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Abstract

The article provides a fuzzy set theoretic feature evaluation index and a connectionist model for its evaluation along with their theoretical
analysis. A concept of weighted membership function is introduced which makes the modeling of the class structures more appropriate. A
neuro-fuzzy algorithm is developed for determining the optimum weighting coefficients representing the feature importance. It is shown
theoretically that the evaluation index has a fixed upper bound and a varying lower bound, and it monotonically increases with the lower
bound. A relation between the evaluation index, interclass distance and weighting coefficients is established. Effectiveness of the algorithms
for evaluating features both individually and in a group (considering their independence and dependency) is demonstrated along with
comparisons on speech, Iris, medical and mango-leaf data. The results are also validated using scatter didghdlh dasisifier.
© 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction 1992; Pal & Chakraborty, 1986) and Artificial neural
networks (ANN) (Belue & Bauer, 1995; Kowalczyk &
Feature selection or extraction is a process of selecting aFerra, 1994; Kraaijveld, Mao & Jain, 1995; Lampinen &
map of the formx’ = f(x) by which a sample(xy, X, ..., X,) Oja, 1995; Lowe & Webb, 1991; Mao & Jain, 1995; Priddy,
in ann-dimensional measurement spab¥)(is transformed Rogers, Ruck, Rogers & Kabrisky, 1990; Ruck, Tarr &
into a point x'(x1,X5, ..., Xg) in a g-dimensional(q < n) Kabrisky, 1993; Saund, 1989; Schmidt & Davis, 1993).
feature spaceR". The main objective of this problem is Fuzzy set theoretic approaches for feature selection are
to retain the optimum salient characteristics necessary formainly based on measures of entropy and index of fuzziness
the recognition process and to reduce the dimensionality of (Pal, 1992; Pal & Chakraborty, 1986), fuzaymeans
the measurement space so that effective and easily compu{Bezdek, 1981) and fuzzy ISODATA (Bezdek & Castelaz,
table algorithms can be devised for efficient classification. 1977) algorithms, etc. Some of the recent attempts made for
In general, in the feature selection/extraction process, thefeature selection/extraction in the framework of ANN are
features considered to have optimal saliencies (usefulness)nainly based on multilayer feedforward networks (Belue &
are that for which interclass/intraclass distances are maxi-Bauer, 1995; Kowalczyk & Ferra, 1994; Lowe & Webb,
mized/minimized. The criterion of a good feature is that it 1991; Mao & Jain, 1995; Priddy et al., 1993; Ruck et al.,
should be unchanging with any other possible variation 1990; Saund, 1989; Schmidt & Davis, 1993) and self-
within a class, while emphasizing differences that are organizing networks (Kraaijveld et al., 1995; Lampinen
important in discriminating between patterns of different & Oja, 1995; Mao & Jain, 1995). The methods based
types. Different useful classical techniques to achieve this on multilayer feedforward networks include, among
are based on diagonal transformation, Mahalanobis others, determination of saliency of input features
distance, divergence, Bhattacharya coefficient, and the(Priddy et al., 1993), development of Sammon’s
Kolomogorov variational distance (Devijver & Kittler, nonlinear discriminant analysis (NDA) network, linear
1982; Tou & Gonzalez, 1974). discriminant analysis (LDA) network (Mao & Jain,
There also exist several methods based on fuzzy set1995), whereas those based on self-organizing networks
theory (Bezdek, 1981; Bezdek & Castelaz, 1977; Pal, include development of nonlinear projection (NP-SOM)
based Kohonen's self-organizing feature map (Mao &
mg author. Tel.+ 91-33-577-8085 ext, 3101 faxt 91- Jain, 1995), _di_stortion_ tole_rant Gabqr transformations
33-577-6680. followed by minimum distortion clustering by multilayer
E-mail addresssankar@isical.ac.in (S.K. Pal) self-organizing maps (Lampinen & Oja, 1995), a non-linear
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projection method based on Kohonen’s topology preserving features is defined as
maps (Kraaijveld et al., 1995).

Incorporation of fuzzy set theory enables one to deal with g _ &) @ 1)
uncertainties in a system, arising from deficiency (e.g. K XEC Z S (X)
vagueness, incompleteness, etc.) in information, in an effi- k/sk

cient manner. ANNSs, having the capability of fault toler- . ituted by the f & onl q
ance, adaptivity and generalization, and scope for massiveVN€rex is constituted by the features & only an

arallelism, are widely used in dealing with optimization
Fasks Recently, attempts are being made to integrate the 300 = pe (0 X (1= pe, (). @
merits of fuzzy set theory and ANN under the heading
‘neuro-fuzzy computing’ for making the systems artificially See(X) = Z[Mck(x)x 1 = pc, )] + 3 [Mck, x) X (1
more intelligent.

The present article provides a neuro-fuzzy approach for — e, ()], 3)
feature evaluation and a theoretical analysis of its perfor-
mance. First of all, a new fuzzy set theoretic evaluation with uc, (X) andpuc,, (x) being the membership values of the
index is defined in terms of individual class membership. patternx in classeiik andCy, respectively. Herey is the
Its performance with an existing one (Pal, 1992; Pal & normalizing constant for class, which takes care of the
Chakraborty, 1986) is compared for ranking the features effect of relative sizes of the classes.
(or subsets of features). Its relation with Mahalanobis  Note that,s, is zero (minimum) ifuc, = 1, or 0 and is
distance and divergence measure is demonstrated. Then).25 (maximum) ifuc, = 0.5. On the other hand is zero
we provide a new connectionist model to perform the task (minimum) whenug, = pc, =1 or 0, and is 0.5 (maxi-
of optimizing the aforesaid fuzzy evaluation index, which  mum) for uc, = 1, ke, = 0 or vice versa.
incorporates weighted distance for computing class Therefore, the terns/ > .k Sa) is minimum ichk =1
membership values. This optimization process results in aand uc, = 0 for all k' # k, i.e. if the ambiguity in the
set of weighting coefficients representing the importance of belongmgness of a pattesnto classe<C, andC VK’ # k
the individual features. These weighting coefficients lead to is minimum (the pattern belongs to only one class). It is
a transformation of the feature space for modeling better the maximum whenuc, = 0.5 for all k. In other words, the
class structures. Finally, the performance of the system isvalue of E decreases as the belongingness of the patterns
theoretically analyzed. This includes derivation of upper increases for only one class (i.e. compactness of individual
and lower bounds of the evaluation index, and determining classes increases) and at the same time decreases for other
its relation with interclass distance and weighting coeffi- classes (i.e. separation between classes increases). The
cient. The effectiveness of the algorithms, along with exten- value of E increases when the patterns tend to lie at the
sive comparisons, is demonstrated on four different data boundaries between classes (ixe— 0.5). Our objective
sets, namely, three-dimensional 6-class vowel data, four-is, therefore, to select those features for which the value
dimensional 3-class lIris data, nine-dimensional 4-class of E is minimum. HereE is computed over all the samples
medical data and 18-dimensional 3-class mango-leaf data.in the feature space irrespective of the size of the classes.
The validity of the experimental results is analyzed inde- Therefore, it is expected that the contribution of a class of
pendently with scatter plots ahelNN classifier for different  bigger size (i.e. with larger number of samples) will be more
values ofk. in the computation oE. As a result, the index value will be

