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Abstract

The article provides a fuzzy set theoretic feature evaluation index and a connectionist model for its evaluation along with their theoretical
analysis. A concept of weighted membership function is introduced which makes the modeling of the class structures more appropriate. A
neuro-fuzzy algorithm is developed for determining the optimum weighting coefficients representing the feature importance. It is shown
theoretically that the evaluation index has a fixed upper bound and a varying lower bound, and it monotonically increases with the lower
bound. A relation between the evaluation index, interclass distance and weighting coefficients is established. Effectiveness of the algorithms
for evaluating features both individually and in a group (considering their independence and dependency) is demonstrated along with
comparisons on speech, Iris, medical and mango-leaf data. The results are also validated using scatter diagram andk-NN classifier.
q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Feature selection or extraction is a process of selecting a
map of the formx 0 � f �x� by which a samplex�x1; x2;…; xn�
in ann-dimensional measurement space (Rn) is transformed
into a point x 0�x01; x02;…; x0q� in a q-dimensional�q , n�
feature space (Rq). The main objective of this problem is
to retain the optimum salient characteristics necessary for
the recognition process and to reduce the dimensionality of
the measurement space so that effective and easily compu-
table algorithms can be devised for efficient classification.

In general, in the feature selection/extraction process, the
features considered to have optimal saliencies (usefulness)
are that for which interclass/intraclass distances are maxi-
mized/minimized. The criterion of a good feature is that it
should be unchanging with any other possible variation
within a class, while emphasizing differences that are
important in discriminating between patterns of different
types. Different useful classical techniques to achieve this
are based on diagonal transformation, Mahalanobis
distance, divergence, Bhattacharya coefficient, and the
Kolomogorov variational distance (Devijver & Kittler,
1982; Tou & Gonzalez, 1974).

There also exist several methods based on fuzzy set
theory (Bezdek, 1981; Bezdek & Castelaz, 1977; Pal,

1992; Pal & Chakraborty, 1986) and Artificial neural
networks (ANN) (Belue & Bauer, 1995; Kowalczyk &
Ferra, 1994; Kraaijveld, Mao & Jain, 1995; Lampinen &
Oja, 1995; Lowe & Webb, 1991; Mao & Jain, 1995; Priddy,
Rogers, Ruck, Rogers & Kabrisky, 1990; Ruck, Tarr &
Kabrisky, 1993; Saund, 1989; Schmidt & Davis, 1993).
Fuzzy set theoretic approaches for feature selection are
mainly based on measures of entropy and index of fuzziness
(Pal, 1992; Pal & Chakraborty, 1986), fuzzyc-means
(Bezdek, 1981) and fuzzy ISODATA (Bezdek & Castelaz,
1977) algorithms, etc. Some of the recent attempts made for
feature selection/extraction in the framework of ANN are
mainly based on multilayer feedforward networks (Belue &
Bauer, 1995; Kowalczyk & Ferra, 1994; Lowe & Webb,
1991; Mao & Jain, 1995; Priddy et al., 1993; Ruck et al.,
1990; Saund, 1989; Schmidt & Davis, 1993) and self-
organizing networks (Kraaijveld et al., 1995; Lampinen
& Oja, 1995; Mao & Jain, 1995). The methods based
on multilayer feedforward networks include, among
others, determination of saliency of input features
(Priddy et al., 1993), development of Sammon’s
nonlinear discriminant analysis (NDA) network, linear
discriminant analysis (LDA) network (Mao & Jain,
1995), whereas those based on self-organizing networks
include development of nonlinear projection (NP-SOM)
based Kohonen’s self-organizing feature map (Mao &
Jain, 1995), distortion tolerant Gabor transformations
followed by minimum distortion clustering by multilayer
self-organizing maps (Lampinen & Oja, 1995), a non-linear
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projection method based on Kohonen’s topology preserving
maps (Kraaijveld et al., 1995).

Incorporation of fuzzy set theory enables one to deal with
uncertainties in a system, arising from deficiency (e.g.
vagueness, incompleteness, etc.) in information, in an effi-
cient manner. ANNs, having the capability of fault toler-
ance, adaptivity and generalization, and scope for massive
parallelism, are widely used in dealing with optimization
tasks. Recently, attempts are being made to integrate the
merits of fuzzy set theory and ANN under the heading
‘neuro-fuzzy computing’ for making the systems artificially
more intelligent.

The present article provides a neuro-fuzzy approach for
feature evaluation and a theoretical analysis of its perfor-
mance. First of all, a new fuzzy set theoretic evaluation
index is defined in terms of individual class membership.
Its performance with an existing one (Pal, 1992; Pal &
Chakraborty, 1986) is compared for ranking the features
(or subsets of features). Its relation with Mahalanobis
distance and divergence measure is demonstrated. Then,
we provide a new connectionist model to perform the task
of optimizing the aforesaid fuzzy evaluation index, which
incorporates weighted distance for computing class
membership values. This optimization process results in a
set of weighting coefficients representing the importance of
the individual features. These weighting coefficients lead to
a transformation of the feature space for modeling better the
class structures. Finally, the performance of the system is
theoretically analyzed. This includes derivation of upper
and lower bounds of the evaluation index, and determining
its relation with interclass distance and weighting coeffi-
cient. The effectiveness of the algorithms, along with exten-
sive comparisons, is demonstrated on four different data
sets, namely, three-dimensional 6-class vowel data, four-
dimensional 3-class Iris data, nine-dimensional 4-class
medical data and 18-dimensional 3-class mango-leaf data.
The validity of the experimental results is analyzed inde-
pendently with scatter plots andk-NN classifier for different
values ofk.

The article is organized as follows. Section 2 provides the
description of a new feature evaluation index and weighted
membership function. Section 3 describes the connectionist
model for the evaluation of the feature evaluation index.
Theoretical analysis of the feature evaluation index is
provided in Section 4. The effectiveness of the methods is
established with experimental results in Section 5. Finally,
the paper is concluded in Section 6.

2. Fuzzy feature evaluation index and weighted
membership function

Let us consider ann-dimensional feature spaceV
containing x1; x2; x3;…; xi ;…; xn features (components).
Let there beM classesC1;C2;C3;…;Ck;…;CM : The feature
evaluation index for a subset�Vx� containing few of thesen

features is defined as

E �
X

k

X
x[Ck

sk�x�X
k 0±k

skk0 �x�
× ak; �1�

wherex is constituted by the features ofVx only and

sk�x� � mCk
�x� × �1 2 mCk

�x��; �2�

skk0 �x� � 1
2 �mCk

�x� × �1 2 mCk0 �x���1 1
2 �mCk0 �x� × �1

2 mCk
�x���; �3�

with mCk
�x� andmCk0 �x� being the membership values of the

patternx in classesCk andCk 0 , respectively. Hereak is the
normalizing constant for classCk which takes care of the
effect of relative sizes of the classes.

Note that,sk is zero (minimum) ifmCk
� 1; or 0 and is

0.25 (maximum) ifmCk
� 0:5: On the other hand,skk0 is zero

(minimum) whenmCk
� mCk0 � 1 or 0, and is 0.5 (maxi-

mum) formCk
� 1; mCk0 � 0 or vice versa.

