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Abstract In this paper a new scheme of feature ranking and hence feature selection using a Multilayer 
Perceptron (MLP) Network has been proposed. The novelty of the proposed MLP-based scheme and its 
difference from another MLP-based feature ranking scheme have been analyzed. In addition we have modified 
an existing feature ranking/selection scheme based on fuzzy entropy. Empirical investigations show that the 
proposed MLP-based scheme is superior to the other schemes implemented. © 1997 Pattern Recognition 
Society. Published by Elsevier Science Ltd. 
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1. INTRODUCTION 

A pattern recognition system may be defined as a 
function which transforms measurement space into de- 
cision space via feature space, i.e. J ¢ / ~  o~ ---, 9 ,  where 
J¢/is  the measurement space, ~ is the feature space and 

is the decision space. The measurement space is 
defined as the set of measurable quantities; feature space 
may include a subset of the measurement space and/or 
some new attributes derived based on two or more 
measurable quantities. The decision space, on the other 
hand, consists of the decision(s) made from the feature 
space. In a recognition problem there are many measur- 
able or detectable quantities based on which the object is 
recognized. But all of them may not be important or have 
significant impact on the recognition process. Some 
features may be redundant and confusing also. Therefore, 
to reduce space-t ime complexity and to avoid confusion, 
one often needs to analyze/extract/select features from 
J / .  The transformation ~¢/--+ ~ thus constitutes an 
important integral part of a pattern recognition system. 
We divide feature analysis task ( Jg  -~ ~ )  into two parts: 
selection and extraction. Feature selection deals with 
choosing some of the measurable quantities which are 
important for discrimination and have a great impact on 
the decision space, while feature extraction deals with 
developing some new attributes (features) based on some 
selected measurable quantities. In this investigation we 
restrict ourselves to feature selection only. Selection of 
features can be done by ranking the features first and then 
ignoring some which are near the bottom or by investi- 
gating the combined effect of a set of features on dis- 
crimination. 

There are many techniques for feature selection. Some 
of these techniques are based on interclass and intraclass 
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(1) distances, some are based on probabilistic/fuzzy mod- 
els, (2-4) while others are based on neural networks. (5-8) 

Each approach has its own advantages and drawbacks. 
In this paper we have proposed two schemes for 

feature analysis. One of the schemes is a modification 
of the fuzzy set theoretic method of Pal, (4) while the other 
approach uses a multilayer perceptron. Given a labeled 
data set we first learn it using an MLP with an adequate 
architecture. Then, for each training data point we set a 
feature value to zero (one may call such a vector as 
corrupted data point) and use it as an input for classifica- 
tion. The deviation of the output vector thus produced 
from the output generated by the corresponding uncor- 
rupted data point is noted. A feature is considered more 
important if  the average deviation over the entire data set 
for that feature is more. The basic idea behind this 
scheme is as follows. After the MLP has learnt the data 
set, the absence of an important feature is likely to 
influence the output significantly. On the other hand, 
for a less important feature, the output is not expected to 
change much with variation of the value of that feature. 
Performance of the proposed schemes has been com- 
pared with some existing schemes using a few data sets. 

The rest part of the paper is organized as follows: 
Section 2 discusses some of the existing techniques for 
feature ranking and basics of an MLR while Section 3 
deals with the proposed scheme. Section 4 describes the 
experimental results and the paper is concluded in 
Section 5. 

2. SOME EXISTING TECHNIQUES OF FEATURE RANKING 

In this section, we describe some existing techniques 
for feature ranking and/or selection. 

2.1. Feature ranking based on criterion function (2) 

For reducing the dimension of the measurement space, 
we should eliminate those features which are less ira- 
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portant or redundant for discriminating the classes. 
As mentioned earlier, one can achieve this through 
ranking features according to their importance in 
discrimination. We emphasize here the fact that the 
discriminating ability of a feature is dependent on the 
type of classifier we use. For example, the most important 
feature for training an MLP may be different from the 
most important feature for a nearest prototype classifier. 
This issue will be illustrated later. There exist a number 
of methods for feature ranking, each having its own 
merits and demerits. We describe here a few of them, 
which have been adopted in our investigation for com- 
parison of results. 

The ability to classify patterns by machines relies on 
an implicit assumption that classes occupy distinct re- 
gions in the feature space. Intuitively, the more the 
distance between the classes, the better the chance of 
successful recognition. One approach could, therefore, 
be to select those features for which the classes are 
maximally separated. 

Let X = {x/Ix/E ~P, i =  1 , 2 , . . . , n }  be a data set. 
There are c classes (~1, (~2, ~3, • • •, (~c with a priori class 
probability Pi for class (~i, such that U~=1(~i = X ,  
(~i [-)(~j : ~Vi # j and ](~il :--- ni. Let Y = {YilYi E ~ / ¢ ,  

p~ _< p, i = 1 , 2 , . . . ,  n} be a data set generated from X by 
some feature selection technique, where Yik, the kth 
component of Yi, is equal to xa, some lth component 
of xi. In other words, Y is generated by deleting 
some (p -p~)  rows of X, if X and Y are represented 
as matrices of orders p x n and p~ x n, respectively. 
Now a criterion function for ranking the features is 
defined as: (2) 