The article is organized as follows. Section 2 provides the more biased by the bigger classes; which might affect the
description of a new feature evaluation index and weighted process of feature selection. In order to overcome this, i.e. to
membership function. Section 3 describes the connectionistnormalize this effect of the size of the classes, a faatgr
model for the evaluation of the feature evaluation index. corresponding to the clas, is introduced. In the present
Theoretical analysis of the feature evaluation index is investigation, we have chosei = 1 — Py, wherePy is a
provided in Section 4. The effectiveness of the methods is priori probability for classC,. However, other expressions
established with experimental results in Section 5. Finally, like oy, = (1/|C,]) or oy = (1/P,) could also have been used.
the paper is concluded in Section 6. The membershiguc, (X)) of a patternx to a classCy is

defined with a multi-dimensionat-function (Pal & Prama-
nik, 1986) which is given by,
2. Fuzzy feature evaluation index and weighted
membership function 1 — 2d5(x) O=dx) <3,
1

Let us consider ann-dimensional feature space) #e () =1 2[1 = 4y %Sdk(x) <1 )
containing Xg, X, Xa, ..., X, ..., X, features (components). 0 otherwise
Let there beM classe<,, C,, Cs, ..., Cy, ..., Cy. The feature
evaluation index for a subsef),) containing few of thesa where di(x) is the distance of the patteshfrom my (the
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For this purpose, we define weighted distance from Eq.
(5) as

X — Nk ry
dk(X)=[ZW{k( ! m") ] , W €[0,1]. (8)

Ai

The membership valuesw of the sample points of a
class become dependent ow. The values ofw; (< 1)
make the function of Eq. (4) flattened along the axisof
The lower the value oy, the higher is the extent of flatten-
ing. In the extreme case, when = 0, d, = 0 anduc, =1
for all the patterns.

In pattern recognition literature, the weight (Eqg. (8))
can be viewed to reflect the relative importance of the
featurex; in measuring the similarity (in terms of distance)
T T of a pattern to a class. It is such that the higher the value of
X X

w;, the more is the importance &fin characterizing/discri-
minating a class/between classes= 1(0) indicates thak;
1 2 n is the most (least) important.
) o Therefore, the compactness of the individual classes and
Fig. 1. A schematic diagram of the proposed neural network model. Black

circles represent the auxiliary nodes, and white circles represent input andthe separation between the classes as measurGj(E;q.

output nodes. Small triangles attached to the output nodes represent the1)) IS now essentially a function ef (= [wy, Wy, ..., Wy]), if
modulatory connections from the respective auxiliary nodes. we consider all then features together. The problem of

feature selection/ranking thus reduces to finding a set of
w;s for whichE becomes minimumy;s indicate the relative
importance ofxs in characterizing/discriminating classes.
X — My \ rk The task of minimization may be performed with various
Z( A ) ] > k>0, ®) techniques (Davis, 1987; Himmelblau, 1972). Here, we
have adopted gradient descent technique in a connectionist
where framework (because of its massive parallelism, fault toler-
_ _ ance etc.) for minimizindge. A new connectionist model is
i =2 @%i(uxi Ml ® developed for this purpose. This is described in the next
section.
Note that, the method of individual feature ranking is not
Z X; identical to that described in this section. The later one finds
_ XECG @ the set ofw;s (for which E is minimum) considering the

center of clas€). It can be defined as,

d(x) = [

and

! IC| effect of inter-dependencies of the features, whereas in the
case of former one, each feature is considered individually

Egs. (4)—(7) are such that the membershig(x) of a independent of other.

patternx is 1 if it is located at the mean &, and 0.5 if it is
at the boundary (i.e. ambiguous region) for a symmetric
class structure. 3. Neural network model for fuzzy feature evaluation

In practice, the class structure may not be symmetric. In
that case, the membership values of some patterns at the The network (Fig. 1) consists of two layers, namely, input
boundary of the class will be greater than 0.5. Also, some and output. The input layer represents the set of all features
patterns of other classes may have membership valuesn M and the output layer corresponds to the pattern classes.
greater than 0.5 for the class under consideration. For hand-nput nodes accept activations corresponding to the feature
ling this undesirable situation, the membership function values of the input patterns. The output nodes produce the
corresponding to a class needs to be transformed so that imembership values of the input patterns corresponding to
can model the real life class structures appropriately. For the respective pattern classes. With each output node, an
this purpose, we have incorporated a weighting factor corre- auxiliary node is connected which controls the activation
sponding to a feature, which transforms the feature space inof the output node through modulatory links. An output
such a way that the transformed membership functions node can be activated from the input layer only when the
model the class structures appropriately. Note that, this corresponding auxiliary node remains active. Input nodes
incorporation of weighting factors makes the method of are connected to the auxiliary nodes through feedback
modeling the class structures more generalized; a symmetriclinks. The weight of the feedback link from the auxiliary
class structure being a special case. node, connected to theh output node (corresponding to the
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classC,), to theith input node (corresponding to the feature
X)) is equated to— my. The weight of the feedforward link
from theith input node to théth output node provides the
degree of importance of the featuxeand is given by

During training, the patterns are presented at the input

Wi

A ©

e

layer and the membership values are computed at the output ow;

layer. The feature evaluation index for these membership
values is computed (Eq. (4)) and the valueswgd are
updated in order to minimize this index. Note thajs
and mys are directly computed from the training set and
kept fixed during updating ofvs. The auxiliary nodes are

activated (i.e. activation values are equated to unity) one at a

time while the others are made inactive (i.e. the activation
values are fixed at 0). Thus during training, at a time, only
one output node is allowed to be activated.

When thekth auxiliary node is activated, input notdbas
an activation value as
Ui = ()™, (10)
wherel, is the total activation received by tith input node
for the patterrx, when the auxiliary nodk is active, which
is given by
lik =% — Mg, (11)
with x; being the external input (value of tlia feature for
the patterrx) and — my; the feedback activation from thkh
auxiliary node to theth input node. The activation value of
the kth output node is given by
Vi = 9, 12
whereg(-), the activation function of each output node, is a
w-function as given in Eq. (4)y« the total activation
received by thé&th output node for the pattersq is given by

(2 (3))

Note thatyy is the same ad, (Eq. (8)) for the given input
patternx, andvy is equal to the membership value of the
input patternx in the classC.

The expression foE(w) (from Eq. (1)), in terms of the
output node activations, is given by

Ew=3 5

k xeC

Ury
13

Vil — V)

D 3 = Vi) + Vie(1 = vl
K=k

X ay.