Therefore, the term�sk=
P

k 0±k skk0 � is minimum ifmCk
� 1

and mCk0 � 0 for all k 0 ± k; i.e. if the ambiguity in the
belongingness of a patternx to classesCk andCk 0 ;k 0 ± k
is minimum (the pattern belongs to only one class). It is
maximum whenmCk

� 0:5 for all k. In other words, the
value of E decreases as the belongingness of the patterns
increases for only one class (i.e. compactness of individual
classes increases) and at the same time decreases for other
classes (i.e. separation between classes increases). The
value of E increases when the patterns tend to lie at the
boundaries between classes (i.e.m! 0:5). Our objective
is, therefore, to select those features for which the value
of E is minimum. HereE is computed over all the samples
in the feature space irrespective of the size of the classes.
Therefore, it is expected that the contribution of a class of
bigger size (i.e. with larger number of samples) will be more
in the computation ofE. As a result, the index value will be
more biased by the bigger classes; which might affect the
process of feature selection. In order to overcome this, i.e. to
normalize this effect of the size of the classes, a factorak;

corresponding to the classCk, is introduced. In the present
investigation, we have chosenak � 1 2 Pk; wherePk is a
priori probability for classCk. However, other expressions
like ak � �1=uCku� orak � �1=Pk� could also have been used.

The membership�mCk
�x�� of a patternx to a classCk is

defined with a multi-dimensionalp-function (Pal & Prama-
nik, 1986) which is given by,

mCk
�x� �

1 2 2d2
k�x� 0 # dk�x� , 1

2 ;

2�1 2 dk�x��2 1
2 # dk�x� , 1;

0 otherwise;

8>><>>: �4�

wheredk(x) is the distance of the patternx from mk (the
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center of classCk). It can be defined as,

dk�x� �
X

i

xi 2 mki

lki

� �rk

" #1=rk

; rk . 0; �5�

where

lki � 2 max
x[Ck

�uxi 2 mkiu�; �6�

and

mki �

X
x[Ck

xi

uCku
: �7�

Eqs. (4)–(7) are such that the membershipmCk
�x� of a

patternx is 1 if it is located at the mean ofCk, and 0.5 if it is
at the boundary (i.e. ambiguous region) for a symmetric
class structure.

In practice, the class structure may not be symmetric. In
that case, the membership values of some patterns at the
boundary of the class will be greater than 0.5. Also, some
patterns of other classes may have membership values
greater than 0.5 for the class under consideration. For hand-
ling this undesirable situation, the membership function
corresponding to a class needs to be transformed so that it
can model the real life class structures appropriately. For
this purpose, we have incorporated a weighting factor corre-
sponding to a feature, which transforms the feature space in
such a way that the transformed membership functions
model the class structures appropriately. Note that, this
incorporation of weighting factors makes the method of
modeling the class structures more generalized; a symmetric
class structure being a special case.

For this purpose, we define weighted distance from Eq.
(5) as

dk�x� �
X

i

wrk
i

xi 2 mki

lki

� �rk

" #1=rk

; wi [ �0;1�: �8�

The membership values (m ) of the sample points of a
class become dependent onwi. The values ofwi �, 1�
make the function of Eq. (4) flattened along the axis ofxi.
The lower the value ofwi, the higher is the extent of flatten-
ing. In the extreme case, whenwi � 0; dk � 0 andmCk

� 1
for all the patterns.

In pattern recognition literature, the weightwi (Eq. (8))
can be viewed to reflect the relative importance of the
featurexi in measuring the similarity (in terms of distance)
of a pattern to a class. It is such that the higher the value of
wi, the more is the importance ofxi in characterizing/discri-
minating a class/between classes.wi � 1�0� indicates thatxi

is the most (least) important.
Therefore, the compactness of the individual classes and

the separation between the classes as measured byE (Eq.
(1)) is now essentially a function ofw �� �w1;w2;…;wn��; if
we consider all then features together. The problem of
feature selection/ranking thus reduces to finding a set of
wis for whichE becomes minimum;wis indicate the relative
importance ofxis in characterizing/discriminating classes.
The task of minimization may be performed with various
techniques (Davis, 1987; Himmelblau, 1972). Here, we
have adopted gradient descent technique in a connectionist
framework (because of its massive parallelism, fault toler-
ance etc.) for minimizingE. A new connectionist model is
developed for this purpose. This is described in the next
section.

Note that, the method of individual feature ranking is not
identical to that described in this section. The later one finds
the set ofwis (for which E is minimum) considering the
effect of inter-dependencies of the features, whereas in the
case of former one, each feature is considered individually
independent of other.

3. Neural network model for fuzzy feature evaluation

The network (Fig. 1) consists of two layers, namely, input
and output. The input layer represents the set of all features
in M and the output layer corresponds to the pattern classes.
Input nodes accept activations corresponding to the feature
values of the input patterns. The output nodes produce the
membership values of the input patterns corresponding to
the respective pattern classes. With each output node, an
auxiliary node is connected which controls the activation
of the output node through modulatory links. An output
node can be activated from the input layer only when the
corresponding auxiliary node remains active. Input nodes
are connected to the auxiliary nodes through feedback
links. The weight of the feedback link from the auxiliary
node, connected to thekth output node (corresponding to the
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Fig. 1. A schematic diagram of the proposed neural network model. Black
circles represent the auxiliary nodes, and white circles represent input and
output nodes. Small triangles attached to the output nodes represent the
modulatory connections from the respective auxiliary nodes.



classCk), to theith input node (corresponding to the feature
xi) is equated to2 mki. The weight of the feedforward link
from the ith input node to thekth output node provides the
degree of importance of the featurexi, and is given by

Wki � wi

lki

� �rk

: �9�

During training, the patterns are presented at the input
layer and the membership values are computed at the output
layer. The feature evaluation index for these membership
values is computed (Eq. (4)) and the values ofwis are
updated in order to minimize this index. Note that,lkis
and mkis are directly computed from the training set and
kept fixed during updating ofwis. The auxiliary nodes are
activated (i.e. activation values are equated to unity) one at a
time while the others are made inactive (i.e. the activation
values are fixed at 0). Thus during training, at a time, only
one output node is allowed to be activated.

When thekth auxiliary node is activated, input nodei has
an activation value as

uik � �Iik�rk ; �10�
whereIik is the total activation received by theith input node
for the patternx, when the auxiliary nodek is active, which
is given by

Iik � xi 2 mki; �11�
with xi being the external input (value of theith feature for
the patternx) and 2 mki the feedback activation from thekth
auxiliary node to theith input node. The activation value of
the kth output node is given by

vk � g�yk�; �12�
whereg(·), the activation function of each output node, is a
p-function as given in Eq. (4).yk, the total activation
received by thekth output node for the patternx, is given by

yk �
X

i

uik × wi

lki

� �rk

 !1=rk

: �13�

Note that,yk is the same asdk (Eq. (8)) for the given input
patternx, andvk is equal to the membership value of the
input patternx in the classCk.

The expression forE(w) (from Eq. (1)), in terms of the
output node activations, is given by

E�w� �
X

k

X
x[Ck

vk�1 2 vk�X
k 0±k

1
2 �vk�1 2 vk 0 �1 vk 0 �1 2 vk��

× ak:

�14�
The training phase of the network takes care of the task of

minimization ofE(w) (Eq. (14)) with respect tow which is
performed using simple gradient-descent technique. The

change inwi �Dwi� is computed as

Dwi � 2h
2E
2wi

; ;i ; �15�

whereh is the learning rate.
For the computation of�2E=2wi�; the following expres-

sions are used.