1 c c 1 n~ n~ 

J ( Y )  : 2 / = ~ 1 P i E P J ~ E E  d(Yi*'YJl)' ( 1 )  
"= j= l  t j k=l l=1 

where the distance metric d(Yik, yfl) may be defined in 
various ways; we use here the Euclidian distance. J(Y) 
can be calculated for every possible subset of the fea- 
tures. The feature set is so selected that J(Y) is maximum. 
In calculating the criterion function, an estimate of Pi 
may be taken as: 

ni 
Pi  = - - .  (2 )  

n 

Therefore, 

1 ~ ~ ~ ~ d(yi,,Yjt ) J(v)  = ~n2 
/=1 j= l  k=l /=1 

1 ~ ~ d(yk, yl). (3) 
2n2 t=1 t=l 

Let mi be the sample mean vector of the ith class, i.e. 

ni y 
mi -- ~k= l  ik (4) 

ni 

and the mixture sample mean be designated by In, i.e. 
c 

= E Pimi (5) m 
i=l 

After some algebraic manipulation, equation (1) be- 
comes: 

J(Y) = tr(Sw) + tr(Sb) (6) 

where 

and 

Sw = Pi --1 (yi/: - mi)(Yik - mi ) t 
i~l ni k=l 

(7) 

c 

Sb = E Pi(mi - m)(mi - m) t. (8) 
i=1 

Intuitively, for the feature selection task we like to 
maximize tr(Sb) and at the same time minimize tr(Sw). 
Hence, J(Y), as given by equation (6) may not be a good 
criterion function for feature selection. (2) A better ap- 
proach would be to maximize 

tr(Sb) 
J(Y) = tr(Sw) ' (9) 

The main drawback of the above criterion function 
(equation (9)) is, if for a particular feature subset a class 
(gi is well scattered and a portion of cgi is overlapped with 
another class (~j such that their centroids are far away, 
then J(Y) may be greater than that for another feature 
subset, which separates the two classes (Fig. 2) in such a 
fashion that a single hyperplane may pass between them, 
but their centroids are not so apart. Intuitively, the second 
feature subset is better than the first one although the 
criterion function may indicate the reverse. This will be 
further elaborated in Section 4 using an example. 

2.2. Feature ranking based on fuzzy entropy 

Let X = {Xl,XZ,... ,xm} be a universe of discourse 
and a fuzzy set d = {#oa[(Xi)/XilXi E X; i = 1,2, . . . ,  m; 
# ~  E [0, 1]} be defined on X where #~/(xi) denotes the 
membership ofxi to ~¢. A measure of fuzziness for d can 
be defined as: °)  

n 

H ( d )  = a E f(Izw(xl)), (10) 
i=1 

where a is a constant and the function f(.) can be defined 
in various ways.(9)H(~ ¢) is also called entropy of the 
fuzzy set. One can obtain entropy of Deluca-Termini 
using 

f(#d(Xi) ) = --/zo~(xi)ln(#d(xi)) 

- ( 1  - ~ , ( x i ) ) l n ( 1  - ~ , ( x i ) )  ( 1 1 )  

in equation (10). Thus, the entropy becomes: 

n 

1 ~ (-#~/(xi)ln(~(xi)) 
H ( ~ )  = ~ i=1 

- -  ( 1  - -  # o ~ , ( X l ) ) l n ( 1  - -  #.~(xi))} ( 1 2 )  

where a = 1/(n In 2) is the normalization factor. Pal and 
Chakraborty used equation (12) for feature ranking. O) 
H ( d )  attains the maximum value when M is most 
fuzzy, i.e. when #d(x i )=  0.5 V i and it attains the 
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minimum value when #~¢(xi)= 0 or 1 V i. Pal and 
Chakraborty °~ used S-type and rr-type °°} membership 
functions for modeling #. Here we have considered 
only the standard S-function. The S-function is defined 
as"  

#.~¢(xi, ; a ,b ,c)  {o, 
2[(xi - a) / (c  - a)] 2, 

= 1 - 2[(xi - c) / (c  - a)] 2, 

1, 

X i ~ a  

a < x i < _ b  
(13) 

b < x i < c  

xi > c  

in the interval [a,c] with b=(a+c)12. The parameter b is 
known as the crossover point for which 
#~(b ;  a, b, c) = 0.5. 

For computing H of the class (g2 along the qth feature, 
the parameters of the S-function can be computed as: (3) 

b = (xod)av,  (14) 

c = b + max{l(xod)a v - (Xqj)ma× 1, ](Xqj)av - (xod)minl}, 

(15) 

and 
a = 2b - c. (16) 

Here av, max, and min are used to denote the average, 
maximum, and the minimum value of Xq2, respectively, ff 
each Xq2 is equal to b, H will be maximum and equal to 1. 
H tends to zero as xod moves away from b towards either c 
or a. The higher the value of H, the greater would be the 
number of samples having/~(x)~0.5 and hence greater 
would be the tendency of the samples to cluster around its 
mean value, resulting in less (internal) scatter within the 
class. If we pool together the classes (gj and ~gk and 
compute the mean, maximum, and minimum values of 
the qth feature over all (nj + nk) samples where nr 
(r = j,  k) is the number of samples of class (g,, H for 
the pooled sample would decrease as the goodness of 
feature increases. This is because, for a good feature, the 
samples from both classes should be away from the 
overall mean, i.e. most of the points will have #(x)~0 
or 1. The feature evaluation index for feature q(FEIq) can 
thus be defined as: (3) 

