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Abstract. A rough self-organizing map (RSOM) with fuzzy discretization of feature space is described here.
Discernibility reducts obtained using rough set theory are used to extract domain knowledge in an unsupervised
framework. Reducts are then used to determine the initial weights of the network, which are further refined using
competitive learning. Superiority of this network in terms of quality of clusters, learning time and representation of
data is demonstrated quantitatively through experiments over the conventional SOM.
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1. Introduction

Rough set theory [1] provides an effective means for
classificatory analysis of data tables. The main goal of
rough set theoretic analysis is to synthesize or construct
approximations (upper and lower) of concepts from the
acquired data. The key concepts here are those of “in-
formation granule” and “reducts”. Information granule
formalizes the concept of finite precision representa-
tion of objects in real life situations, and the reducts
represent the core of an information system (both in
terms of objects and features) in a granular universe.
An important use of rough set theory has been in gen-
erating logical rules for classification and association
[2]. These logical rules correspond to different impor-
tant granulated regions of the feature space, which rep-
resent data clusters.

Recently rough sets have been integrated with neural
networks [3]. In the framework of rough-neuro integra-
tion research has been done in the use of rough sets for
encoding weights of knowledge-based networks. How-
ever, mainly layered networks in supervised learning
framework have been considered so far [4]. This article
is an attempt to incorporate rough set methodology in
the framework of unsupervised networks.

Self-organizing map (SOM) [5] is an unsupervised
network which has been recently popular for unsu-
pervised mining of large data sets. The process of
self-organization generates a network whose weights
represent prototypes of the input data. These proto-
types may be considered as cases representing the en-
tire data set. Unlike the ones produced by existing
case generation methodologies, they are not just subset
of the original data but evolved in the self organiz-
ing process. Neuro-fuzzy systems have also been used
for generation of cases [6, 7]. This includes mainly
the use of layered network in supervised framework.
In the present investigation we consider unsupervised
framework using a SOM. Since SOM suffers from the
problem of slow convergence and local minima, we
integrate rough set theory with SOM synergistically
to offer a fast and robust solution to the initialization
and local minima problem; thereby designing Rough-
SOM (RSOM). Here rough set theoretic knowledge is
used to encode the weights as well as to determine
the network size. Fuzzy set theory is used for dis-
cretization of feature space. Performance of the net-
work is measured in terms of learning time, representa-
tion error, cluster quality and network compactness. All
these characteristics have been demonstrated with three
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data sets and compared with that of the conventional
SOM.

2. Rough Sets

2.1. Definitions

Here, we present some preliminaries of rough set the-
ory, which are relevant to this article.

An information system is a pair S = 〈U, A〉, where
U is a non-empty finite set called the universe and A is
a non-empty finite set of attributes. An attribute a can
be regarded as a function from the domain U to some
value set Va .

An information system may be represented as an
attribute-value table, in which rows are labeled by ob-
jects of the universe and columns by the attributes.

With every subset of attributes B ⊆ A, one can easily
associate an equivalence relation IB on U :

IB = {(x, y) ∈ U : for every a ∈ B, a(x) = a(y)}.

Then

IB =
⋂
a∈B

Ia .

If X ⊆ U , the sets {x ∈ U : [x]B ⊆ X} and [x ∈ U :
[x]B ∩ X �= �], where [x]B denotes the equivalence
class of the object x ∈ U relative to IB , are called
the B-lower and B-upper approximation of X in S and
denoted by B X, B̄ X respectively.

X (⊆ U ) is B-exact or B-definable in S if B X = B̄ X .
It may be observed that B X is the greatest B-definable
set contained in X , and B̄ X is the smallest B-definable
set containing X .

We now define the notions relevant to knowledge
reduction. The aim is to obtain irreducible but essen-
tial parts of the knowledge encoded by the given in-
formation system; these would constitute reducts of
the system. So one is, in effect, looking for the max-
imal sets of attributes taken from the initial set (A,
say), which induce the same partition on the domain
as A. In other words, the essence of the information
remains intact, and superfluous attributes are removed.
Reducts have been nicely characterized in [2] by dis-
cernibility matrices and discernibility functions. Con-
sider U = {x1, . . . , xn} and A = {a1, . . . , am} in the
information system S = 〈U, A〉. By the discernibility

matrix M(S) of S is meant an n × n matrix such that

ci j = {a ⊆ A : a(xi ) �= a(x j )}. (1)