2skk0 �x�
2wi

� 1
2
�1 2 2vk 0 � 2vk

2wi
1 �1 2 2vk� 2vk 0

2wi

� �
; �16�

2sk�x�
2wi

� �1 2 2vk� 2vk

2wi
; �17�

2vk

2wi
�

24yk
2yk

2wi
; 0 # yk , 1

2 ;

24�1 2 yk� 2yk

2wi
; 1

2 # yk , 1;

0; otherwise;

8>>>>><>>>>>:
�18�

and

2yk

2wi
� wi

yk

� �rk21 xi 2 mki

lki

� �rk

: �19�

Alternately, we can also expressE as a function ofWki,
whereWki � �wi =lki�rk ; and then minimizeE with respect
to Wki. In this case, during training phase, the values ofWkis
can be updated using the same gradient-descent technique.
After training, the degree of importance ofith feature can be
computed aswi �W1=rk

ki × lki:

The steps involved in the training phase of the network
are as follows:

• Calculate the mean vectors (mk) of all the classes from
the data set. Set the weight of the feedback link from the
auxiliary node corresponding to the classCk to the input
nodei as 2 mki (for all i andk).

• Computelkis from Eq. (6) and initialize the weight of the
feedforward link fromith input node tokth output (for all
values ofi andk) node. Set the values ofrks (in Eq. (8)) so
that the membership values of all the patterns of thekth
class are at least 0.5 for that class.

• For each input pattern:

• Present the pattern vector to the input layer of the
network.

• Activate only one auxiliary node at a time. Whenever
an auxiliary node is activated, it sends the feedback to
the input layer. The input nodes, in turn, send the
resultant activations to the output nodes. The activa-
tion of the output node (connected to the active auxili-
ary node) provides the membership value of the input
pattern to the corresponding class. Thus, the member-
ship values of the input pattern corresponding to all
the classes are computed by sequentially activating
the auxiliary nodes one at a time.

• Compute the desired change in weights of the
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feedforward links to be made using the updating rule
given in Eq. (15).

• Compute total change inwi for eachi, over the entire set
of patterns. Updatewi (for all i) with the average value of
Dwi.

• Repeat the whole process until convergence, i.e. the
change inE becomes less than certain predefined small
quantity.

After convergence,E(w) attains a local minimum. In that
case, the weights of the feedforward links indicate the order
of importance of the features. In the following section, the
convergence ofE is theoretically established, and the valid-
ity of the ordering of features in terms of network para-
meters is demonstrated for some well-defined class
structures.

4. Theoretical analysis

Here, we analyze mathematically the characteristics of
the feature evaluation index (E) and the significance of
weighting coefficients (wi). For this purpose we proceed as
follows.

• A fixed upper bound and a varying lower bound ofE (Eq.
(1)) are derived. The variation ofE with respect to the
lower bound is studied.

• A relation betweenE, wi and interclass distance is
derived.

4.1. Upper bound and lower bound of E

We can writeE (Eq. (1)) as

E �
X

k

X
x[Ck

mk × �1 2 mk�ak
1
2

X
k 0±k

�mk × �1 2 mk 0 �1 mk 0 × �1 2 mk��
�20�

where mk � mCk
�x� and mk 0 � mCk0 �x�: Let, E � P

k Ek �P
k
P

x[Ck
Ek�xux [ Ck� where

Ek �
X

x[Ck

mk × �1 2 mk�ak
1
2

X
k 0±k

�mk × �1 2 mk 0 �1 mk 0 × �1 2 mk��
�21�

and

Ek�xux [ Ck� � mk × �1 2 mk�ak
1
2

X
k 0±k

�mk × �1 2 mk 0 �1 mk 0 × �1 2 mk��
:

�22�
That is,Ek is the value of the evaluation index corresponding
to a classCk, andEk�xux [ Ck� is contribution of a patternx
in classCk, to Ek.

For a patternx in classCk,

1
2

X
k 0±k

�mk�1 2 mk0 �1 mk 0 �1 2 mk��

� 1
2

X
k 0±k

�mk�1 2 mk�1 �mk 2 mk 0 �2 1 mk 0 �1 2 mk0 ��:

Since��mk 2 mk 0 �2 1 mk 0 �1 2 mk 0 �� $ 0;

1
2

X
k 0±k

�mk�1 2 mk0 �1 mk 0 �1 2 mk�� $
M 2 1

2
mk�1 2 mk�;

whereM is the number of classes. Since, 0, ak , 1; we
can write

Ek�xux [ Ck� #
2

�M 2 1� : �23�

Therefore,

E�E� #
2M

M 2 1
; �24�

where E denotes the ‘mathematical expectation’ opera-
tor. '

Again, for a patternx in classCk;mk;mk 0 [ �0;1�; we can
write

1
2 �mk�1 2 mk 0 �1 mk 0 �1 2 mk�� # 1

2 ;

X
k 0±k

1
2
�mk�1 2 mk 0 �1 mk 0 �1 2 mk�� #

1
2
�M 2 1�;

1X
k 0±k

1
2 �mk�1 2 mk 0 �1 mk 0 �1 2 mk��

$
2

�M 2 1� ;

X
k

mk�1 2 mk�akX
k0±k

1
2 �mk�1 2 mk 0 �1 mk0 �1 2 mk��

$
2

�M 2 1�
X

k

mk�1 2 mk�ak:

Thus

Ek�xux [ Ck� $
2

�M 2 1� mk�1 2 mk�ak:

That is

E�E� $
2

�M 2 1� E�
X

k

mk�1 2 mk�ak�: �25�

Therefore,

2
�M 2 1� E�

X
k

mk�1 2 mk�ak� # E�E� #
2M

�M 2 1� : �26�

Note that, the upper bound ofE�E� is fixed, whereas the
lower bound is varying with �2=�M 2 1��E�Pk mk�1 2
mk�ak�: '
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Let us now analyze the behavior ofEk�xux [ Ck� with
respect tomk�1 2 mk�: For this purpose, we substitute
mk�1 2 mk� by hk in Eq. (22). In that case,

It is clear from Eq. (27) that�dEk�xux [ Ck�=dhk� is
positive/negative ifnk is positive/negative. In other words,
Ek�xux [ Ck� increases/decreases monotonically with
mk�1 2 mk� if nk is positive/negative. Simplifying the
expression on the right-hand side of Eq. (28) we get

nk �
X
k 0±k

mk 0 2

m2
k

X
k 0±k

�1 2 2mk 0 �

�1 2 2mk� : �29�

In order to show thatEk�xux [ Ck� monotonically
increases withmk�1 2 mk� for both non-overlappingand
overlapping class structures, we consider the following
cases.

Case 1(Non-overlapping (Fig. 2)). Here, for a patternx,
if uxi 2 mkiu # �lki=2� holds for all values ofi, mk $ 0:5 and
mk 0 , 0:5; ;k 0 ± k: Therefore,nk . 0 (Eq. (29)), and as a
result �dEk�xux [ Ck�=dhk� . 0: This indicatesEk�xux [
Ck� is monotonically increasing withmk�1 2 mk�.

Case 2(Overlapping (Fig. 3)). In this case, for a patternx,
if uxi 2 mkiu # �lki=2� holds for all values ofi, mk $ 0:5 and
mk 0 + 0:5; ;k 0 ± k: Since the classes are overlapped, we
consider two different possibilities:x lying outside the
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Fig. 2. Non-overlapping pattern classes modeled withp-function.