Hodk 
F E I q  - -  Hod + Hqk (17) 

where Hodk is the value of the entropy for feature q after 
pooling the classes (gj and ~gk; and HOd and Hqk are those 
for the feature q computed for (gj or (ffk, respectively. The 
lower the value of FEIq, the higher is, therefore, the 
quality of the qth feature in characterizing and discrimi- 
nating classes (K s and (gk. Instead of using only one 
feature q, FEI can be calculated even for a set of 
features. {4) In this case, we need to use the multidimen- 
sional membership function. O1) 

Note that, instead of H any measure of fuzziness can be 
used. Pal and Chakraborty, {3) in addition to the entropy, 
used the index of fuzziness. We mention here that in a 
similar manner, the feature evaluation index can be 
calculated in terms of z-type functions. {3'4) 

A drawback of this approach is, it can be used to assess 
features for a pair of classes only. It may happen that a 
feature p is good for discriminating (gi and cgj, while 
feature q may be a better discriminator for classes (gk and 
(g~. Further, it may happen that some other feature r is, on 
average, a better discriminator for all the classes (gi, (gj, 
<gk, and (gl taken together. Thus, using FEI it is difficult to 
assess the goodness of a feature with respect to all classes 
taken together. 

To get around this problem, pal(4) extended his earlier 
work to define the average importance of a set of features 
S P as: 

(FEI)~ = ~ y ~  WjWk (FEI)0ff), (18) 
j k 

where Wj = nj/nt, WI~ = nl~/nt with nt = ~ j n j , j , k  = 
1,2, . .  ,, c; k ~ j, are weight factors. Here the weights 
are nothing but the a priori probabilities of different 
classes. Hence, (FEI) av depends on the number of points 
in a class and this may not be desirable. Preferably, 
(FEI) "v should depend only on the structure of the classes 
but not on the number of points in a class. Moreover, in 
equation (18), even when nj + nk = ~b (a constant) for 
two different pairs of classes, WaWk could be different for 
the two pairs. W2Wk attains the maximum value when 
n 2 = nk = ~b/2. Hence, (FEI) av is biased towards equi- 
probable classes. This motivated us to define a new 
index, called overall feature evaluation index or OFEI, 
described in Section 3.1. 

Next we describe the MLP-based feature selection 
method of Ruck et al.,(5~ but before that we describe 
the basics of an MLP. 

2.3. Description of neural network 

An MLP O2) is a classifier network, capable of learning 
an input-output relation. An MLP consists of several 
layers of processing elements called nodes or neurons. 
There is no connection between nodes within a layer, but 
complete connections exist between nodes of successive 
layers. The layer of nodes which receives inputs from 
outside is called the input layer and the layer that 
produces output is called the output layer. In between 
input and output layers there are several layers called 
hidden layers. The number of nodes in the input layer is 
the same as the dimension of input data, and that in the 
output layer is the same as the number of pattern classes, 
The nodes in the hidden layers receive inputs from its 
preceding layer and produce outputs which become 
inputs to the nodes of the next layer. There is no 
computation in the input layer. Nodes in other layers 
receive inputs, which are functions of the outputs of 
nodes in the previous layer and the connection weights 
between the two layers, and apply a nonlinear transfor- 
mation (activation function) to produce the output. 

The total input to the ith unit (node) of layer h ÷ 1 
(h > 0) is: 

X-" co(h) v (19) Ui = z... d ij J" 
J 
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Here vj is the output of the jth unit in layer h (h=0 
corresponds to the input layer) and wl; ) is the connection 
weight between the ith node in layer h+ 1 and thejth node 
of layer h. The output of a node i in layer h > 0 is 
vi = g(ui), g is the activation function. Mostly sigmoidal 
activation functions are used. 

In the learning phase (training) of such a network we 
present the pattern x = {xi}, where xi is the ith compo- 
nent of the input vector x, as input and adjust the set of 
weights in the connecting links such that the desired 
output t - -{tk} is obtained at the output nodes, The 
process is repeated until the weights stabilize. 

In general, for the output layer the actual outputs { vk} 
will not be the same as the target or desired values { tk }. 
Thus, for a pattern vector, the error is: 

ex = E ( t k  - ok) 2 (20) 
k 

and the total error is: 

E = ~ e x .  (21) 
x 

An MLP attempts to minimize E by moving in the 
direction of negative gradient of the instantaneous error 
ex. In other words, the incremental change -- (h) [.A&kj is taken 
as proportional to [-0ex/OW~ )] for a particular pattern x, 

i.e. Aw~,h. ) = [--~l(Oex)/(Ow~))], where rl is the learning 
rate. After some algebraic manipulation the learning rule 
becomes: 

{ --~?( Oex/ Ovk )g' (uk )vj 
(h) if layer (h + 1) is output layer, 

= (h) ¢ U k )  jV ~Wkj _Tl(~-]~m(Oe/OUm)Wmk]g ( (22) 
k / 

for other layers. 