A discernibility function fs is a function of m
Boolean variables ā1, . . . , ām corresponding to the at-
tributes a1, . . . , am respectively and defined as follows:

fs(ā1, ā2, . . . , ām)

= ∧{∨ci j : 1 ≤ i, j ≤ n, j < i, ci j �= φ} (2)

where ∨(ci j ) is the disjunction of all variables ā with
a ∈ ci j . It is seen in [2] that {ai1, . . . , aip} is a reduct
of S if and only if ai1 ∧ · · · ∧ aip is a prime implicant
( constituent of the disjunctive normal form) of fs .

2.2. Indiscernility of Patterns and Fuzzy
Discretization of the Feature Space

A primary notion of rough set is of indescernibility
relation. For continuous valued attributes the feature
space needs to be discretized for defining indiscerni-
bility relations and equivalence classes. Discretization
is a widely studied problem in rough set theory and in
this article we use fuzzy set theory for effective dis-
cretization. Use of fuzzy sets has several advantages
over ‘hard’ discretization, like modelling of overlapped
clusters, linguistic representation of data. We discretize
each feature into three levels low, medium and high;
finer discretizations may lead to better accuracy at the
cost of higher computational load.

Each feature of a pattern is described in terms
of their fuzzy membership values in the linguis-
tic property sets low (L), medium (M) and high
(H). Let these be represented by L j , M j and Hj

respectively. The features for the i th pattern Fi

are mapped to the corresponding three-dimensional
feature space of µlow(Fi j )(Fi ), µmedium(Fi j )(Fi ) and
µhigh(Fi j )(Fi ) by Eq. (3). An n-dimensional pattern Fi =
[Fi1, Fi2, . . . , Fin] is represented as an 3n-dimensional
vector [8]

Fi=
[
µlow(Fi1)(Fi ), . . . . . . ., µhigh(Fin)(Fi )

]
, (3)

where the µ values indicate the membership functions
of the corresponding linguistic �-sets low, medium
and high along each feature axis. This effectively dis-
cretizes each feature into three levels.

Then consider only those attributes which have a nu-
merical value greater than some threshold TH (= 0.5,
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say). This implies clamping only those features demon-
strating high membership values with unity, while the
others are fixed at zero. An attribute-value table is
constructed comprising the above binary valued 3n-
dimensional feature vectors.

We use the �-fuzzy sets (in the one dimensional
form), with range [0,1], represented as

�(Fj ; c, λ)

=




2(1 − ‖Fj − c‖/λ)2 for λ/2 ≤ ‖Fj − c‖ ≤ λ,

1 − 2(‖Fj − c‖/λ)2 for 0 ≤ ‖Fj − c‖ ≤ λ/2,

0 otherwise,

(4)

where λ (>0) is the radius of the�-function with c as
the central point. The details of the above method may
be found in [8].

Let us now explain the procedure for selecting cen-
ters (c) and radii (λ) of the overlapping �-sets. Let m j

be the mean of the pattern points along j th axis. Then
m jl and m jh are defined as the mean (along j th axis) of
the pattern points having coordinate values in the range
[Fjmin, m j ) and (m j, Fjmax] respectively, where Fjmax

and Fj min denote the upper and lower bounds of the
dynamic range of feature Fj (for the training set) con-
sidering numerical values only. For the three linguistic
property sets along the j th axis, the centers and the
corresponding radii of the corresponding �-functions
are defined as

clow(Fj) = m jl

cmedium(Fj) = m j

chigh(Fj) = mjh

λlow(Fj) = cmedium(Fj) − clow(Fj) (5)

λhigh(Fj) = chigh(Fj) − cmedium(Fj)

λmedium(Fj) = chigh(Fj) − clow(Fj)

respectively. Here we take into account the distribu-
tion of the pattern points along each feature axis while
choosing the corresponding centers and radii of the lin-
guistic properties. The nature of membership functions
is illustrated in Fig. 1.

2.3. Methodology for Generation of Reducts
and Dependency Rules

Let there be m sets O1, . . . , Om of objects in the
attribute-value table (obtained by the procedure de-

Figure 1. �-Membership functions for linguistic property sets
low(L), medium(M) and high(H) for each feature axis.

scribed in the previous section) having identical at-
tribute values, and card (Oi ) = nki , i = 1, . . . , m such
that nk1 > nk2 > · · · > nkm and

m∑
i=1

nki = nk .