Fig. 3. Overlapping pattern classes modeled withp-function.

dEk�xux [ Ck�
dhk

�
ak�

X
k 0±k

�mk 0 �1 2 mk�1 mk�1 2 mk0 ���1 2 2mk�2 mk�1 2 mk�
X
k0±k

�1 2 2mk 0 ��
1
2 �
X
k 0±k

�mk0 �1 2 mk�1 mk�1 2 mk 0 ���2�1 2 2mk�

� nkak

1
2
�
X
k 0±k

�mk 0 �1 2 mk�1 mk�1 2 mk 0 ���2
; �27�

where

nk �

X
k 0±k

�mk0 �1 2 mk�1 mk�1 2 mk 0 ���1 2 2mk�2 mk�1 2 mk�
X
k 0±k

�1 2 2mk 0 �

�1 2 2mk� : �28�



overlapping zone (i.e. uxi 2 mkiu # �lki=2�;;i and
uxi 2 mk 0 i u . �lk 0 i =2�) and x lying within the overlapping
zone (i.e. uxi 2 mkiu , lki=2;;i and uxi 2 mk 0 i u ,
�lk 0 i =2�;;i).

If the patternx lies outside the overlapping zone, then
mk 0 , 0:5 and therebynk . 0 (Eq. (29)). This indicates
Ek�xux [ Ck� monotonically increases withmk�1 2 mk�.

If x lies within the overlapping zone, bothmk;mk0 . 0:5:
Then we have three possibilities: (a)mk . mk 0 ; (b) mk <
mk 0 ; and (c)mk , mk 0 :

(a)mk . mk 0 . Let mk 0 � mk 2 ekk0 whereekk0 . 0: There-
fore, from Eq. (29) we get

nk �
X
k 0±k

�mk 2 ekk0 �2

m2
k

X
k 0±k

�1 2 2mk 1 2ekk0 �

�1 2 2mk� ; �30�

i.e.

nk � �M 2 1�mk 2
X
k 0±k

ekk0

2

2m2
k

X
k0±k

ekk0 2 m2
k�2mk 2 1��M 2 1�

�1 2 2mk� : �31�

Thus, Ek�xux [ Ck� increases monotonically withmk�1 2
mk� if

�M 2 1�mk 2
X
k0±k

ekk0

2

2m2
k

X
k 0±k

ekk0 2 m2
k�2mk 2 1��M 2 1�

�1 2 2mk� . 0; �32�

i.e. if

1
M 2 1

X
k 0±k

ekk0 . 2
mk�1 2 mk��2mk 2 1�
�1 2 mk�2 1 m2

k

�33�

Since, ekk0 . 0, the above inequality always holds, and
therefore, in such cases,Ek�xux [ Ck� always increases
monotonically withmk�1 2 mk�.

(b) mk < mk 0 . In this case,ekk0 < 0; and therefore,
inequality (33) always holds. Thus, in this case also, we
get a monotonic increasing nature ofEk�xux [ Ck� with
respect tomk�1 2 mk�.

(c) mk , mk 0 . In this case,ekk0 , 0: Let us replaceekk0 by
2ekk0 ; i.e.mk 0 � mk 1 ekk0 : Then, the condition forEk�xux [
Ck� being monotonically increasing function with respect to
mk�1 2 mk� becomes

1
M 2 1

X
k 0±k

ekk0 ,
mk�1 2 mk��2mk 2 1�
�1 2 mk�2 1 m2

k

: �34�

This condition provides an upper bound on the average
value of ekk0 (hence on the average value ofmk 0) that can
be allowed in order to get a monotonic increasing behavior
of Ek�xux [ Ck� with respect tomk�1 2 mk�:

First of all, the chance ofmk , mk 0 is low for a pattern in

classCk. Even if this happens (say, for overlapping case),
the chance of happening

1
M 2 1

X
k 0±k

ekk0 . �mk�1 2 mk��2mk 2 1��=��1 2 mk�2 1 m2
k�

is very low (as illustrated in the following two examples).
Therefore, Ek�xux [ Ck� is most likely monotonically
increasing withmk�1 2 mk�.

Example 1. Let, m1 � 0:6 for a patternx lying within the
regionix 2 m1i , l1=2 in classC1. Then, the condition (34)
becomes

1
M 2 1

X
k 0±k

ekk0 , 0:1:

In order to violate this condition, the average membership
value of x (say,m2) to classes other thanC1 should be at
least 0.7. It can also be seen that whatever be the value of
m1 �. 0:5�; the value ofm2 should be greater thanm1. This
is unusual. Thus, we can say that in this case the inequality
(34) will be satisfied and thereby, we can expect a mono-
tonic increasing behavior ofE1�xux [ C1� with respect to
m1�1 2 m1�:

Example 2. Let, m1 � 0:5: In that case, condition (34)
becomes

1
M 2 1

X
k 0±k

ekk0 , 0:

That is, the average membership value ofx to classes other
thanC1 should be greater than or equal to 0.5. This situation
occurs when the classes are highly overlapped. In other
words, if there is high amount of overlap, the behavior of
Ek�xux [ Ck� becomes unpredictable for ambiguous
patterns. '

Thus, we can say that almost in all the cases,Ek�xux [
Ck� is monotonically increasing withmk�1 2 mk�. Therefore,
we can expect thatEk ��

P
x[Ck

Ek�xux [ Ck�� increases
monotonically with

P
k mk�1 2 mk�: In other words, almost

in all the casesE�E� is a monotonically increasing function
of E�Pk �mk�1 2 mk�ak�; asaks are positive constants.

4.2. Relation between E, interclass distance and wi

Let us now derive a relation of the lower bound ofE�E�
with interclass distance and weighting coefficients for some
well-defined class structures.

• Let us assume that the classesC1;C2;…;Ck;…;CM have
independent, identical Gaussian distributions with
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respective meansm1;m2;…;mk;…;mM and with the
same variances 2. Let `�xuCk� be the class-conditional
probability density function for classCk. Then

`�xuCk� � 1����
2p
p

s
exp 2

X
i

�xi 2 mki�2
2s2

 !
�35�

• Let the membership of a patternx in a classCk be given by

mk � mk�x� � exp 2
X

i

�xi 2 mki�2w2
i

2l2

 !
�36�

wherel is the bandwidth of the classCk, and is the same for
all the classes.

E�E� is given by

E�E� �
Z

x
E`�x� dx; �37�

where

`�x� �
X

k

Pk`�xuCk�; �38�

with Pk being a priori probability of classCk. Evaluating the
right-hand side of Eq. (37) (see Appendix A), we have

E�E� <
X

k

akPk

M 2 1

X
i

w2
i

2r2

� 1 1
X
k 0±k

exp 2
X

i

c2
kk0 i

2s2 1 1
r2

w2
i

 !
266664

377775
0BBBB@

1CCCCA; �39�
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Fig. 4. Graphical representation ofE�E� with respect toc121 andc122 with w1 � w2 � 1:0:

Fig. 5. Graphical representation ofE�E� with respect tow1 for different values ofc121, with c122� 0 and
P2

i�1 w2
i � 1:



where r � �l=s� and ckk0 i � mki 2 mk 0 i is a measure of
interclass distance between the classesCk and Ck 0 along
the feature axisxi.

Let us consider two classesC1 andC2, with two features
x1 andx2. Let, C1 andC2 have unit normal distribution, i.e.
s � 1:0: Let, l � 1:0 andPk � ak � 0:5 �;k�: c121 andc122

are the interclass distances between classC1 and classC2

along the feature axesx1 and x2, respectively. We now
demonstrate graphically the variation ofE (E) with respect
to c121 andc122, andw1 andw2.