The incremental changes A~)/h) may be summed up for 
all the patterns in the training set and then the weights 
w~h) with the increments. This a r e  updated resulting 
process is called batch mode training. In this strategy 

• the learning process remains independent of the sequence 
in which the training data are fed. Normally, a complete 
pass through the training data is known as "epoch." On 
the other hand, in on-line training weights are updated 
with each pattern. In this case, learning depends upon the 
sequence of data feeding. We have adopted the batch 
mode learning in our experiment. Thus, the expression 
for the updated weight after t epochs is given by: 

2.4. Neural network based feature selection 

Ruck et al. (5~ developed an algorithm for feature 
ranking using an MLP. The sensitivity of output of the 
network to its input is used to rank the input features. An 
expression for feature saliency (as proposed by them), 
used for feature ranking, is defined as: 

0ok(x, W) 
Aj = E E Z [  ~ 0 ~ x j  [' (24) 

x G 9  ~ k xjEt)j  

where Dj is the domain of the jth feature and 5 P is the 
training set. The matrix W is an array of all connection 
weights in the network arranged in some suitable form. 
They used the derivative as a sensitivity indicator of the 
network output with respect to the input feature. There- 
fore, Aj > Ai is assumed to indicate that the importance 
of the jth feature is higher than that of the ith feature. 

For evaluating (Ook(x,W)/Oxj) in equation (24) we use 
the chain rule, and thus for an MLP with one hidden layer 
we have 

0o~ : ok(1 - ok) , - -  + Ok 
0xj 

=ok(1-ok)Z 21  

= ok(1 - o k ) E  ~l)v/(1 - vl)w~ °)" (25) 
i 

Here Ok is the threshold for the sigmoidal activation 
function, g. From equation (25) we find that the deriva- 
tive depends on the current input to the network as well as 
its weights. To calculate Aj, ideally, each input should be 
independently sampled over its expected range of values. 
For example, if R points are used for each input feature, 
the total number of points that the derivatives have to be 
evaluated at would be R p, where p is the total number of 
features. Therefore, the problem is of exponential com- 
plexity. 

To reduce the computational load, Ruck et al. sug- 
gested to sample it at the most important points. The 
points of greatest importance in the input space are those 
in which training data exist; hence, the training vectors 
are used as starting points to sample the input space. For 
every training vector, each feature is sampled over its 
range. Thus for n training vectors, the number of deri- 
vative evaluations is npR. 

Limitations of this algorithm are described in Section 
3.3. 

3. P R O P O S E D  S C H E M E S  

In this section we propose two schemes for feature 
analysis. The first feature ranking scheme is based on 
fuzzy set theoretic concepts. It is an extension of earlier 
work by Pal and Chakraborty (3~ and Pal. (4) The other 
scheme is based on the Multilayer Perceptron, and it can 
be used for both feature ranking and selection. 

3.1. Feature evaluation using fuzziness 

Here, we modify the FEI of Pal (4) and define an overall 
feature evaluation index (OFEI) based on fuzzy set 
theoretic concepts. This OFEI takes care of the limita- 
tions of the earlier approach. (3'4) Feature q will be good if 
it can discriminate every pair of the c classes. Therefore, 
the goodness of a feature q increases as Hqjk (j, k = 
1 ,2 , . . . ,  c and j ¢  k) decreases and Hqj ( j= 1,2 . . . . .  c) 
increases; i.e. ~,k=lj#k Hqjk decreases and ~ = 1  Hqj 
increases. Thus, the overall feature evaluation index for 
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feature q(OFEIq) can be defined as: 

c H 
~,k=~ jCk q/k (26) OFEIq -- c H 

~ = 1  od 

We use only the fuzzy entropy of Deluca-Termini. The 
lower the value of OFEI, the better will be the perfor- 
mance of the feature with respect to discriminating all the 
classes. In equation (26), it may happen that Hqij < H~ 0 
but Hqkt > H~kl i.e. feature q is more important to dis- 
criminate classes i andj  than feature r but the converse is 
true for classes k and I. Since equation (26) considers all 
possible pairs of classes, OFEIq will reflect the overall 
(average) discriminating power of the feature q. Note that 
OFEIq does not depend on the size of a class. 

3.2. Feature evaluation using an MLP 

After an MLP successfully learns a data set, the 
weights of the links will be so adjusted that the value 
of a redundant (less important) feature will not influence 
the output vector much. The lower the importance of a 
feature in discriminating between classes, the lower 
would be the influence of its value on the output of 
the network. The proposed scheme banks on this concept. 

For every feature q we compute a feature quality index, 
FOIq and then rank the features according to FQIq. To 
compute FQIq we proceed as follows: For each training 
data point xi, i = 1 , 2 , . . . ,  n, we set x~.~ to zero. Let this 
modified data point be denoted by xlq); i.e. x~ q)- = xij, 
Vj ~ q and xl q) = 0. Setting the qth component to zero is 
equivalent to delinking the qth input node and hence 
delinking all connections associated directly from the qth 
input node. Thus, the impact of the qth feature will not 
reach any node of the network. Let the output vectors 
obtained by xi and x} q) be oi and o} q), respectively. Note 
that oi is not the target output corresponding to xi, but the 
actual output that is obtained for x~ from the trained net. 
For a less important feature, the output vectors oi and o} q) 
are not expected to differ much. Any function of o~ and 
ol q) that can measure this variation between the two can 
be used as an index for feature ranking. A very simple 
choice would be to define 

FQIq = 1 ~ }lni _ n}q)ll2. (27) 
n i-I  

After computing FQIqs for all the p features, they can be 
ranked according to their importance as q l , q 2 , . . . ,  qe 
when FQIq, > FQIq2 > . .-  > FQIq. 

