+ -
1t *EE W

PW

0.5F

Fig. 8. Scatter plot PL-PW of Iris data. Here ‘.’, ‘4’ and ‘o’
represent classes Iris Setosa, Iris Versicolor and Iris Virginica,
respectively.

of various features. The algorithm considers interde-
pendence of the original features.

Although, the method is unsupervised, the extracted
feature space has been able to provide better clas-
sification performance than the original ones for all
the data sets. Results are compared with both unsu-
pervised (PCAN and SOM) and supervised (NDAN)
methods. It has been observed that the extent of over-
lapping region in the feature plane extracted by the
neuro-fuzzy method is less than those obtained by the
PCAN, NDAN and SOM. The classification ability
of the extracted features obtained by the neuro-fuzzy
method is much more than PCAN and SOM, but is
slightly less than NDAN. Moreover, the neuro-fuzzy
feature extraction preserves the data structure, cluster
shape and inter pattern distances better than PCAN,
NDAN and SOM.

Unlike NDAN and SOM, both neuro-fuzzy method
and PCAN extract features without clustering/class-
ifying the feature space explicitly. The neuro-fuzzy
method, PCAN and SOM do not require to assume the
class information of the patterns as well as the number
of clusters. It is to be noted that the task of feature ex-
traction by both the neuro-fuzzy method and NDAN
involves projection of an n-dimensional original space
directly to an n’-dimensional (n'<n) transformed
space. On the other hand, in the case of PCAN, this
task involves projection of an n-dimensional orig-
inal space to an n-dimensional transformed space,

followed by selection of the best n’ number of trans-
formed components. Since the transformed features
with low variances are ignored, there will be a loss
of information in the resulting extracted space. This
is also true for all the statistical feature extraction
methods based on the K—L transformation.

In the present method, we have assumed linear
transformation, as in the case of principal component
analysis. However, this does not preclude the pos-
sibility of inclusion of nonlinear transformation by
increasing the number of hidden layers in the net-
work. It may be mentioned that Foley and Sammon
[6] derived a set of discriminant vectors by selecting
the projection axes one at a time under an orthog-
onality constraint. On the other hand, the present
neuro-fuzzy method, as mentioned above, determines
the extracted features simultaneously by minimizing
the feature evaluation index. Regarding the time com-
plexity of the neuro-fuzzy algorithm, we can say that
it will be O(7T’s?), where T is the number of iterations
required for training the network, and s is the number
of training samples.

In order to validate the results quantitatively, we
have used a standard supervised classifier, viz., k-NN
classifier, as an example; and the comparison is made
in terms of % recognition score. Similar validation
could also be done with an unsupervised classifier.
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Appendix A Principal component analysis network
(PCAN) [17]

Principal component analysis is a well-known
statistical method for feature extraction. It involves
a linear orthogonal transform from an n-dimensional
feature space to an n’-dimensional space, n’ < n,
such that the features in the new n’-dimensional space
are uncorrelated and maximal amount of variance of
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the original data is preserved by only a small number
of features.

The principal component analysis network (PCAN)
architecture proposed by Rubner and Tavan [17] per-
forms principal component analysis in a connection-
ist framework. It consists of » input and »n’ output
nodes. An ith input node is connected to a jth output
node with connection weight w;;. All the output nodes
are hierarchically organized in such a way that an /th
output node is connected to a jth output node via con-
nection weight wx.at) if and only if /<. The training
algorithm of the network is summarized below.

e Initialize all connection weights to small random
values and choose the values of learning parameters.

e Repeat the following steps until all the lateral
weights are sufficiently small for a given number
of presentations (i.e., until their absolute values are
below some threshold).

o Randomly select an n-dimensional pattern x,
and present it to the input layer of the network.
Compute the output (x;) of the network,
representing the corresponding pattern in n’'-
dimensional transformed space, using the
equation

(lat) s

! —_— P
X, =W XP+ZWU X1
I<j

j=12,....n. (A.1)
o Update wy;, Vi, j following the Hebbian rule,

AWZ/ = 1’]]Xpl' (AZ)

/
Ypjo
where 71 >0 is the learning rate.
o Normalize w;; in such a way that ||w;|| =1.

o Update w,(}at) by the anti-Hebbian rule,
Awg}at) = — X)X, (A3)

where 7, is a positive learning parameter.

Appendix B. Nonlinear discriminant analysis
network (NDAN) [22]

Nonlinear discriminant analysis network (NDAN)
[22] is a multilayer feedforward network and is used
to realize a nonlinear discriminant analysis. The main

objective of the method is to project higher dimen-
sional data set to a lower dimensional one under
supervised mode of learning. The network consists
of an input, one or more hidden and an output layers.
The role of hidden layers is to implement a nonlinear
transformation which projects input patterns in the
original space to a space in which patterns are easily
separated by the output layer.

The number of nodes in the input layer is the same
as the number of features, and that in the output layer
is equal to the number of pattern classes. We fix the
number of nodes in the final hidden layer to »’, the
dimensionality of the projected space. The activation
functions of the hidden nodes are nonlinear (sigmoid)
and those of the input and output nodes are linear. The
backpropagation learning algorithm is used to train
the network which minimizes the squared error be-
tween its desired and actual outputs. After training, the
outputs of nodes in the final hidden layer provide the
feature values in the projected space.
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