The attribute-value table can now be represented as an
m × 3n array. Let n′

k1
, n′

k2
, . . . , n′

km denote the distinct
elements among nk1, nk2 · · · nkm such that n′

k1
> n′

k2
>

· · · > n′
km

.
Let a heuristic threshold be defined as [4]

Tr =



∑m
i=1

1
nk′

i
−nk′

i+1

TH


 (6)

so that all entries having frequency less than Tr are elim-
inated from the table, resulting in the reduced attribute-
value table S. Note that the main motive of introducing
this threshold function lies in reducing the size of the
model. One attempts to eliminate noisy pattern rep-
resentatives (having lower values of nki) from the re-
duced attribute-value table. From the reduced attribute-
value table obtained, reducts are determined using the
methodology described below.

Let {xi1, . . . , xip} be the set of those objects of U
that occur in S. Now a discernibility matrix (denoted
M(B)) is defined as follows:

ci j = {a ∈ B : a(xi) �= a(x j )} for i, j = 1, . . . , n.

(7)

For each object x j ∈ xi1, . . . , xip, the discernibility
function f

x j

di
is defined as

fx j = ∧{∨(ci j ) : 1 ≤ i, j ≤ n, j < i, ci j �= φ}, (8)
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where ∨(ci j ) is the disjunction of all members of ci j .
One thus obtains a dependency rule ri , viz. Pi →
clusteri , where Pi is the disjunctive normal form (d.n.f.)
of fx j , j ∈ i1, . . . , i p.

3. Rough-SOM

3.1. Self-Organizing Maps

The Kohonen feature map is a two-layered network.
The first layer of the network is the input layer. The
second layer, called the competitive layer, is usu-
ally organized as a two-dimensional grid. All inter-
connections go from the first layer to the second
(Fig. 2).

All the nodes in the competitive layer compare the
inputs with their weights and compete with each other
to become the winning unit having the lowest differ-
ence. The basic idea underlying what is called com-
petitive learning is roughly as follows: Assume a se-
quence of input vectors {x = x(t) ∈ Rn , where t is
the time coordinate } and a set of variable reference
vectors {mi (t): mi ∈ Rn , i = 1, 2, . . . , k where k is
the number of units in the competitive layer }. Initially
the values of the reference vectors (also called weight
vectors) are set randomly. At each successive instant of
time t , an input pattern x(t) is presented to the network.
The input pattern x(t) is then compared with each mi (t)
and the best matching mi (t) is updated to match even
more closely the current x(t).

If the comparison is based on some distance mea-
sure d(x, mi ), altering mi must be such that, if i = c
the index of the best-matching reference vector, then
d(x, mc) is reduced, and all the other reference vectors
mi , with i �= c, are left intact. In this way the different

Figure 2. The basic network structure for the Kohonen feature map.

reference vectors tend to become specifically “tuned”
to different domains of the input variable x .

3.1.1. Learning. The first step in the operation of a
Kohonen network is to compute a matching value for
each unit in the competitive layer. This value measures
the extent to which the weights or reference vectors of
each unit match the corresponding values of the input
pattern. The matching value for each unit i is ‖x −mi‖
which is the distance between vectors x and mi and is
computed by√∑

j

(x j − mi j )2 for j = 1, 2, . . . , n. (9)

The unit with the lowest matching value (the best
match) wins the competition. In other words, the unit
c is said to be the best matched unit if

‖x − mc‖ = min
i

{‖x − mi‖}, (10)

where the minimum is taken over all units i in the
competitive layer. If two units have the same matching
value, then by convention, the unit with the lower index
value i is chosen.

The next step is to self-organize a two-dimensional
map that reflects the distribution of input patterns. In
biophysically inspired neural network models, corre-
lated learning by spatially neighboring cells can be
implemented using various kinds of lateral feedback
connections and other lateral interactions. Here the lat-
eral interaction is enforced directly in a general form,
for arbitrary underlying network structures, by defin-
ing a neighborhood set Nc around the winning cell. At
each learning step, all the cells within Nc are updated,
whereas cells outside Nc are left intact. The update
equation is:

�mi j =



α(x j − mi j ) if unit i is in the
neighborhood Nc,

0 otherwise,
(11)

and

mnew
i j = mold

i j + �mi j . (12)

Here α is the learning parameter. This adjustment re-
sults in both the winning unit and its neighbors, having
their weights modified, becoming more like the input
pattern. The winner then becomes more likely to win
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Figure 3. Neighborhood Nc , centered on unit c(xc, yc). Three dif-
ferent neighborhoods are shown at distance d = 1, 2 and 3.

the competition should the same or a similar input pat-
tern be presented subsequently.