14

The training phase of the network takes care of the task of
minimization ofE(w) (Eg. (14)) with respect tav which is
performed using simple gradient-descent technique. The
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change inw;, (Aw;) is computed as
oE

Awy = —n—
[ nawi

wheren is the learning rate.
For the computation ofdE/ow;), the following expres-

sions are used.

aa«/(x) _ 1 Vi

avk/
=111 - 2w + 11— K
2[[1 2015+ (L 2w ] (16)
0§ _ . AV
W [1—2w] W 17
ayk 1
— 4y, =X =y, < 1
yk 8Wi s 0= yk 2>
6Vk
— = Y (19
oW —4[1 - yk]B_Wi’ F=w<Ll
0, otherwise
and
Yk (Wi )rk_l( X — My )rk
— = — . 19
W, Yk Ayi

Alternately, we can also expre&sas a function of\W,
whereW,; = (Wi/A)"™, and then minimizeE with respect
to W In this case, during training phase, the value¥\pé
can be updated using the same gradient-descent technique.
After training, the degree of importanceitti feature can be
computed asv; = Wy ™ X Ay.

The steps involved in the training phase of the network
are as follows:

e Calculate the mean vectormf) of all the classes from
the data set. Set the weight of the feedback link from the
auxiliary node corresponding to the cla@sto the input
nodei as — my (for all i andk).

Compute);s from Eqg. (6) and initialize the weight of the
feedforward link fromith input node tdkth output (for all
values ofi andk) node. Set the values of (in Eq. (8)) so
that the membership values of all the patterns ofkthe
class are at least 0.5 for that class.

For each input pattern:

e Present the pattern vector to the input layer of the
network.

o Activate only one auxiliary node at a time. Whenever
an auxiliary node is activated, it sends the feedback to
the input layer. The input nodes, in turn, send the
resultant activations to the output nodes. The activa-
tion of the output node (connected to the active auxili-
ary node) provides the membership value of the input
pattern to the corresponding class. Thus, the member-
ship values of the input pattern corresponding to all
the classes are computed by sequentially activating
the auxiliary nodes one at a time.

e Compute the desired change in weights of the
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feedforward links to be made using the updating rule

given in Eq. (15).

e Compute total change v, for eachi, over the entire set
of patterns. Update;, (for all i) with the average value of
Aw,.

e Repeat the whole process until convergence, i.e. the
change inE becomes less than certain predefined small

guantity.

After convergencel(w) attains a local minimum. In that

case, the weights of the feedforward links indicate the order 2

of importance of the features. In the following section, the
convergence O is theoretically established, and the valid-
ity of the ordering of features in terms of network para-
meters
structures.

4. Theoretical analysis

is demonstrated for some well-defined class

1433

For a patterrx in classC,,

1
> D ludd = ) + (L — )]
K=k

1
=3 D L@ = o + (e = ) + (L = ).
k'#k
Since[(u — me)? + (1 — we)] =0,
1 M-1
S5O I = o) + e — )l =
K=k

(L — ),

whereM is the number of classes. Sinces0gy < 1, we

can write

Ex(X|x € C) = WMD" (23
Therefore,

2M
6E)= (24

Here, we analyze mathematically the characteristics of Where & denotes the ‘mathematical expectation’ opera-

the feature evaluation indeXE)l and the significance of
weighting coefficientsw;). For this purpose we proceed as
follows.

¢ Afixed upper bound and a varying lower bound=ofEq.
(1)) are derived. The variation & with respect to the
lower bound is studied.

e A relation betweenE, w; and interclass distance is
derived.

4.1. Upper bound and lower bound of E

We can writeE (Eq. (1)) as

E=ZZ 1

k xeC 2

M X (1 = )y

D I X (L= o) + e X (L= ]
K=k

(20

where w = pc, () and we = pc, (X). Let, E= > E =
Dk DxeC, Ec(X|x € Cy) where

i X (1 — )y

B = 1)
XEZCk 3D X (L= ) + e X (1= )]
K~k
and
Ek(X|X EC)= P X (1 — ) oy

3> I} (L= o) + e X (L= ol
K=k

(22)

That is,Ey is the value of the evaluation index corresponding
to a clasxCy, andE,(x|x € Cy) is contribution of a patterr
in classC, to E,.

tor. o
Again, for a patterrx in classCy, w, we € [0, 1], we can

write

3l = ) + (L — )] = 3,

1 1
D Sl = o) + e = )l = S(M = 1),
k/#k

1 2
> A= o) e -l M1
K7k
Z (L — ooy
e D B~ o) + (= )]

k'#=k

2
= M- D il — mag.
K

Thus
ExX|X € C) = 2 1-

k(X|x € C) = M=1 (L — oy
That is
F8 = g QL moaw. (25)
Therefore,

2 2M

ma; el = o) = 6E) = = (26

Note that, the upper bound @f(E) is fixed, whereas the
lower bound is varying with[2/(M — D]EC (1 —
i) Q). L
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Fig. 2. Non-overlapping pattern classes modeled wittunction.

Let us now analyze the behavior &(x|x € Cy) with In order to show thatE(x|x € C,) monotonically
respect touw (1 — w). For this purpose, we substitute increases withw (1 — w) for both non-overlappingand
w1 — w) by hein Eqg. (22). In that case, overlapping class structures, we consider the following

cases.

D T = ) + piel = )l = 20 = L = ) D (1= 2u)]

dEk(X|X S Ck) _ k' £k k'#=k
dhy F0 e = m) + pudd = )P = 240
K=k
= 7 Sl - 27
E[Z (e (1 = ) + (1 — )]
K'#=k
where
D> e = o) + e = )l = 20 — L = ) D (1~ 2u0)
= K'#k K'#k ) (28)
(1= 2
It is clear from Eq. (27) thatdE(x|x € C)/dhy) is Case 1(Non-overlapping (Fig. 2)). Here, for a pattexn

positive/negative ify is positive/negative. In other words, if [x, — my| = (A4/2) holds for all values of, w, = 0.5 and
E«X|x € Cy) increases/decreases monotonically with we < 0.5, Vk' # k. Therefore,y, > 0 (Eq. (29)), and as a
w(l— wo if v is positive/negative. Simplifying the result (dE(x|x € C,)/dh,) > 0. This indicates E (x|x €

expression on the right-hand side of Eq. (28) we get Cy) is monotonically increasing witly (1 — w).
Case AOverlapping (Fig. 3)). In this case, for a pattern
ne > (1= 2m) if [x, — mq| = (A/2) holds for all values of, u = 0.5 and
no= Z e — K'#k ' (29 we S 0.5, Vk' # k. Since the classes are overlapped, we
o 1 - 2w consider two different possibilitiesx lying outside the

Fig. 3. Overlapping pattern classes modeled witfunction.
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overlapping zone (i.e. |x — my| = (Aq/2),Vi and
X — Myi| > (Ai/2)) and x lying within the overlapping
zone (i.e. | —mg| <A/ Vi and |x —my| <

(Ail2), Yi).

If the patternx lies outside the overlapping zone, then
Mme < 0.5 and therebyy, > 0 (Eqg. (29)). This indicates
Ex(X|x € C,) monotonically increases withy (1 — ).

If x lies within the overlapping zone, bojh, w, > 0.5.
Then we have three possibilities: () > we; (b) w =
s and (€ < i

(@) e > we- Let we = e — €qe Whereegys > 0. There-
fore, from Eq. (29) we get

i Z (1— 2y + 2640)

k/#k

=D (m — &) — . (30

o) (1= 2m)
i.e.
ne=M-Du— D e

k/#k
21 > e — pku — DM — 1)
_ Kk (31)

(1= 2umy)

Thus, E(x|x € C,) increases monotonically with, (1 —
pe) if

M = Dy — > e

k/'#k
2u Y € — pkp — DM — 1)
k/'#k
>0, 32
a2 52
i.e. if
1 (L — w)uy — 1)
— = N gu>— (33
M—lkék « (L~ wo? + uf

Since, g4 > 0, the above inequality always holds, and
therefore, in such case&,(x|x € C,) always increases
monotonically withu (1 — w).