Fig. 4 shows the variation ofE (E) with respect toc121 and
c122withw1 � w2 � 1:E�E� is maximum whenc121� c122�

0; i.e. when the two classes completely overlap. HereE�E�
decreases with the increase inc121 andc122. This variation is
symmetric with respect to bothc121 and c122. The rate of
decrease inE�E� also decreases asc121 (andc122) increases.
Finally, after a certain value ofc121 (and c122) the rate of
decrease inE�Pk mk�1 2 mk�ak� becomes infinitesimally
small. This is also evident from the way of computingm-
value wherem2 of a patternx with fixed m1 decreases with
increase in interclass distance. If the interclass distance
exceeds a certain value,m2 becomes very small. Thus, the
contribution of the pattern to the evaluation index does not
get affected further by the extent of the class separation.
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Fig. 6. Graphical representation ofE�E� with respect tow2 for different values ofc121, with c122� 0 and
P2

i�1 w2
i � 1:

Fig. 7. Two-dimensional (F1–F2) plot of the vowel data. This figure is the same as Fig. 22. The only difference is that here approximate boundary of the classes
are drawn.



Figs. 5 and 6 show the variation ofE�E� with respect
to w1 and w2 for different interclass distances whenP2

i�1 w2
i � 1: Here we have consideredc122� 0 through-

out whereasc121 is considered to be 1.0, 3.0, 5.0, 7.0
and 9.0, respectively. It is seen from the figures thatE
decreases withw1 (or increases withw2) and attains a
maximum (or minimum) when w1 � 0 (or when

w2 � 0). This is due to the fact that the featurex2 has
no discriminating power asc122� 0: On the other hand,
the featurex1 is necessary for classification as there is a
separation (c121 ± 0) between the classes along its axis.
Note also from Figs. 5 and 6 that for higher values of
c121, the decrease (or increase) ofE is more sharp. This
indicates that the rate of convergence of the network to a
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Table 1
Importance of different feature subsets.X . Y means feature subsetX is more important thanY. Since the number of subsets for medical and mango-leaf data is
large, only first 15 are shown

Data sets Order of importance using

E (Eq. (1)) FEI of Pal (1992), Pal and Chakraborty (1986)

Vowel {F2} . {F1} . {F1,F2} . {F1,F2} . {F2} . {F1} .

{F2,F3} . {F1,F2,F3} . {F2,F3} . {F1,F2,F3} .

{F1,F3} . {F3} {F 3} . {F1,F1,F3}
Iris {PW} . {PL} . {PL,PW} . {PL} . {SW,PL} . {PL,PW} .

{SW,PW} . {SW,PL} . {SL,PL} . {PW} . {SW,PL,PW} . {SL,SW,PL,PW} .

{SL,PW} . {SW,PL,PW} . {SL} . {SW,PW} . {SL,PL} . {SL,PL,PW} .

{SL,SW,PW} . {SL,SW,PL} . {SL,PL,PW} {SL,SW,PL} . {SL,SW,PW} . {SL,PW} .

{SL,SW,PL,PW} . {SL,SW} . {SW} {SW} . {SL} . {SL,SW}
Medical {MCV} . {LDH,MCV} . {MCH} . {MCV,MCH,TBil} . {TBil} . {MCV,TBil} .

{MCV,MCH} . {MCV,TBil} . {LDH,MCV,TBil} . {MCH} . {BUN,MCV,MCH} . {BUN,MCV} .

{LDH,MCV,MCH} . {LDH,MCH} . {BUN,MCV} . {MCH,TBil} . {BUN,MCV,TBil} . {BUN,MCV,MCH,TBil} .

{LDH} . {MCH,TBil} . {LDH,BUN,MCV} . {BUN,MCH} . {MCV,MCH} . {BUN,Tbil} .

{BUN,MCV,MCH} . {BUN,MCV,Tbil} .

{LDH,BUN,MCV,MCH} . …
{BUN} . {BUN,MCH,TBil} . {MCV} . …

Mango-leaf {L/B} . {L/B,UPe/LPe} . {SI,L/B} . {B} . {L/B} . {B,UPe/LPe} .

{SI} . {SI,L/B,UPe/LPe} . {SI,UPe/Lpe} . {Pe} . {(L 1 P)/B} . {A/L} .

{SI,L/B,(L 1 P)/B} . {B,L/B} . {B,SI,L/B} . {B,L/B} . {B,L/B,UPe/LPe]. {P} .

{SI,(L 1 P)/B} . {B,L/B,(L 1 P)/B} . {B,SI} . {A} . {L 1 P . S} .

{L/B,(L 1 P)/B,UPe/LPe}. {(L 1 P)/B,UPe/LPe}. … {SI,L/B} . {SI,L/B,UPe/LPe} . {L/B,(L 1 P)/B,UPe/LPe}. …

Fig. 8. Graphical representation of the relationship between feature evaluation index and Mahalanobis distance for the vowel data.



local minimum increases, as expected, with the decrease in
overlap between the classes.

5. Results

The effectiveness of the above-mentioned algorithms was

tested on four data sets, namely, vowel data (Pal & Dutta
Majumder, 1986), Iris data (Fisher, 1936), medical data
(Hayashi, 1991) and mango-leaf data (Bhattacharjee,
1986). The vowel data consists of a set of 871 Indian Telugu
vowel sounds collected by trained personnel. These were
uttered in a consonant-vowel-consonant context by three
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Fig. 9. Graphical representation of the relationship between feature evaluation index and divergence measure for the vowel data.

Fig. 10. Graphical representation of the relationship between feature evaluation index and Mahalanobis distance for Iris data.



male speakers in the age group of 30–35 years. The data set
has three features,F1, F2 andF3 corresponding to the first,
second and third vowel format frequencies obtained through
spectrum analysis of the speech data. Fig. 7 shows a two-
dimensional projection of the three-dimensional feature
space of the six vowel classes (2, a, i, u, e, o) in theF1–
F2 plane (for ease of depiction). The details of the data and

its extraction procedure are available in (Pal & Dutta
Majumder, 1986). This vowel data is being extensively
used for two decades in the area of pattern recognition.

Anderson’s Iris data (Fisher, 1936) set contains three
classes, i.e. three varieties of Iris flowers, namely, Iris
Setosa, Iris Versicolor and Iris Virginica consisting of 50
samples each. Each sample has four features, namely, Sepal
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Fig. 11. Graphical representation of the relationship between feature evaluation index and divergence measure for Iris data.

Fig. 12. Graphical representation of the relationship between feature evaluation index and Mahalanobis distance for the medical data.



Length (SL), Sepal Width (SW), Petal Length (PL) and
Petal Width (PW). Iris data has been used in many research
investigation related to pattern recognition and has become
a sort of benchmark-data.

The medical data consisting of nine input features and
four pattern classes, deals with variousHepatobiliary

disorders(Hayashi, 1991) of 536 patient cases. The input
features are the results of different biochemical tests, viz.
Glutamic Oxalacetic Transaminate (GOT, Karmen unit),
Glutamic Pyruvic Transaminase (GPT, Karmen Unit),
Lactate Dehydrase (LDH, iu/l), Gamma Glutamyl Trans-
peptidase (GGT, mu/ml), Blood Urea Nitrogen (BUN,
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Fig. 13. Graphical representation of the relationship between feature evaluation index and divergence measure for the medical data.