3.1.2. Effect of Neighborhood. The width or radius
of Nc can be time-variable; in fact, for good global
ordering, it has experimentally turned out to be ad-
vantageous to let Nc be very wide in the beginning and
shrink monotonically with time (Fig. 3). This is because
a wide initial Nc, corresponding to a coarse spatial res-
olution in the learning process, first induces a rough
global order in the mi values, after which narrowing
of Nc improves the spatial resolution of the map; the
acquired global order, however, is not destroyed later
on. This allows the topological order of the map to be
formed.

3.2. Incorporation of Rough Sets in SOM

As described in Section 2.3, the dependency rules gen-
erated using rough set theory from an information sys-
tem are used to discern objects with respect to their
attributes. However the dependency rules generated by
rough set are coarse and are therefore needed to be fine-
tuned. Here we have used the rough set dependency
rules to get a crude knowledge of the cluster bound-
aries of the input patterns to be fed to a self-organizing
map. These crude knowledge is used to encode the
initial weights of the nodes of the map, which is then
trained using the usual learning process (Section 3.1.1).
Since an initial knowledge about the cluster boundaries
is encoded into the network, the learning time reduces
greatly with improved performance.

The steps involved in the process are summarized
below:

1. From the initial data set, use fuzzy discretization
process to create the information system.

2. For each object in the information table, generate
the discernibility function

f A(ā1, ā2, . . . , ā3n)

= ∧{∨ci j‖1 ≤ j ≤ i ≤ n, ci j �= φ} (13)

where ā1, ā2, . . . , ā3n are the 3n Boolean variables
corresponding to the attributes a1, a2, . . . , a3n of
each object in the information system. The expres-
sion f A is reduced to the set of all prime impli-
cants of f A that determines the set of all reducts
of A.

3. The self-organizing map is created with 3n in-
puts (Section 2.2), which correspond to the at-
tributes of the information table, and a competi-
tive layer of N × N grid of units where N is the
total number of implicants present in discernibil-
ity functions of all the objects of the information
table.

4. Each implicant of the function f A is mapped to a
unit in the competitive layer of the network and high
weights are given to those links that come from the
attributes, which occur in the implicant expression.
The idea behind this is that when an input pattern
belonging to an object, say Oi , is applied to the in-
puts of the network, one of the implicants of the
discernibility function of Oi will be satisfied and
the corresponding unit in the competitive layer will
fire and emerge as the winning unit. All the impli-
cants of an object Oi are placed in the same layer
while the implicants of different objects are placed
in different layers separated by the maximum neigh-
borhood distance. In this way the initial knowledge
obtained with rough set methodology is used to train
the SOM. This is explained with the following ex-
ample.

Let the reduct of an object Oi be

Oi : (F1low ∧ F2medium) ∨ (F1high ∧ F2high)

where F(·)low, F(·)medium and F(·)high represent the low,
medium and high values of the corresponding
features.

Then the implicants are mapped to the nodes of the
layer in the following manner. Here high weights (H )
are given only to those links which come from the fea-
tures present in the implicant expression. Other links
are given low weights.
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Figure 4. Mapping of reducts in the competitive layer of RSOM.

4. Experimental Results

4.1. Data Sets Used

We have considered three data sets for our experiment.
The first data set (Fig. 5) consists of 2 features con-
taining 417 points from 2 horse-shoe shaped clusters.
The second data set is the speech data “Vowel” that
deals with 871 Indian Telegu vowel sounds [9]. These
were uttered in a consonant-vowel-consonant context
by three male speakers in the age group of 30 to 35
years. The data set has three features: F1, F2 and F3 cor-
responding to the first, second and third vowel format

Figure 5. Horse-shoe data.