Instead of feature ranking, if the problem is to select 
p ' (p '  < p) best features (feature selection), best from the 
point of view of discrimination between classes, the 
feature set {q l ,q2 , . . . ,qp , }  may not be the optimal 
set. But ql, q2 , . - . ,  qp, will definitely give a very good 
subset of features. To get the best p '  features we proceed 

as follows: There are ( p ) p, possible subsets of features. 

Let the lth subset be denoted by Set. Now we define 
FQIt (p') as: 

1 n 

FQI?') = Iio, - ol (28) 
i--1 

where oti is the output from the net with xti as input. Note 
t is derived from xi as follows: that x i 

f O, j E ~9°~ XI] (29) / x O, otherwise. 

We choose octj, as the optimal set of features, when 
FQIj (p) > FQI? ), V 1; 1 # j .  

Instead of equations (27) and (28), one can also 
compute feature devaluation indices (FDIs) as: 

and 

1 ~ t_(q) 
FDIq = - °i°i 

n ix, ]}oillllo}qtll 
(30) 

~,) 1 ~  f l 
FDI = -- OiOi (31) 

n , ~  IIolILIIoll I' 

' is the transpose of oi. Here, lower the value of where n i 
FDI, the more is the importance of the feature or the 
feature subset. 

3.3. The proposed scheme vs. scheme of  Ruck et al. 

We now compare the proposed neural network-based 
algorithm with that of Ruck et al. Both their method and 
our scheme are in a sense based on the same concept--  
sensitivity of network output with respect to its input. In 
our approach we find the output of the net after removing 
a feature and then measure the deviation of this output 
from the learnt output, but not from the target output. We 
have not considered the target output, because the net- 
work might not have been able to learn the target output 
to a desirable level. It is more logical to consider the 
sensitivity with respect to what has been learnt by the 
network. Moreover, in our approach, setting a feature 
value to zero is equivalent to assuming the absence of that 
feature. Thus, it is a conservative approach. On the other 
hand, Ruck et al. calculated the rate of change of network 
output with respect to the input. 

Let us assume that a system has p features for char- 
acterizing two classes. Among these features, we con- 
sider two features Ft and F2. Also assume that 
(OOk/OF1) > (OOk/OF2), but the variance of F~ is less 
than that of F2. Such a situation is always possible as the 
function approximated by the network may not be ade- 
quately represented by the data. In this case the algorithm 
of Ruck et al. will usually show that F1 is more important 
than F> Since the values of F2 are more disperse 
compared to F~, two patterns from different classes 
may have well apart F2 values but close F~ values. If 
we sample the domains of F1 and F2 uniformly, i.e. into 
the same number of intervals, then AF2 will be greater 
than AF1. AFi is the separation between successive Fi 
values for points considered to compute the saliency. It 
may then happen that the product (Ook/OF2)× 
AF2 > (Ook/OF1)× AFI, i.e. F2 is effectively more 
sensitive than F1. The algorithm of Ruck et al. may fail 
here. 

The method of sampling data points in equation (5) 
has another drawback. Let us take a pattern set in two 
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Fig. 1. Scatterplot of a two-dimensional synthetic data set. " + "  indicates a pattern belonging to class 1 and 
"." indicates a panem belonging to class 2. 

Table 1. Values of FQI and saliency for the features of pattern 
set 

Feature used FQI Rank Saliency Rank 

1 0.678548 1 855.036690 2 
2 0.676471 2 2329.231636 1 

dimension as in Fig. 1. The pattern set has two classes 
viz. class 1 and class 2. Consider a pattern vector x in the 
training set from class 1. If the value of feature 1 (F1) is 
kept fixed and that of F2 is varied over its range, some 
of the points may be generated outside of both classes 1 
and 2. The network is neither trained with these pattern 
points nor do these points belong to any of the two 
classes. Therefore, incorporation of these points in 
calculating the feature saliency may mislead the process 
of ranking. 

We illustrate the above two observations with an 
example. Table 1 depicts the ranking of the two features 
of the pattern set given in Fig. 1. It is found that accord- 
ing to the index FQI (equation (27)), the feature FI is 
more important than the feature F2 which is also desir- 
able as the feature F1 alone can separate the two pattem 
classes, whereas F2 cannot do the same. On the other 
hand, the saliency measure (in equation (24)) of Ruck 
et al. (5) strongly recommends that feature F2 is more 
important than F1. 

Finally, the algorithm proposed by Ruck et al. ranks 
individual features but cannot select the best subset of 
p~< p features. However, our algorithm ranks the 
features individually as being able to select the best 
subset of p~ < p features. 

4.  E X P E R I M E N T A L  R E S U L T S  

In the present investigation we have used three data 
sets: Iris 03) with four features and three classes, Crude-  

oil (14) with five features and three classes, and Mango- 
leaf (15) with 18 features and three classes. 