(b) ux = we. In this case, gy = 0, and therefore,
inequality (33) always holds. Thus, in this case also, we
get a monotonic increasing nature Bf(x|x € C,) with
respect tou (1 — w).

(€) mk < we- Inthis casegye < 0. Let us replacey, by
—€qe» 1-8. e = e + €qo. Then, the condition foE,(x|x €
Cy) being monotonically increasing function with respect to
(1 — ) becomes

1 (L — o)y — 1)
M-—1 Z k' < 1— W)+ 2
K%k ( /J"k) l"l"k

(34)

This condition provides an upper bound on the average

value of ¢4, (hence on the average value @f) that can

be allowed in order to get a monotonic increasing behavior

of Ex(x|x € Cy) with respect tow (1 — uy).
First of all, the chance afy, < w is low for a pattern in

1435

classC,. Even if this happens (say, for overlapping case),

the chance of happening
1
o1 2 e > (L= pd@uc = WA = pu)® + i)
Kk

is very low (as illustrated in the following two examples).
Therefore, E (x|x € C,) is most likely monotonically
increasing withu (1 — wy).

Example 1. Let, u; = 0.6 for a patterrx lying within the
region||x — m,|| < A/2in classC;. Then, the condition (34)
becomes

N

M—1 Z €Kk’ < 0.1.

k'#=k

In order to violate this condition, the average membership
value ofx (say, u,) to classes other tha@; should be at
least 0.7. It can also be seen that whatever be the value of
11 (> 0.5), the value ofw, should be greater tham;. This
is unusual. Thus, we can say that in this case the inequality
(34) will be satisfied and thereby, we can expect a mono-
tonic increasing behavior d;(x|x € C,) with respect to

pa(1 = ).

Example 2. Let, u; = 0.5. In that case, condition (34)
becomes

That is, the average membership valuexad classes other
thanC, should be greater than or equal to 0.5. This situation
occurs when the classes are highly overlapped. In other
words, if there is high amount of overlap, the behavior of
E«(X|x € C;) becomes unpredictable for ambiguous
patterns. e

Thus, we can say that almost in all the casggx|x €
C,) is monotonically increasing withy (1 — ). Therefore,
we can expect thak, (= > yec, Ex(X|x € Cy)) increases
monotonically with> u (1 — wy). In other words, almost
in all the case®'(E) is a monotonically increasing function
of &k (uk(1 — m) ), as s are positive constants.

4.2. Relation between E, interclass distance and w

Let us now derive a relation of the lower bound&(E)
with interclass distance and weighting coefficients for some
well-defined class structures.

e Let us assume that the class&sC,, ..., C,, ..., Cy have
independent, identical Gaussian distributions with
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MR

c121 cl122
Fig. 4. Graphical representation §{E) with respect tac;,; andcy,, with wy = w, = 1.0.

respective meangn;, m,....my,...,my and with the where
same variancer?. Let »(X|Cy) be the class-conditional

probability density function for clasS,. Then p(X) = Z P o(X|Cy); (38)
W(X|C ) f— L ex — Z w (35) “
¥ 2mo T 22

with P, being a priori probability of clas§,. Evaluating the
right-hand side of Eq. (37) (see Appendix A), we have

o Letthe membership of a pattexrin a clas<Cy be given by Z 2
(4 — mo)*w? p, 2"
i = picX) = exp(—z i 30  gE =Y AP
i 2\ 8(E) % M =1 27
where is the bandwidth of the cla€k, and is the same for
all the classes.
2
&(E) is given by x|1+S exp| - % Lz , (39)
/ i P
8(E) =J Ep(x) dx, 37 e | 202(“ W)
X I
0.26 : . . : . . : . .
0.24 N
0.22 ]
0.2 |
& (E)
0.18 E
0.16 _
0.14 _
0'120 0I1 0[2 0|3 0|4 0I5 016 0[7 0‘8 0’9 1

Fig. 5. Graphical representation 6{E) with respect tow, for different values of;,;, with ¢;5, =0 andziz:lwiz =1
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where p = (Mo) and ¢y = m; — my; IS a measure of
interclass distance between the clas€gsand C,, along
the feature axi;.

Let us consider two class€j andC,, with two features
X; andx,. Let, C; andC, have unit normal distribution, i.e.
o= 10. Let, A = 1.0 andP, = a, = 0.5 (VK). c1o; andcy»»
are the interclass distances between cl@gsand classC,
along the feature axes, and x,, respectively. We now

0, i.e. when the two classes completely overlap. HE(E)

decreases with the increasedn; andc;,,. This variation is
symmetric with respect to botb,; and ¢;,,. The rate of
decrease i€ (E) also decreases &s,; (andcy,y) increases.
Finally, after a certain value aof;,; (and cy,y) the rate of
decrease i, (1 — w)a) becomes infinitesimally
small. This is also evident from the way of computipg

value whereu, of a patternx with fixed w, decreases with

increase in interclass distance. If the interclass distance
exceeds a certain valug,, becomes very small. Thus, the
contribution of the pattern to the evaluation index does not
get affected further by the extent of the class separation.

demonstrate graphically the variation 6f(E) with respect
to Cy21 andcyyy, andw; andws.

Fig. 4 shows the variation &f (E) with respect ta;» and
C122With Wy =W, = 1. (g(E) is maximum Whemlzj_ == C122 ==

900
SIZE FREQUENCY OF OCCURRENCES
o 1—2
800} a  s—s
O 10 —14
[m) 15 AND ABOVE
700
600F
N
T 500
€
-
400
300
200 1 1 1 1 . .
600 900 1200 1500 1800 2100 2400 2700
F2 inHz

Fig. 7. Two-dimensional (I~F,) plot of the vowel data. This figure is the same as Fig. 22. The only difference is that here approximate boundary of the classes
are drawn.
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Table 1

Importance of different feature subse{s> Y means feature subséis more important thal. Since the number of subsets for medical and mango-leaf data is

large, only first 15 are shown

Data sets  Order of importance using

E (Eq. (1)

FEI of Pal (1992), Pal and Chakraborty (1986)

Vowel {F} > {F} > {FuF} >
{FaFs} > {F1,F R} >
{Fu.Fs} > {F3}

Iris {PW} > {PL} > {PL,PW} >
{SW,PW} > {SW,PL} > {SL,PL} >
{SL,PW} > {SW,PL,PW} > {SL} >
{SL,SW,PW} > {SL,SW,PL} > {SL,PL,PW}
{SL,SW,PL,PW} > {SL,SW} > {SW}

Medical {MCV} > {LDH,MCV} > {MCH} >
{MCV,MCH} > {MCV,TBil} > {LDH,MCV,TBIil} >
{LDH,MCV,MCH} > {LDH,MCH} > {BUN,MCV} >
{LDH} > {MCH,TBIl} > {LDH,BUN,MCV} >
{BUN,MCV,MCH} > {BUN,MCV,Tbil} >
{LDH,BUN,MCV,MCH} > ...