frequencies obtained through spectrum analysis of the
speech data. Figure 6 depicts the projection in the F1–
F2 plane, of the six vowel classes δ, a, i, u, e, o. These
overlapping classes are denoted by c1, c2, . . . , c6. The
third data set is the medical data consisting of nine in-
put features and four pattern classes, and it deals with
various Hepatobiliary disorders of 536 patient cases
[10]. The input features are the results of different
biochemical tests, viz., Glutamic Oxalacetic Transam-
inate (GOT, Karmen unit), Glutamic Pyruvic Transam-
inase (GPT, Karmen unit), Lactate Dehydrase (LDH,
iu/l), Gamma Glutamyl Transpeptidase (GGT, mu/ml),
Blood Urea Nitrogen (BUN, mg/dl), Mean Corpuscular
Haemoglobin (MCH, pg), Total Bilirubin (Tbil, mg/dl)
and Creatinine (CRTNN, mg/dl). The hepatobiliary
disorders Alcoholic Liver Damage (ALD), Primary
Hepatoma (PH), Liver Cirrhosis (LC) and Cholelithi-
asis (C), constitute the four classes. These are referred
to as c1, c2, c3, c4.

As an illustration of the parameters of the fuzzy
membership functions and the rough set reducts, we
mention them below only for the horse-shoe data.

clow(F1) = 0.223095

cmedium(F1) = 0.499258

chigh(F1) = 0.753786

λlow(F1) = 0.276163
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Figure 6. Vowel data.

λmedium(F1) = 0.254528

λhigh(F1) = 0.265345

clow(F2) = 0.263265

cmedium(F2) = 0.511283

chigh(F2) = 0.744306

λlow(F2) = 0.248019

λmedium(F2) = 0.233022

λhigh(F2) = 0.240521

O1 : (F1low ∧ F2medium) ∨ (F1high ∧ F2medium)

O2 : (F1low ∧ F2high)

O3 : (F1high ∧ F2low)

O4 : (F1medium ∧ F2high) ∨ (F1medium ∧ F2low).

4.2. Results

To demonstrate the effectiveness of the proposed
knowledge-encoding scheme (RSOM), its perfor-
mance is compared with that of the randomly initial-
ized self-organized map. The following quantities are
considered for comparison.

4.2.1. Quantization Error. The quantization error
(qE ) measures how fast the weight vectors of the win-
ning nodes in the competitive layer are aligning them-
selves with the input vectors presented during training.

It is calculated by the following equation:

qE =
∑n

p=1

( ∑
all winning nodes

√( ∑
j(xpj−m j )2

))
number of patterns

,

(14)

Here j = 1, . . . , m, m being the number of input fea-
tures to the net, x pj is the j th component of pth pattern
and n is the total number of patterns. Hence, higher the
quantization error (qE ), more is the difference between
the reference vectors and the input vectors of the nodes
in the competitive layer.

4.2.2. Entropy andβ-Index. For measuring the qual-
ity of cluster structure we have used two indices,
namely, an Entropy measure [11] and β-index [12].
These are defined below.

Entropy:

Let the distance between two weight vectors p, q
be

Dpq =
[ ∑

j

(
xpj − xqj

max j − min j

)2
] 1

2

, (15)

where xpj and xqj denote the weight values for p
and q respectively along the j th direction, and j =
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1, . . . , m, m being the number of features input to the
net. max j , min j are respectively the maximum and min-
imum values computed over all the samples along j th
axis.

Let the similarity between p, q be defined as

sim(p, q) = e−β Dpq , (16)

where β = − ln 0.5
D̄

, a positive constant such that

sim(p, q) =




1 if Dpq = 0,

0 if Dpq = ∞,

0.5 if Dpq = D̄.

D̄ is the average distance between points computed
over the entire dataset. Entropy is defined as

E = −
l∑

p=1

l∑
q=1

(sim(p, q) × log sim(p, q)

+ (1 − sim(p, q)) × log(1 − sim(p, q))). (17)

If the data is uniformly distributed in the feature
space entropy is maximum. When the data has well-
formed clusters uncertainty is low and so is entropy.

β-index:

β-index [12] is defined as:

β =
∑k

i=1

∑ni
p=1

(
Xi

p − X̄
)T (

Xi
p − X̄

)
∑k

i=1

∑ni
p=1

(
Xi

p − X̄ i
)T (

Xi
p − X̄ i

) , (18)

where ni is the number of points in the i th (i =
1, . . . , k) cluster, Xi

p is the pth pattern (p = 1, . . . , ni )
in cluster i , X̄ i the mean of ni patterns of the i th clus-
ter,

∑
i ni = n, where n is the total number of patterns,

and X̄ is the mean value of the entire set of patterns.