Anderson's Iris (13) data set contains three classes, i.e. 
three varieties of Iris flowers, namely, Iris Setosa, Iris 
Versicolor, and Iris Virginica consisting of 50 samples 
each. Each sample has four features, namely, Sepal 
length, Sepal width, Petal length, and Petal width. Iris 
data has been used in many research investigations 
related to pattern recognition and has become a sort of 
benchmark data. 

Crude-oil  °a) is a five-dimensional data set consisting 
of 56 patterns divided into three classes. Three classes 
correspond to three types of oil. Three classes 1, 2, and 3 
consist of 7, 11, and 38 patterns, respectively. 

Mango-leaf, <~5) on the other hand, is a p = 18 dimen- 
sional data set with 166 patterns. It has three classes 
representing three kinds of mango. The number of sam- 
pies in classes 1, 2, and 3 are 100, 35, and 31, respec- 
tively. The feature set consists of measurements like area 
(A), perimeter (Pe), maximum length (L), maximum 
breadth (B), petiole (P), length+petiole (L+P), length/ 
petiole (L/P), length/maximum breadth (L/B), (L+P)/B, 
A/L, A/B, A/Pe, upper midrib/lower midrib, upper Pe/ 
lower Pe and so on. The terms upper and lower are used 
with respect to maximum breadth position. 

Since each feature has a different range of values, i.e. 
some have quite large values while others have very low 
even fractional values, all features are normalized to the 
same scale so that the differences in their ranges are 
reduced. In other words, we applied the following trans- 
formation on each feature x', 

x' - kl 
x - (32) 

k2 - kl ' 

where k , - - -minimini{~j  } and k2 = m a x  i maxj{~j}. 
Note that this transformation does not change the struc- 
ture of the classes as it is only a change of scale and origin 
of the entire data. 
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Table 2. Values of different indices obtained by MLP for Iris 
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Femuremade Misclassification FQI Rank FDI Rank Saliency measure Rank 
zero 

1 50 0.596329 3 0.683017 4 1663.891834 4 
2 98 0.804521 2 0.531856 2 2498.589697 3 
3 100 0.926212 1 0.335803 1 4041.534737 I 
4 50 0.495294 4 0.675122 3 3580.965868 2 

Table 3. Values of J(Y) and different en~opy-basedmeasums using one of the ~amres of Iris 

Feamreused J(Y) Rank (FEI) a~ Rank OFEI Rank 

1 1.622646 3 0.166672 3 0.998300 3 
2 0.668844 4 0.169757 4 1.018069 4 
3 16.056615 1 0.109842 2 0.656602 2 
4 13.061322 2 0.106668 1 0.634167 1 

For Iris, the ranking of features obtained by the MLP- 
based scheme is shown in Table 2. In this investigation 
we considered different network architectures and dif- 
ferent initializations. Table 2 presents a typical result. 
We have obtained mostly the same relative ranking of the 
features (as shown in the Table 2), although the absolute 
values of the indices were different in different runs. The 
ith entry in the misclassification column indicates the 
number  of data points that are wrongly classified after the 
ith feature is made zero. The other columns are self- 
explanatory. The ranks obtained by FQI and FDI are 
different, although the first and second most important, 
features are the same. Here feature 3 is found to be the 
most important, while feature 2 is the next most impor- 

tant one. On the other hand, the entropy-based method, 
saliency, and J(Y) indicate features 3 and 4 as most 
important (Tables 2 and 3). Several authors O6"17) also 

believe that features 3 and 4 are more important for Irls. 
Why does the proposed MLP-based method show a 
different result? To get an answer to this, let us consider 
a four-dimensional synthetic data set. The data set has 20 
data points, 10 points for each of two classes. Scatterplots 
of the first two components are shown in Fig. 2, while 
Fig. 3 shows the scatterplot of the third and fourth 

1 1 

1 1 1 

1 i 

i I - 

- - 2  2 2 2 
2 2 2 

2 

Fig. 2. Scanerplot, using features 1 and 2, of the four- 
dimensional synthetic data. "1" and "2" indicate patterns 

belonging to classes 1 and 2, respectively. 

1 
1 

ii 
i 

122 
2 

1 

2 
2 

Fig. 3. Scatterplot, using features 3 and 4, of the four- 
dimensional synthetic data. "1" and "2" indicate patterns 

belonging to classes 1 and 2, respectively. 

components. In the scatterplots class 1 is indicated by 
" 1 "  and class 2 is represented by "2" .  Clearly, scatter- 
plot of features one and two (Fig. 2) can be easily 
separated by a straight line to discriminate the classes, 
but their centroids are very close. While, for Fig. 3 
although the centroids are widely separated, it requires 
a combination of lines to separate the two classes. Thus, 
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Table 4. Values of FQI and J(Y) associated with pairs of features for the synthetic data. Features mentioned in column ! are made 
zero for FQI and while they are used for J(Y) 

Features made zero/used FQI Misclassification Relative rank J(Y) Relative rank 

1,2 0.268825 4 1 0.354866 2 
3,4 0.191828 3 2 1.119447 1 

l 
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l 2 22 I 
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Fig. 4. Scatterplot, using features 2 and 3, of Iris data. "1," "2," and "3" indicate patterns belonging to 
classes 1, 2, and 3, respectively. 

for an MLP based method features 1 and 2 may turn out 
to be more important (Table 4) (of course, depending on 
the initial condition, it may not necessarily be true) than 
features 3 and 4. However, for the method based on J(Y) 
features 3 and 4 will be important. Table 4 shows that it is 
indeed the case. 