Mango-leaf {L/B} > {L/B,UPe/LPe} > {SI,L/B} >
{Sl} > {SI,L/B,UPe/LPe}> {SI,UPe/Lpe}>
{SiuB,(L + P)/B} > {B,L/B} >{B,SI,L/B} >
{SI,(L + P)/B} > {B,L/B,(L + P)/B} > {B,SI} >

{L/B,(L + P)/B,UPe/LPe}> {(L + P)/B,UPe/LPe}> ..

{FuF} > {F3} > {F} >

{F2Fst > {FiRyFs} >

{F3} > {FuFLFs}

{PL} > {SW,PL} > {PLPW} >

{PW} > {SW,PL,PW} > {SL,SW,PL,PW} >
{SW,PW} > {SL,PL} > {SL,PL,PW} >
{SL,SW,PL} > {SL,SW,PW} > {SL,PW} >
{SW} > {SL} > {SL,SW}

{MCV,MCH,TBil} > {TBil} > {MCV,TBil} >
{MCH} > {BUN,MCV,MCH} > {BUN,MCV} >
{MCH,TBil} > {BUN,MCV,TBil} > {BUN,MCV,MCH,TBil} >
{BUN,MCH} > {MCV,MCH} > {BUN,Tbil} >
{BUN} > {BUN,MCH,TBil} > {MCV} > ...

{B} > {L/B} > {B,UPe/LPe}>
{Pe} > {(L + P)/B} > {A/L} >

{B,L/B} > {B,L/B,UPe/LPe]> {P} >

{A} >{L +P>S}>

{SI,L/B} > {SI,L/B,UPe/LPe}> {L/B,(L + P)/B,UPe/LPe}> ...

Figs. 5 and 6 show the variation &f(E) with respect
to w; and w, for different interclass distances when
2, w? = 1. Here we have considered,, = 0 through-
out whereasc,,; is considered to be 1.0, 3.0, 5.0, 7.0
and 9.0, respectively. It is seen from the figures tRat
decreases witlw, (or increases withw,) and attains a
maximum (or minimum) whenw; =0 (or when

180 T T T

w, = 0). This is due to the fact that the featuxe has

no discriminating power as;,, = 0. On the other hand,
the featurex; is necessary for classification as there is a
separation ¢, # 0) between the classes along its axis.
Note also from Figs. 5 and 6 that for higher values of
C101, the decrease (or increase) Bfis more sharp. This
indicates that the rate of convergence of the network to a

160
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Fig. 8. Graphical representation of the relationship between feature evaluation index and Mahalanobis distance for the vowel data.
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Fig. 9. Graphical representation of the relationship between feature evaluation index and divergence measure for the vowel data.

local minimum increases, as expected, with the decrease intested on four data sets, namely, vowel data (Pal & Dutta

overlap between the classes. Majumder, 1986), Iris data (Fisher, 1936), medical data
(Hayashi, 1991) and mango-leaf data (Bhattacharjee,
5. Results 1986). The vowel data consists of a set of 871 Indian Telugu

vowel sounds collected by trained personnel. These were
The effectiveness of the above-mentioned algorithms wasuttered in a consonant-vowel-consonant context by three
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Fig. 10. Graphical representation of the relationship between feature evaluation index and Mahalanobis distance for Iris data.
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Fig. 11. Graphical representation of the relationship between feature evaluation index and divergence measure for Iris data.

male speakers in the age group of 30—35 years. The data seits extraction procedure are available in (Pal & Dutta
has three feature§;, F, andF; corresponding to the first, Majumder, 1986). This vowel data is being extensively
second and third vowel format frequencies obtained through used for two decades in the area of pattern recognition.
spectrum analysis of the speech data. Fig. 7 shows a two- Anderson’s Iris data (Fisher, 1936) set contains three
dimensional projection of the three-dimensional feature classes, i.e. three varieties of Iris flowers, namely, Iris
space of the six vowel classes, @, i, u, e, 0) in the=— Setosa, Iris Versicolor and Iris Virginica consisting of 50

F, plane (for ease of depiction). The details of the data and samples each. Each sample has four features, namely, Sepal

400 T T T T T 1 T T

380[ 7

360 .

w
N
o
T
1

w
N
o
T
!

Feature evaluation index
N w
[os] o
(@] (@]
T T
1 1

N
[¢]
o
T
1

2401 .

2201 .

200 1 1 1 1 1 1 1 1
0.7 0.8 0.9 1 1.1 1.2 1.3 14 15 16
Mahalanobis distance

Fig. 12. Graphical representation of the relationship between feature evaluation index and Mahalanobis distance for the medical data.



R.K. De et al. / Neural Networks 12 (1999) 1429-1455 1441

400 T T T T T

380 7

360 4

w
D
o
T
1

w
N
o
T
1

N
[oo]
o
T
1

Feature evaluation index
w
o
(@]
T
1

N
[0]
(@]

T
1

2401 i

220 b

200 1 - 1 ] 1 1
0 50 100 150 200 250 300
Divergence measure

Fig. 13. Graphical representation of the relationship between feature evaluation index and divergence measure for the medical data.

Length (SL), Sepal Width (SW), Petal Length (PL) and disorders(Hayashi, 1991) of 536 patient cases. The input
Petal Width (PW). Iris data has been used in many researchfeatures are the results of different biochemical tests, viz.
investigation related to pattern recognition and has becomeGlutamic Oxalacetic Transaminate (GOT, Karmen unit),
a sort of benchmark-data. Glutamic Pyruvic Transaminase (GPT, Karmen Unit),
The medical data consisting of nine input features and Lactate Dehydrase (LDH, iu/l), Gamma Glutamyl Trans-
four pattern classes, deals with variolitepatobiliary peptidase (GGT, mu/ml), Blood Urea Nitrogen (BUN,
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Fig. 14. Graphical representation of the relationship between feature evaluation index and Mahalanobis distance for mango-leaf data.
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Fig. 15. Graphical representation of the relationship between feature evaluation index and divergence measure for mango-leaf data.

mg/dl), Mean Corpuscular Volume of red blood cell (MCV, is a data set on different kinds of mango-leaf with 18
fl), Mean Corpuscular Hemoglobin (MCH, pg), Total Bilir- features, (i.e. 18-dimensional data) with 166 data points. It
ubin (TBil, mg/dl) and Creatinine (CRTNN, mg/dl). The has three classes representing three kinds of mango. The
hepatobiliary disorders Alcoholic Liver Damage (ALD), feature set consists of measurements like Z-value (Z), area
Primary Hepatoma (PH), Liver Cirrhosis (LC) and Chole- (A), perimeter (Pe), maximum length (L), maximum
lithiasis (C), constitute the four output classes. breadth (B), petiole (P), K-value (K), S-value (S), shape
Mango-leaf data (Bhattacharjee, 1986), on the other hand,index (Sl), L + P, L/P, L/B, (L + P)/B, A/L, A/B, A/Pe,
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Fig. 16. Scatter plot SL—SW of Iris data. Here ‘-'+ ' and ‘O’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica, respectively.
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Fig. 17. Scatter plot SL—PL of Iris data. Here *-'# " and ‘O’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica, respectively.

upper midrib/lower midrib (UM/LM) and perimeter upper these values are 71.7, 241.3 and 193.9 for 3-class Iris data,
half/perimeter lower half (UPe/LPe). The terms ‘upper’ and 65.0, 38.5, 12.8 and 163.2 for 4-class medical data, and
‘lower’ are used with respect to maximum breadth position. 133.8, 71.2 and 225.2 for 3-class mango-leaf data.