Table 1. Comparison of RSOM with SOM.

Quantization Iteration at which
Data Initialization error error converged Entropy fK β-index

Horse-shoe Random 0.038 5000 0.7557 83 0.99

Rough 0.022 50 0.6255 112 0.99

Vowel Random 32.588 8830 0.6717 245 0.06

Rough 0.081 95 0.6141 316 0.96

Medical Random 28.855 8666 0.6744 110 0.61

Rough 0.246 102 0.6121 125 0.71

Note that β is nothing but the ratio of the total varia-
tion and within-cluster variation. This type of measure
is widely used for feature selection and cluster analysis.
For a given data and k (number of clusters) value, the
higher the homogeneity within the clustered regions,
higher would be the β value.

4.2.3. Frequency of Winning Nodes ( fk). Here we
have used the number of winning of top k nodes ( fk)
in the competitive layer, where k is the number of rules
(characterizing the clusters) obtained using rough sets.
Here k = 4 for horse-shoe data, k = 14 for vowel data
and k = 7 for medical data. fk reflects the error if all
but k nodes would have been pruned. In other words,
it measures the number of sample points correctly rep-
resented by these nodes.

4.2.4. Number of Iterations. We compute the number
of iterations at which the error does not change much.

The comparative results for the three data sets are
presented in Table 1.

The following conclusions can be made from the
obtained results:

1. Better cluster quality: As seen from Table 1 RSOM
has lower value of entropy; thus implying lower in-
tracluster distance and higher intercluster distance
in the clustered space compared to the conventional
SOM. RSOM also has higher value of β-index, in-
dicating more homogeneity within its clustered re-
gions. The quantization error of RSOM is also far
less than that of SOM.

2. Less learning time: The number of iterations re-
quired to achieve the error level is far less in RSOM
compared to SOM. The convergence curves of the
quantization errors are presented in Figs. 7–9 for
the data sets used. It is seen that RSOM starts from
a very low value of quantization error compared to
SOM.
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Figure 7. Variation of quantization error with iteration for horse-shoe data.

Figure 8. Variation of quantization error with iteration for vowel data.

3. Compact representation of data: It is seen that in the
case of RSOM fewer nodes in the competitive layer
dominate i.e., they win for most of the samples in
the training set. On the other hand, in conventional
SOM this number is higher. This is quantified by
the frequency of winning of the top k nodes. It is
observed that this value is much higher for RSOM;
thus signifying less error if all but k nodes would

have been pruned. In other words, RSOM achieves
a more compact representation of the data.

As a demonstration of the nature of distribu-
tion of the frequency of winning nodes, we have
shown the results for only the horse-shoe data as
in Figs. 10 and 11. Separation between the clus-
ters is seen to be more prominent in Fig. 11. These
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Figure 9. Variation of quantization error with iteration for medical data.

Figure 10. Plot showing the frequency of winning nodes using
random weights for the horse-shoe data.

winning nodes may be viewed as the prototype points
(cases) representing the two classes. Unlike the con-
ventional methods, here the cases/ prototypes selected
are not just a subset of the original data points,
rather they represent some collective information gen-
erated by the network after learning the entire data
set.

Figure 11. Plot showing the frequency of winning nodes using
rough set knowledge for the horse-shoe data.

5. Conclusions

A self-organizing map incorporating the theory of
rough sets with fuzzy discretization is designed. Rough
set theory is used to encode domain knowledge in the
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form of crude rules, which are mapped for initializa-
tion of the weights of SOM. Superiority of the model
(RSOM), compared to random initialization of weights
of SOM, is demonstrated for different data sets in terms
of learning time, quality of clusters and quantization
error. Here the clusters obtained by RSOM are found
to be more compact with prominent boundaries i.e.
the resulting SOM is sparse with fewer separated win-
ning nodes. Therefore the cases, as represented by the
weight vectors of the winning nodes, constitute a com-
pact case base.

Since RSOM achieves compact clusters, this will
enable one to extract non-ambiguous rules. Its signifi-
cance in mining large data sets is evident.
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