Let us now look at the scatterplot of features 2, 3 
(Fig. 4) and scatterplot of features 3, 4 (Fig. 5) of Iris. In 
Fig. 4 and Fig. 5 different classes are separated by dotted 
lines. In both the cases classes can be separated by two 
lines with only 2-3 errors, but the centroids of the classes 
as represented by features 3 and 4 are much more 
separated than those represented by features 2 and 3. 
This explains why the proposed MLP based method 
shows features 2 and 3 as more important while others 
indicate features 3 and 4. 

For feature ranking we considered the effect of only 
one feature at a time on the performance of the network, 
whereas for the feature selection problem (when we want 
to select the most important, say, p '  features) we need to 
consider the combined effect of feature subsets. Thus, the 
set of features with rank _< p '  may not necessarily be the 
optimal set ofp '  features, in fact, in most of the cases they 
will be. Table 5 depicts the results obtained by setting 
two of the features to zero, i.e. the combined effect of two 
features on the performance of the network. Table 5 
reveals that for Iris, feature pair (2,3) (based on FQI) 
and feature pair (1,3) (based on FDI) are found to be 
important. Based on individual rank also these two 
features (3,2) are found to be most important. 

Table 6 depicts the ranking obtained by the FQI/FDI 
based method for Crude-oil. In this case the ranks 

Table 5. Values of different indices obtained by MLP when a pair of features is set to zero for Iris 

Feature made zero Misclassification FQI Rank FDI Rank 

1,2 100 0.903465 3 0.351944 3 
1,3 100 0.756021 4 0.335055 1 
1,4 51 0.564501 6 0.684518 5 
2,3 100 1.035633 1 0.452740 4 
2,4 61 0.593168 5 0.806045 6 
3,4 100 0.923468 2 0.343355 2 
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Fig. 5. Scatterplot, using features 3 and 4, of Iris data. "1," 
"2," and "3" indicate patterns belonging to classes 1, 2, and 3, 

respectively. 

obtained by FQI and FDI are identical. The most im- 
portant feature is found to be the same for all three 
indices FQI, FDI, and saliency. It is interesting to note 
that the number of misclassifications is consistent with 
the ranks. These rankings are also almost in accordance 
with the result (not included in this article) of the 
experiments during which the network was trained with 
a pair of features. That is, the network was able to 
recognize better with features 1 and 4 than that with 
any other pair of features. Table 7 represents the ranks 
obtained by J(Y), OFEI, and (FEI) av for the same data set, 
Crude-oil.  We find that the ranks obtained by J(Y) and 
OFEI/(FEI) av are different and they are also different 
from the ranks calculated based on MLP. This difference 
may be attributed to the following facts: the MLP-based 
approach is influenced, to a great extent, by how easily 
classes can be separated using hyper-planes. On the other 
hand, J(Y) strongly depends on the separation of the 
centroids, while OFEI depends on both the separation of 
centroids and overlap of classes. Table 7 also shows that 
the ranks obtained using (FEI) av and OFEI are identical. 
We report the combined effect of feature pairs for this 
data set in Table 8. It shows that feature pair (1,5) is the 
most important. Like Iris, for this data set also the results 
were found to be consistent with scatterplots (not 
included here) of feature pairs. 

To establish the effectiveness of the proposed scheme 
we also considered a data set (Mango-leaf) with 18 
features and three classes. Ranks obtained by FQI, 
FDI, and saliency are shown in Table 9; the ranks by 
the three indices are not exactly identical but almost the 
same. The difference in the ranking by saliency with that 
by FQI/FDI may be due to the complex class structure of 
the data set. To assess the validity of the ranks (based on 
FQI), we trained the network with: (a) top three features, 
(b) top five features, (c) top six features, (d) the features 
with ranks 4, 5, 6, 7, 8, and 9, and (e) all 18 features. In 

Table 6. Values of different indices obtained by MLP for Crude-oil 

Feature Misclassification FQI Rank FDI Rank Saliency Rank 
made zero measure 

1 40 0.953513 1 0.299117 1 3167.896934 1 
2 11 0.238619 4 0.861617 4 314.656966 5 
3 06 0.079707 5 0.946434 5 1557.797274 3 
4 13 0.302492 2 0.826327 2 1863.405141 2 
5 10 0.242237 3 0.846303 3 1099.465980 4 

Table 7. Values of J(Y) and different entropy-based measures using one of the features of Crude-oU 

Feature used J(Y) Rank (FEI) av Rank OFEI Rank 

1 

2 
3 
4 
5 

0.723300 3 0.132087 5 1.194165 5 
0.754931 2 0.129089 3 1.121799 3 
0.221933 5 0.141318 4 1.160894 4 
0.855593 1 0.125434 2 1.023158 2 
0.619172 4 0.121439 1 0.864039 1 
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Table 8. Values of different indices obtained by MLP when a pair of features is set to zero for Crude-oil 