In the following experiments the values gfin Egs. (5)
and (8) are so chosen that the membership values of all theg 1 Using feature evaluation indices
patterns of a class are at least 0.5 for that class. For 6-class
vowel data the values af are found to be 28.8, 78.5, 21.4, The evaluation indexE (Eg. (1)), was computed for
74.0, 20.4 and 47.8 corresponding to its classes. Similarly, various subsets of features of all the data sets described
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Fig. 18. Scatter plot SL—PW of Iris data. Here ‘-'#+ ' and ‘O’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica, respectively.
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Fig. 19. Scatter plot SW—PL of Iris data. Here *-’+’ and ‘O’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica, respectively.

before. The order of importance of these subsets wasconsider five features LDH, BUN, MCV, MCH and TBil

compared with that obtained by the feature evaluation to constitute these subsets. The total number of subsets thus

index (FEI) used by Pal (1992), Pal and Chakraborty (1986). considered including the nine individual features becomes
In the case of vowel data, the order of importance of the 35. Among all these, the order of importance of the best five

subsets of features is subsets, as seen from Table 1, is
{F2} > {F1} >{FFa} >{F Fs} >{F,FpF3} {MCV} > {LDH,MCV} > {MCH} > {MCV , MCH}
> {F1,F3} > {F3} > {MCV, TBil}

according toE of Eqg. (1), and according toE of Eq. (1), and

{F1.Fo} > {F2o} > {Fi} > {F2. Fg} {MCV ,MCH, TBil} > {TBil} > {MCV,TBil} > {MCH}
> {Flv F2’ FS} > {F3} > {Fl’ FS} > {BUN , MCV, MCH}
according to the FEI of Pal (1992), Pal and Chakraborty
(1986). Herex > y indicates that the importance of feature according to the FEI of Pal (1992), Pal and Chakraborty
X is greater than that of featuyeFor both the methods, three  (1986). Note that, the features MCV and/or MCH are
best subsets are found to be the same. Similarly, in the caseresent in all these subsets obtainede§eq. (1)), whereas
of Iris data (Table 1), the subsets {PW}, {PL} and itis MCH and/or TBil which are present in all the best five
{SW,PW} are found to be the first, second and third best subsets obtained by the index of Pal (1992), Pal and Chak-
subsets byE (Eg. (1)), whereas the corresponding subsets raborty (1986). This conforms to the ranking order obtained
are {PL}, {SW,PL} and {PL,PW} by the index of Pal for individual features where MCV and MCH are found to
(1992), Pal and Chakraborty (1986). Note ttit,has not be the best two features using Eq. (1), and TBil and MCH
come out as a member of these subsets by either method. are those as obtained by the algorithm in Pal (1992), Pal and
In the case of medical data, since the number of features isChakraborty (1986).
nine, we have computed the evaluation indices for indivi-  Similarly, in the case of mango-leaf data, since the
dual features (i.e. for the nine subsets), and for all the number of features is 18, we have computed the evaluation
subsets containing elements of the best four individual indices for individual features (i.e. for the 18 subsets), and
features obtained by the respective indices. Note that, for all the subsets containing elements of the best four indi-
these four features are found to be MCV, MCH, LDH and vidual features obtained by the respective indices. Here, the
TBil by Eq. (1), and TBil, MCH, BUN and MCV by FEl of  best four features obtained by these two indices are found to
Pal (1992), Pal and Chakraborty (1986). Therefore we be the elements of {Pe, B, SI, L/B, (t P)/B, UPe/LPe};
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Fig. 20. Scatter plot SW—-PW of Iris data. Here *-'+'’ and ‘O’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica, respectively.

thereby making a total of 75 subsets. Among them, the bestrespectively. Note that the features L/B and/or Sl are present

five subsets as obtained with(Eq. (1)) and the FEI of Pal
(1992), Pal & Chakraborty (1986) are (Table 1)

{L/B} > {L/B,UPéLPe} > {SI,L/B} > {SI} > {Pe,L/B}

and

{B} > {L/B} > {B,UPédLPe} > {Pe} > {(L + Py/B}

PW

25

1.5

0.5

in all these five subsets obtained by E (Eq. (1)). This
conforms to the ranking order obtained for individual

feature where L/B and Sl are found to be the best two

features using Eq. (1). On the other hand, for FEI (Pal,

1992; Pal & Chakraborty, 1986) the best two individual
features, e.g. B and L/B are seen to be present only in the

first three subsets.

T T T T T T T
O O
a0 000
[oXe} O
Q00O O O
[ee00) O O -
a0 O O
0 OO0 O
O +
++ + O
+ OO —
+ + H+ O
+
o+t +
+ +
o+ .
1 1 1 1 1 1 1
1 2 3 4 5 6 7
PL

Fig. 21. Scatter plot PL—PW of Iris data. Here ‘-'#+ ' and ‘O’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica, respectively.
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Table 2
Recognition score witk-NN classifier for individual and pairwise features
of Iris data

Feature Classification (%)

Subset k=1 k=2 k=3 k=5 k=9
{sL} 48.67 64.00 66.67 67.33 66.67
{sw} 55.33 55.33 52.67 52.67 54.67
{PL} 93.33 89.33 95.33 95.33 95.33
{PW} 89.33 89.33 96.00 96.00 94.67
{SL,sw} 74.67 76.67 76.67 76.00 78.00
{SL,PL} 95.33 92.00 93.33 95.33 96.00
{SL,PW} 94.67 94.67 94.00 94.00 91.33
{Sw,PL} 94.67 90.67 92.00 93.33 95.33
{SW,PW} 90.67 92.67 94.00 94.67 94.00
{PL,PW} 93.33 94.00 96.00 96.00 96.67

In order to show the validity of these orders of impor-
tance, we consider both scatter plots &MdN classifier for
k= 1,2 3,5 and+/S Sbeing the number of samples in the

R.K. De et al. / Neural Networks 12 (1999) 1429-1455

Table 4
Importance of different features of vowel data

Feature  Initialw

=10 €1[0,1] =05*¢€

w Rank w Rank w Rank
F 0.640382 2 0.257358 2 0.213647 2
F, 0.759389 1 0.437536 1 0.342621 1
F; 0.435496 3 0.154319 3 0.123651 3