Fig. 14. Graphical representation of the relationship between feature evaluation index and Mahalanobis distance for mango-leaf data.



mg/dl), Mean Corpuscular Volume of red blood cell (MCV,
fl), Mean Corpuscular Hemoglobin (MCH, pg), Total Bilir-
ubin (TBil, mg/dl) and Creatinine (CRTNN, mg/dl). The
hepatobiliary disorders Alcoholic Liver Damage (ALD),
Primary Hepatoma (PH), Liver Cirrhosis (LC) and Chole-
lithiasis (C), constitute the four output classes.

Mango-leaf data (Bhattacharjee, 1986), on the other hand,

is a data set on different kinds of mango-leaf with 18
features, (i.e. 18-dimensional data) with 166 data points. It
has three classes representing three kinds of mango. The
feature set consists of measurements like Z-value (Z), area
(A), perimeter (Pe), maximum length (L), maximum
breadth (B), petiole (P), K-value (K), S-value (S), shape
index (SI), L 1 P, L/P, L/B, (L 1 P)/B, A/L, A/B, A/Pe,
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Fig. 15. Graphical representation of the relationship between feature evaluation index and divergence measure for mango-leaf data.

Fig. 16. Scatter plot SL–SW of Iris data. Here ‘·’, ‘1 ’ and ‘W’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica, respectively.



upper midrib/lower midrib (UM/LM) and perimeter upper
half/perimeter lower half (UPe/LPe). The terms ‘upper’ and
‘lower’ are used with respect to maximum breadth position.

In the following experiments the values ofrk in Eqs. (5)
and (8) are so chosen that the membership values of all the
patterns of a class are at least 0.5 for that class. For 6-class
vowel data the values ofrk are found to be 28.8, 78.5, 21.4,
74.0, 20.4 and 47.8 corresponding to its classes. Similarly,

these values are 71.7, 241.3 and 193.9 for 3-class Iris data,
65.0, 38.5, 12.8 and 163.2 for 4-class medical data, and
133.8, 71.2 and 225.2 for 3-class mango-leaf data.

5.1. Using feature evaluation indices

The evaluation index,E (Eq. (1)), was computed for
various subsets of features of all the data sets described
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Fig. 17. Scatter plot SL–PL of Iris data. Here ‘·’, ‘1 ’ and ‘W’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica, respectively.

Fig. 18. Scatter plot SL–PW of Iris data. Here ‘·’, ‘1 ’ and ‘W’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica, respectively.



before. The order of importance of these subsets was
compared with that obtained by the feature evaluation
index (FEI) used by Pal (1992), Pal and Chakraborty (1986).

In the case of vowel data, the order of importance of the
subsets of features is

{ F2} . { F1} . { F1;F2} . { F2;F3} . { F1;F2;F3}

. { F1;F3} . { F3}

according toE of Eq. (1), and

{ F1;F2} . { F2} . { F1} . { F2;F3}

. { F1;F2;F3} . { F3} . { F1;F3}

according to the FEI of Pal (1992), Pal and Chakraborty
(1986). Herex . y indicates that the importance of feature
x is greater than that of featurey. For both the methods, three
best subsets are found to be the same. Similarly, in the case
of Iris data (Table 1), the subsets {PW}, {PL} and
{SW,PW} are found to be the first, second and third best
subsets byE (Eq. (1)), whereas the corresponding subsets
are {PL}, {SW,PL} and {PL,PW} by the index of Pal
(1992), Pal and Chakraborty (1986). Note that,SL has not
come out as a member of these subsets by either method.

In the case of medical data, since the number of features is
nine, we have computed the evaluation indices for indivi-
dual features (i.e. for the nine subsets), and for all the
subsets containing elements of the best four individual
features obtained by the respective indices. Note that,
these four features are found to be MCV, MCH, LDH and
TBil by Eq. (1), and TBil, MCH, BUN and MCV by FEI of
Pal (1992), Pal and Chakraborty (1986). Therefore we

consider five features LDH, BUN, MCV, MCH and TBil
to constitute these subsets. The total number of subsets thus
considered including the nine individual features becomes
35. Among all these, the order of importance of the best five
subsets, as seen from Table 1, is

{MCV} . {LDH ;MCV} . {MCH} . {MCV ;MCH}

. {MCV ;TBil}

according toE of Eq. (1), and

{MCV ;MCH;TBil} . {TBil} . {MCV ;TBil} . {MCH}

. {BUN ;MCV;MCH}

according to the FEI of Pal (1992), Pal and Chakraborty
(1986). Note that, the features MCV and/or MCH are
present in all these subsets obtained byE (Eq. (1)), whereas
it is MCH and/or TBil which are present in all the best five
subsets obtained by the index of Pal (1992), Pal and Chak-
raborty (1986). This conforms to the ranking order obtained
for individual features where MCV and MCH are found to
be the best two features using Eq. (1), and TBil and MCH
are those as obtained by the algorithm in Pal (1992), Pal and
Chakraborty (1986).

Similarly, in the case of mango-leaf data, since the
number of features is 18, we have computed the evaluation
indices for individual features (i.e. for the 18 subsets), and
for all the subsets containing elements of the best four indi-
vidual features obtained by the respective indices. Here, the
best four features obtained by these two indices are found to
be the elements of {Pe, B, SI, L/B, (L1 P)/B, UPe/LPe};
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Fig. 19. Scatter plot SW–PL of Iris data. Here ‘·’, ‘1 ’ and ‘W’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica, respectively.



thereby making a total of 75 subsets. Among them, the best
five subsets as obtained withE (Eq. (1)) and the FEI of Pal
(1992), Pal & Chakraborty (1986) are (Table 1)

{L =B} . {L =B;UPe=LPe} . {SI ; L=B} . {SI} . {Pe;L=B}

and

{B} . {L =B} . {B ;UPe=LPe} . {Pe} . { �L 1 P�=B}

respectively. Note that the features L/B and/or SI are present
in all these five subsets obtained by E (Eq. (1)). This
conforms to the ranking order obtained for individual
feature where L/B and SI are found to be the best two
features using Eq. (1). On the other hand, for FEI (Pal,
1992; Pal & Chakraborty, 1986) the best two individual
features, e.g. B and L/B are seen to be present only in the
first three subsets.
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Fig. 21. Scatter plot PL–PW of Iris data. Here ‘·’, ‘1 ’ and ‘W’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica, respectively.

Fig. 20. Scatter plot SW–PW of Iris data. Here ‘·’, ‘1 ’ and ‘W’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica, respectively.



In order to show the validity of these orders of impor-
tance, we consider both scatter plots andk-NN classifier for
k � 1;2; 3;5 and

��
S
p

; Sbeing the number of samples in the
training set. The results are shown only for Iris and vowel
data. In the case of Iris data, it is seen from Figs. 16–21 that
the order of importance (in terms of class structures) of the
feature pairs conforms to those (Table 1) obtained by the
evaluation indexE (Eq. (1)). Among all the feature pairs,
{PL,PW} is the best. In other words, the result obtained by
FEI of Pal (1992), Pal & Chakraborty (1986), that the subset
{SW,PL} is more important than {PL,PW}, does not get
reflected by the scatter plots. Although, the order of impor-
tance of PW and PL, individually, is found to be different for
E and FEI, according to Fig. 21, they are seen to have more
or less the same importance.

From the results ofk-NN classifier (Table 2), PW is seen
to be better than PL for most of the values ofk, although the
difference is not significant. In fact, the ranking
PW . PL . SL . SW as obtained byE for individual
features is seen to be exactly reflected in Table 2. As in
the case of scatter plots, {PL,PW} is seen here to be the
best of all such pairs. In other words, the order obtained by
FEI of Pal (1992), Pal & Chakraborty (1986), that
{SW;PL} . {PL ;PW} does not get supported by thek-NN
classifier. The subset {SW,PW} is also found to be more
important (in terms of classification performance) than

{SW,PL} for all the cases exceptk � 9: These signify the
superiority of the measure E over FEI considering the rank-
ing within both individual features and pairwise features.

In the case of overlapping vowel data, it is seen from Figs.
22–24 that {F1;F2} is the best feature pair, and this
conforms to that obtained by both the indices. The order
of importance of the feature pairs, {F1;F2} . { F2;F3} .
{ F1;F3} ; as obtained by both the indices, is also in confor-
mity to the results obtained byk-NN classifier. However,
unlike E, the relative importance of the best three subsets
obtained by FEI is seen to be maintained in the results ofk-
NN classifier.

Finally, the relation of feature evaluation index,E (Eq.
(1)) with Mahalanobis distance and divergence measure is
graphically depicted in Figs. 8 and 9 (for vowel data), in
Figs. 10 and 11 (for Iris data), in Figs. 12 and 13 (for the
medical data) and in Figs. 14 and 15 (for mango-leaf data).
They are computed over every pair of classes. As expected,
Figs. 8–15 show a decrease in feature evaluation index with
increase in Mahalanobis distance and divergence measure
between the classes.

5.2. Using the neural network model

Tables 4–7 provide the degrees of importance (w) of
individual features, obtained by the neural network-based
method (Section 3), corresponding to the vowel, Iris, medi-
cal and mango-leaf data. Three different initializations ofw
were used in order to train the network. These are:

(i) wi � 1; for all i, i.e. all the features are considered to
be equally most important,
(ii) wi [ �0; 1�; for all i, i.e. the network starts searching
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Table 2
Recognition score withk-NN classifier for individual and pairwise features
of Iris data

Feature Classification (%)

Subset k � 1 k � 2 k � 3 k � 5 k � 9

{SL} 48.67 64.00 66.67 67.33 66.67
{SW} 55.33 55.33 52.67 52.67 54.67
{PL} 93.33 89.33 95.33 95.33 95.33
{PW} 89.33 89.33 96.00 96.00 94.67
{SL,SW} 74.67 76.67 76.67 76.00 78.00
{SL,PL} 95.33 92.00 93.33 95.33 96.00
{SL,PW} 94.67 94.67 94.00 94.00 91.33
{SW,PL} 94.67 90.67 92.00 93.33 95.33
{SW,PW} 90.67 92.67 94.00 94.67 94.00
{PL,PW} 93.33 94.00 96.00 96.00 96.67

Table 4
Importance of different features of vowel data

Feature Initialw

� 1:0 [ �0;1� � 0:5^ e

w Rank w Rank w Rank

F1 0.640382 2 0.257358 2 0.213647 2
F2 0.759389 1 0.437536 1 0.342621 1
F3 0.435496 3 0.154319 3 0.123651 3

Table 5
Importance of different features of Iris data

Feature Initialw

� 1:0 [ �0;1� � 0:5^ e

w Rank w Rank w Rank

SL 0.480797 4 0.203230 4 0.229066 4
SW 0.572347 3 0.302529 3 0.374984 3
PL 0.617570 1 0.422186 1 0.420367 1
PW 0.617173 2 0.402027 2 0.402833 2

Table 3
Recognition score withk-NN classifier for individual and pairwise features
of vowel data

Feature Classification (%)

Subset k � 1 k � 2 k � 3 k � 5 k � 21

{F1} 26.52 18.25 27.21 27.21 31.92
{F2} 38.58 36.28 38.23 47.76 60.28
{F3} 26.06 26.41 33.41 33.87 26.75
{F1,F2} 56.37 55.68 68.20 76.35 77.73
{F1,F3} 44.32 45.58 46.84 55.80 54.65
{F2,F3} 58.21 56.14 63.03 63.95 65.10



for a sub-optimal set of weights from an arbitrary point in
the search space, and
(iii) wi � 0:5^ e; for all i, e [ �0;0:01�: In this case the
features are considered to be almost equally but not fully
important. Note that,wi � 1 means the featurexi is most
important. That is, its presence is a must for characteriz-
ing the pattern classes. Similarly,wi � 0 meansxi has no
importance and therefore, its presence in the feature
vector is not required.wi � 0:05 indicates an ambiguous
situation about such presence ofxi. e adds a small pertur-
bation to the degree of presence/importance.

It is found from Table 4 that the order of importance of
individual features for the vowel data, under all initializa-
tions ofw, is F2 . F1 . F3 which is the same as obtained
by both E (Eq. (1)) and FEI (Pal, 1992; Pal & Chakraborty,
1986). For Iris data (Table 5), like both E (Eq. (1)) and FEI
(Pal, 1992; Pal & Chakraborty, 1986), PL and PW are found
to be the best two features. As established in Section 5.1 by
the scatter plots (Figs. 16–21) and the results ofk-NN
classifier (Table 2), {PL,PW} is the best feature pair. Within
them it is hard to find the edge of one over the other. This
justifies the interchangeable order as obtained byE (Eq. (1))
and FEI (Pal, 1992; Pal & Chakraborty, 1986) between PW
and PL.

In the case of medical data (Table 6), the order of the best
four features as obtained by neuro-fuzzy approach is
MCV . GOT . GPT. LDH, whereas this is
MCV . MCH . LDH . TBil by Eq. (1). Note that,
MCV has come out as the best individual feature in both
the cases. Table 8 shows that the results ofk-NN classifier
using these feature sets. Here, the neuro-fuzzy method is
seen to perform better thanE (Eq. (1)) (with respect to
classification performance) for all values ofk. On the
other hand, for mango-leaf data, the set of best four features
obtained by the neuro-fuzzy approach (Table 7) is found to
perform poorer (Table 9). In this connection we mention
here that the neuro-fuzzy method considers interdependence
among the features, whereas the other method assumes
features to be independent of each other.

As mentioned in Section 2, the transformed feature space
is obtained by multiplying the original feature values with
their respective (optimum) weighting coefficients as
obtained by the ANN model. As typical illustrations, Figs.
25–27 depict three scatter plots in the two-dimensional
transformed spaces for Iris data. Note that, the scales
along both the transformed axes are kept identical to those
of the original ones, for the sake of comparison. From Figs.
16–21 and 25–27 it is seen that the classes in the trans-
formed feature spaces are more compact than those in the
original spaces; thereby validating one of the objectives of
the algorithm. In order to support this finding,k-NN
classifier was also used on the transformed spaces. It was
found, for example, for the pair {PL,PW} thatk-NN classi-
fier results in 94, 94, 96, 96.67 and 97.33% in the trans-
formed space as compared to 93.33, 94, 96, 96 and
96.67% in the original one fork � 1; 2;3;5 and 9, respec-
tively. Similarly, for overlapping vowel classes, the classi-
fication performance is seen to improve in the transformed
space for lower values ofk. For example, for the feature
pairs {F1, F2}, { F1, F3} and {F2, F3} in the transformed
space,k-NN classifier results in 59.01, 55.34 and 62.80%
for k � 1; and 57.98, 52.81 and 60.05% fork � 2: In
contrast to that the figures are (Table 3) 56.37, 44.32 and
58.21% fork � 1; and 55.68, 45.58 and 56.14% fork � 2 in
the original space.