{SW,PL} for all the cases exce® = 9. These signify the
superiority of the measure E over FEI considering the rank-
ing within both individual features and pairwise features.
In the case of overlapping vowel data, it is seen from Figs.
22-24 that £,,F,} is the best feature pair, and this
conforms to that obtained by both the indices. The order
of importance of the feature pairsk{, F,} > {F,, F3} >
{F4, F3}, as obtained by both the indices, is also in confor-
mity to the results obtained b-NN classifier. However,

training set. The results are shown only for Iris and vowel unlike E, the relative importance of the best three subsets
data. In the case of Iris data, it is seen from Figs. 16—21 thatobtained by FEI is seen to be maintained in the results of
the order of importance (in terms of class structures) of the NN classifier.

feature pairs conforms to those (Table 1) obtained by the

evaluation indexE (Eq. (1)). Among all the feature pairs,

Finally, the relation of feature evaluation index,(Eq.
(1)) with Mahalanobis distance and divergence measure is

{PL,PW} is the best. In other words, the result obtained by graphically depicted in Figs. 8 and 9 (for vowel data), in
FEI of Pal (1992), Pal & Chakraborty (1986), that the subset Figs. 10 and 11 (for Iris data), in Figs. 12 and 13 (for the

{SW,PL} is more important than {PL,PW}, does not get

medical data) and in Figs. 14 and 15 (for mango-leaf data).

reflected by the scatter plots. Although, the order of impor- They are computed over every pair of classes. As expected,

tance of PW and PL, individually, is found to be different for

Figs. 8—15 show a decrease in feature evaluation index with

E and FEI, according to Fig. 21, they are seen to have moreincrease in Mahalanobis distance and divergence measure

or less the same importance.

From the results dk-NN classifier (Table 2), PW is seen
to be better than PL for most of the valueskpélthough the
difference is not significant. In fact, the ranking
PW > PL > SL > SW as obtained by for individual

features is seen to be exactly reflected in Table 2. As in

between the classes.

5.2. Using the neural network model

Tables 4—7 provide the degrees of importaneg ¢f

the case of scatter plots, {PL,PW} is seen here to be the individual features, obtained by the neural network-based
best of all such pairs. In other words, the order obtained by Method (Section 3), corresponding to the vowel, Iris, medi-

FEI of Pal (1992), Pal & Chakraborty (1986), that
{SW, PL} > {PL, PW} does not get supported by thkeNN

classifier. The subset {SW,PW} is also found to be more

important (in terms of classification performance) than

Table 3
Recognition score witk-NN classifier for individual and pairwise features
of vowel data

cal and mango-leaf data. Three different initializationsvof
were used in order to train the network. These are:

(i) w; = 1, for all i, i.e. all the features are considered to
be equally most important,
(i) w, € [0, 1], for all i, i.e. the network starts searching

Table 5
Importance of different features of Iris data

Feature Classification (%)

Subset k=1 k=2 k=3 k=5 k=21
{F 26.52 18.25 27.21 27.21 31.92
{F2} 38.58 36.28 38.23 47.76 60.28
{F3} 26.06 26.41 33.41 33.87 26.75
{F1F} 56.37 55.68 68.20 76.35 77.73
{F1.Fs} 44.32 45.58 46.84 55.80 54.65
{F2Fs} 58.21 56.14 63.03 63.95 65.10

Feature Initialw

=10 €1[0,1] =05=*¢€

w Rank w Rank w Rank
SL 0.480797 4 0.203230 4 0.229066 4
SwW 0.572347 3 0.302529 3 0.374984 3
PL 0.617570 1 0.422186 1 0.420367 1
PW 0.617173 2 0.402027 2 0.402833 2
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Table 6 Table 7
Importance of different features of the medical data Importance of different features of mango-leaf data
Feature Initialw Feature Initialw
=10 €1[0,1] =05*¢ =10 €10,1] =05*¢
w Rank w Rank w Rank w Rank w Rank w Rank
GOT 0.576090 2 0.601643 2 0.613058 2 z 0.398839 13 0.096816 10 0.007504 17
GPT 0.300417 3 0.529896 3 0.534147 3 A 0.509456 9 0.080296 12 0.121824 13
LDH 0.181370 4 0.341677 4 0.322765 4 Pe 0.451312 12 0.080145 13 0.209411 11
GGT 0.133649 5 0.300638 5 0.235711 6 L 0.507300 11 0.070094 14 0.007141 18
BUN 0.070480 9 0.142536 8 0.123007 9 B 0.598589 5 0.426404 4 0.445410 5
MCV 0.735713 1 0.748205 1 0.747224 1 P 0.273254 17 0.012582 15 0.300251 9
MCH 0.128931 6 0.101046 7 0.300428 5 K 0.600539 4 0.411154 5 0.457997 4
Thil 0.123402 7 0.204479 6 0.201762 7 S 0.535693 7 0.186507 9 0.328927 6
CRTNN 0.103465 8 0.125008 9 0.149290 8 Sl 0.313462 15 0.008756 16 0.201877 12
L+P 0.508099 10 0.300547 7 0.233489 10
L/P 0.191838 18 0.096777 11 0.111012 15
. . . .. LB 0.588887 6 0.213001 8 0.310926 7
for a sub-optimal set of weights from an arbitrary point in (L+PyB 0203149 16 0.007061 18 0116798 14
the search space, and . AlL 0625549 3 0500711 3 0529431 3
(i) w; = 0.5 * ¢, for all i, e € [0,0.01]. In this case the  aB 0.523274 8 0.401327 6 0.309092 8
features are considered to be almost equally but not fully A/Pe 0.643935 2 0.600085 2 0.714805 2
important. Note thatw, = 1 means the featune is most UMM~ 0.322303 14  0.007913 17  0.095220 16
UPe/LPe 1.0 1 0.768731 1 0.720648 1

important. That is, its presence is a must for characteriz-
ing the pattern classes. Similarly, = 0 meansg has no
importance and therefore, its presence in the feature
vector is not requiredsy; = 0.05 indicates an ambiguous
situation about such presencexpfe adds a small pertur-
bation to the degree of presence/importance.

As mentioned in Section 2, the transformed feature space
is obtained by multiplying the original feature values with
their respective (optimum) weighting coefficients as
obtained by the ANN model. As typical illustrations, Figs.

It is found from Table 4 that the order of importance of 25-27 depict three scatter plots in the two-dimensional
individual features for the vowel data, under all initializa- transformed spaces for Iris data. Note that, the scales
tions ofw, is F, > F, > F5 which is the same as obtained along both the transformed axes are kept identical to those
by both E (Eq. (1)) and FEI (Pal, 1992; Pal & Chakraborty, of the original ones, for the sake of comparison. From Figs.
1986). For Iris data (Table 5), like both E (Eqg. (1)) and FEI 16-21 and 25-27 it is seen that the classes in the trans-
(Pal, 1992; Pal & Chakraborty, 1986), PL and PW are found formed feature spaces are more compact than those in the
to be the best two features. As established in Section 5.1 byoriginal spaces; thereby validating one of the objectives of
the scatter plots (Figs. 16—21) and the resultsk-diN the algorithm. In order to support this findind;-NN
classifier (Table 2), {PL,PW} is the best feature pair. Within classifier was also used on the transformed spaces. It was
them it is hard to find the edge of one over the other. This found, for example, for the pair {PL,PW} th&tNN classi-
justifies the interchangeable order as obtainet (q. (1)) fier results in 94, 94, 96, 96.67 and 97.33% in the trans-
and FEI (Pal, 1992; Pal & Chakraborty, 1986) between PW formed space as compared to 93.33, 94, 96, 96 and
and PL. 96.67% in the original one fdk=1,2,3,5 and 9, respec-