It has been observed experimentally that the network
converges much slower with the initializationwi � 1; for
all i, as compared to the other values. For example, the
number of iterations required to converge the network corre-
sponding to the initializations 1, [0,1] and 0:5^ e are
17 300, 10 000 and 11 500 for vowel data, 9400, 7000
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Table 6
Importance of different features of the medical data

Feature Initialw

� 1:0 [ �0;1� � 0:5^ e

w Rank w Rank w Rank

GOT 0.576090 2 0.601643 2 0.613058 2
GPT 0.300417 3 0.529896 3 0.534147 3
LDH 0.181370 4 0.341677 4 0.322765 4
GGT 0.133649 5 0.300638 5 0.235711 6
BUN 0.070480 9 0.142536 8 0.123007 9
MCV 0.735713 1 0.748205 1 0.747224 1
MCH 0.128931 6 0.101046 7 0.300428 5
Tbil 0.123402 7 0.204479 6 0.201762 7
CRTNN 0.103465 8 0.125008 9 0.149290 8

Table 7
Importance of different features of mango-leaf data

Feature Initialw

� 1:0 [ �0;1� � 0:5^ e

w Rank w Rank w Rank

Z 0.398839 13 0.096816 10 0.007504 17
A 0.509456 9 0.080296 12 0.121824 13
Pe 0.451312 12 0.080145 13 0.209411 11
L 0.507300 11 0.070094 14 0.007141 18
B 0.598589 5 0.426404 4 0.445410 5
P 0.273254 17 0.012582 15 0.300251 9
K 0.600539 4 0.411154 5 0.457997 4
S 0.535693 7 0.186507 9 0.328927 6
SI 0.313462 15 0.008756 16 0.201877 12
L 1 P 0.508099 10 0.300547 7 0.233489 10
L/P 0.191838 18 0.096777 11 0.111012 15
L/B 0.588887 6 0.213001 8 0.310926 7
(L 1 P)/B 0.293149 16 0.007061 18 0.116798 14
A/L 0.625549 3 0.500711 3 0.529431 3
A/B 0.523274 8 0.401327 6 0.309092 8
A/Pe 0.643935 2 0.600085 2 0.714805 2
UM/LM 0.322303 14 0.007913 17 0.095220 16
UPe/LPe 1.0 1 0.768731 1 0.720648 1



and 5600 for the Iris data, 4700, 3000 and 1900 for medical
data, and 1700, 1200 and 900 for mango-leaf data.

6. Conclusions

In this article, we have presented a neuro-fuzzy model for
feature evaluation along with its theoretical analysis and
experimental performance on speech (vowel) data, Iris
data, medical data and mango-leaf data (having dimension
three, four, nine and eighteen respectively). First, a feature
evaluation index is defined based on the aggregated measure
of compactness of the individual classes and the separation

between the classes in terms of class membership functions.
The index value decreases with the increase in both the
compactness of individual classes and the separation
between the classes. Using this index, the best subset from
a given set of features can be selected. As Mahalanobis
distance and divergence between the classes increase, the
feature evaluation index decreases.

Weighting factors representing feature importance are
then introduced into membership functions. Incorporation
of these weighting factors into membership function gives
rise to a transformation of the feature space, which provides
a generalized framework for modeling class structures. A
new connectionist model is designed in order to
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Fig. 22. Scatter plot F2–F1 of vowel data. Here ‘W’, ‘·’, ‘ X’, ‘ × ’, ‘ Y ’ and ‘ 1 ’ represent classes2, a, i, u, e and o, respectively.

Table 8
Recognition score for medical data withk-NN classifier corresponding to four best individual features, obtained by the neuro-fuzzy method andE

Feature Classification (%)

Subset k � 1 Rank k � 2 Rank k � 3 Rank k � 5 Rank k � 16 Rank

{GOT,GPT,LDH,MCV} 44.40 1 45.90 1 48.51 1 47.76 1 48.88 1
{LDH,MCV, MCH,TBil} 43.66 2 38.06 2 40.67 2 45.90 2 45.15 2

Table 9
Recognition score for mango-leaf data withk-NN classifier corresponding to four best individual features, obtained by the neuro-fuzzy method andE

Feature Classification (%)

Subset k � 1 Rank k � 2 Rank k � 3 Rank k � 5 Rank k � 9 Rank

{K,A/L,A/Pe,UPe/LPe} 61.90 2 67.86 2 67.86 2 64.29 2 70.24 2
B,SI,L/B,UPe/LPe 76.19 1 80.95 1 78.57 1 77.38 1 77.38 1



perform the task of minimizing this index. Note that, this
neural network based minimization procedure considers
all the features simultaneously, in order to find the
relative importance of the features. In other words, the
interdependencies of the features have been taken into
account.

It is shown theoretically that the evaluation index has a
fixed upper bound and a varying lower bound. The mono-
tonic increasing behavior of the evaluation index with
respect to the lower bound is established for different
cases. A relation of the evaluation index, interclass distance
and weighting coefficients is derived. It is also shown that
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Fig. 23. Scatter plot F3–F1 of vowel data. Here ‘W’, ‘·’, ‘ X’, ‘ × ’, ‘ Y ’ and ‘ 1 ’ represent classes2, a, i, u, e and o, respectively.

Fig. 24. Scatter plot F3–F2 of vowel data. Here ‘W’, ‘·’, ‘ X’, ‘ × ’, ‘ Y ’ and ‘ 1 ’ represent classes2, a, i, u, e and o, respectively.



the higher the interclass distances, the greater is the chance
of the network in getting converged into local minima.

Results obtained by the feature evaluation indexE of
Eq. (1) is seen to be superior to that of FEI of Pal (1992),
Pal and Chakraborty (1986). This is validated by both
scatter plots (i.e. in terms of class structures) andk-NN

classifier (i.e. in terms of classification performance).
Moreover, in the index FEI, the separation between two
classes is measured by pooling the classes together, and
modeling them with a single membership function. There-
fore, for anM-class problem, the number of membership
functions required isM 1 MC2; where the first term and the
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Fig. 25. Scatter plot PL–PW, in the transformed space, of Iris data. Here ‘·’, ‘1 ’ and ‘W’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica,
respectively.

Fig. 26. Scatter plot SW–PW, in the transformed space, of Iris data. Here ‘·’, ‘1 ’ and ‘W’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica,
respectively.



second term correspond to individual class and pairwise
class membership functions, respectively. In other
words, one needsM�M 1 1� parameters for computing
the FEI. On the other hand, for computing the evalua-
tion index E, we need to compute onlyM individual
class membership functions, i.e. 2M parameters. Indivi-
dual ranking, as obtained by neuro-fuzzy method,
conforms well to those obtained byE (Eq. (1)) for
both vowel and Iris data. For medical data the former
method is seen to perform better as per thek-NN
classifier is concerned, whereas it is the reverse for the
mango-leaf data.

In the neuro-fuzzy approach, the class means and
bandwidths are determined directly from the training
data (under supervised mode). However, the method
may be suitably modified, in order to determine,
adaptively, the class means and bandwidths under
unsupervised mode so that it can give rise to a versa-
tile self-organizing neural network model for feature
evaluation.
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Appendix A. Derivation of Eq. (39)

For a patternx [ Ck;
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Fig. 27. Scatter plot SW–PL, in the transformed space, of Iris data. Here ‘·’, ‘1 ’ and ‘W’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica,
respectively.
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expressions forJkk01i, Jkk02i andJkk03i are obtained as follows.
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