In the case of medical data (Table 6), the order of the besttively. Similarly, for overlapping vowel classes, the classi-
four features as obtained by neuro-fuzzy approach is fication performance is seen to improve in the transformed
MCV > GOT > GPT > LDH, whereas this is  space for lower values df. For example, for the feature
MCV > MCH > LDH > TBil by Eq. (1). Note that, pairs {F,, F5}, {F1, F3} and {F,, F3} in the transformed
MCV has come out as the best individual feature in both space k-NN classifier results in 59.01, 55.34 and 62.80%
the cases. Table 8 shows that the resultk-BiN classifier for k=1, and 57.98, 52.81 and 60.05% fdr= 2. In
using these feature sets. Here, the neuro-fuzzy method iscontrast to that the figures are (Table 3) 56.37, 44.32 and
seen to perform better thad (Eq. (1)) (with respect to  58.21% fork = 1, and 55.68, 45.58 and 56.14% foe= 2 in
classification performance) for all values &f On the the original space.
other hand, for mango-leaf data, the set of best four features It has been observed experimentally that the network
obtained by the neuro-fuzzy approach (Table 7) is found to converges much slower with the initialization = 1, for
perform poorer (Table 9). In this connection we mention all i, as compared to the other values. For example, the
here that the neuro-fuzzy method considers interdependencenumber of iterations required to converge the network corre-
among the features, whereas the other method assumesponding to the initializations 1, [0,1] and.50+ € are
features to be independent of each other. 17 300, 10 000 and 11 500 for vowel data, 9400, 7000
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Fig. 22. Scatter plot ~F, of vowel data. Here®’, *’, ‘ @', * X', * % 'and ‘ + ' represent classes a, i, u, e and o, respectively.

and 5600 for the Iris data, 4700, 3000 and 1900 for medical between the classes in terms of class membership functions.
data, and 1700, 1200 and 900 for mango-leaf data. The index value decreases with the increase in both the
compactness of individual classes and the separation
between the classes. Using this index, the best subset from
6. Conclusions a given set of features can be selected. As Mahalanobis
distance and divergence between the classes increase, the
In this article, we have presented a neuro-fuzzy model for feature evaluation index decreases.
feature evaluation along with its theoretical analysis and Weighting factors representing feature importance are
experimental performance on speech (vowel) data, Iris then introduced into membership functions. Incorporation
data, medical data and mango-leaf data (having dimensionof these weighting factors into membership function gives
three, four, nine and eighteen respectively). First, a featurerise to a transformation of the feature space, which provides
evaluation index is defined based on the aggregated measura generalized framework for modeling class structures. A
of compactness of the individual classes and the separatiomnew connectionist model is designed in order to

;lefgiition score for medical data witkNN classifier corresponding to four best individual features, obtained by the neuro-fuzzy methiad and
Feature Classification (%)

Subset k=1 Rank k=2 Rank k=3 Rank k=5 Rank k=16 Rank
{GOT,GPT,LDH,MCV} 44.40 1 45.90 1 48.51 1 47.76 1 48.88 1
{LDH,MCV, MCH,TBil} 43.66 2 38.06 2 40.67 2 45.90 2 45.15 2
Table 9

Recognition score for mango-leaf data WitNN classifier corresponding to four best individual features, obtained by the neuro-fuzzy methigd and
Feature Classification (%)

Subset k=1 Rank k=2 Rank k=3 Rank k=5 Rank k=9 Rank
{K,A/L,A/Pe,UPe/LPe} 61.90 2 67.86 2 67.86 2 64.29 2 70.24 2

B,SI,L/B,UPe/LPe 76.19 1 80.95 1 78.57 1 77.38 1 77.38 1
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Fig. 23. Scatter plot §~F, of vowel data. Here®’, ‘', * @', * X', % "and ‘' + ' represent classes a, i, u, e and o, respectively.

perform the task of minimizing this index. Note that, this It is shown theoretically that the evaluation index has a
neural network based minimization procedure considers fixed upper bound and a varying lower bound. The mono-
all the features simultaneously, in order to find the tonic increasing behavior of the evaluation index with

relative importance of the features. In other words, the respect to the lower bound is established for different
interdependencies of the features have been taken intocases. A relation of the evaluation index, interclass distance

account. and weighting coefficients is derived. It is also shown that
2600 T 7 T T ' ' ° ®
L] o o o
2400 e T3
[ * ® 0 O XKIK oM [,
L EE itiar t
2200 [} [ x 0 X X o *
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Fig. 24. Scatter plot §~F, of vowel data. Here®’, ‘', * @', * X', % "and ' + ' represent classes a, i, u, e and o, respectively.
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Fig. 25. Scatter plot PL—PW, in the transformed space, of Iris data. Here+-",and ‘O’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica,
respectively.

the higher the interclass distances, the greater is the chancelassifier (i.e. in terms of classification performance).
of the network in getting converged into local minima. Moreover, in the index FEI, the separation between two
Results obtained by the feature evaluation indexf classes is measured by pooling the classes together, and
Eq. (1) is seen to be superior to that of FEI of Pal (1992), modeling them with a single membership function. There-
Pal and Chakraborty (1986). This is validated by both fore, for anM-class problem, the number of membership
scatter plots (i.e. in terms of class structures) &idN functions required i81 + MCZ; where the first term and the

2.5 T T T T T T T T

O

w4*PW

0.5r 4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
w2*SW

Fig. 26. Scatter plot SW—PW, in the transformed space, of Iris data. Heret'-’,dnd ‘O’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica,
respectively.
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Fig. 27. Scatter plot SW-PL, in the transformed space, of Iris data. Here+-",&and ‘O’ represent classes Iris Setosa, Iris Versicolor and Iris Virginica,
respectively.

second term correspond to individual class and pairwise Appendix A. Derivation of Eq. (39)
class membership functions, respectively. In other
words, one need8(M + 1) parameters for computing For a patterrx € G,
the FEI. On the other hand, for computing the evalua-
tion index E, we need to compute onlW individual A- e
class membership functions, i.eM2parameters. Indivi- Fid = — %
dual ranking, as obtained by neuro-fuzzy method, %Z (e X (1 = o) + e X (1 = o]
conforms well to those obtained bf (Eq. (1)) for K=k
both vowel and lIris data. For medical data the former
method is seen to perform better as per théIN
classifier is concerned, whereas it is the reverse for the (1 — ) aye
mango-leaf data. 3> I+ e — 2uehue]

In the neuro-fuzzy approach, the class means and K=k
bandwidths are determined directly from the training
data (under supervised mode). However, the method = (L — ) o
may be suitably modified, in order to determine, Uk [1_ (2_ 7),“«’]
adaptively, the class means and bandwidths under K=k S
unsupervised mode so that it can give rise to a versa-
tile self-organizing neural network model for feature  — (1~ o

: 1
evaluation. %[(M -1 - (2 - —) Z ']

N[

(1 — way
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expressions fody1, Jua andJyes are obtained as follows.
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