Features made zero Misclassification FQI Rank FDI Rank 

1,2 38 0.856033 3 0.377745 3 
1,3 40 0.981285 2 0.296769 2 
1,4 29 0.703605 4 0.533612 4 
1,5 45 1.182584 1 0.156550 1 
2,3 12 0.243394 10 0.850202 10 
2,4 17 0.385110 6 0.735543 6 
2,5 17 0.370540 7 0.742812 7 
3,4 13 0.293036 8 0.827088 9 
3,5 12 0.276577 9 0.812103 8 
4,5 18 0.407598 5 0.712725 5 

Table 9. Values of different indices obtained by MLP for Mango-leaf 

Feature Misclassification FQI Rank FDI Rank Saliency Rank 
made zero measure 

1 25 0.125161 9 0.970644 9 10259.124586 14 
2 66 0.526458 5 0.737481 4 13607.626761 12 
3 44 0.353275 6 0.883209 6 2685.724258 16 
4 130 0.981794 1 0.406196 I 43191.505706 4 
5 23 0.089942 13 0.990154 12 19161.967354 10 
6 46 0.335267 7 0.889027 7 82910.026417 1 
7 18 0.000717 17 0.999999 17 830.137520 17 
8 18 0.000160 18 1.000000 18 531.974334 18 
9 66 0.888633 2 0.723810 3 61851,395600 2 

10 59 0.553753 4 0.770063 5 23367.307882 8 
11 30 0.181140 8 0.956033 8 28306.887051 7 
12 24 0.108732 10 0.988997 11 21500.352227 9 
13 23 0.092504 11 0.991579 13 10867.592324 13 
14 20 0.047141 15 0.997323 15 14402.327757 11 
15 82 0.683353 3 0.678076 2 42520.772601 5 
16 19 0.012551 16 0.999815 16 7677.518133 15 
17 23 0.090810 12 0.986581 10 57658.592076 3 
18 18 0.058416 14 0.995781 14 35721.791323 6 

Table 10. Misclassifications obtained by a trained MLP (for 
60,000 epochs) with different feature subsets of Mango-leaf 

Cases Features used Misclassification 

(a) 4,9,15 49 
(b) 4,9,15,10, 2 25 
(c) 4,9,15,10,2,3 40 
(d) 10,2,3,6,11,1 41 
(e) All 31 

each case the network was trained for 60,000 epochs. The 
results (number of misclassifications) are presented in 
Table 10. Table 10 clearly reveals the effectiveness of the 
ranks obtained by the MLP-based scheme. Here, case (a) 
just  signifies the inadequacy of the features. The top six 
features (case (c)) obtained by FQI clearly show better 
discriminating ability than the six other features with 
rank 4, 5, 6, 7, 8, and 9 (case (d)), respectively. Table 10 
also shows that the top five features together (case (b)) 
are more effective than taking the top six or all 18 
features together. This may be due to the redundancy 

of the system while taking the top six or all the features 
together. The ranking obtained by J(Y), OFEI, and 
(FEI) av for the data set are found to be quite different 
from that based on FQI and FDI (Tables 9 and 11). 
Comparing the features with ranks <__ 5, we find that 
the ranks obtained by the entropy-based methods are 
closer to those based on FQI. 

In order to establish the superiority of the proposed 
MLP-based scheme over the others discussed earlier, we 
have trained the same network (the same architecture and 
initialization) separately with a few good features ob- 
tained by (i) FQI, (ii) fuzzy entropies, (iii) J-function, and 
(iv) saliency for Mango- leaf  and Crude-nil .  Table 12 
reports the results for Mango- leaf  with the top five 
features when the networks are trained for 60,000 
epochs. The top five features selected by FQI are found 
to produce the least number  of misclassifications 
(Table 12). For Crude-oil ,  we have trained the networks 
for 30,000 epochs using the top three features. Here also 
the proposed scheme (FQI) outperforms the others 
(Table 13). 
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Table 11. Values of J(Y) and different entropy-based measures using one of the features of Mango-leaf 
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Feature used J(Y) Rank (FEI) av Rank OFEI Rank 

1 0.116022 11 0.146951 7 1.053797 7 
2 0.424932 5 0.152861 10 1.082116 9 
3 0.097274 13 0.155923 16 1.133981 16 
4 0.351634 6 0.144551 3 1.018112 1 
5 0.458305 3 0.142962 1 1.026228 2 
6 0.023515 16 0.154936 13 1.092866 13 
7 0.009207 18 0.146140 6 1.036342 5 
8 0.014633 17 0.146018 5 1.035661 4 
9 0.793117 1 0.151614 9 1.092510 12 

10 0.242699 8 0.155043 12 1.088604 II 
11 0.042566 14 0.166411 18 1.203172 17 
12 0.188824 9 0.155414 14 1.130467 15 
13 0.034397 15 0.160234 17 1.169015 18 
14 0.482680 2 0.146503 4 1.051984 6 
15 0.342572 7 0.143206 2 1.033192 3 
16 0.433072 4 0.152190 11 1.082951 10 
17 0.107068 12 0.154561 15 1.123898 14 
18 0.173945 10 0.148626 8 1.059308 8 

Table 12. Misclassifications obtained by MLP (after training 
for 60,000 epochs) with the top five features of Mango-leaf 

ranked by different ranking schemes described 

Ranking based on Features used Misclassification 

FQI 4,9,15,10,2 25 
Entropy 4,5,15,8,7 32 
J-function 9,14,5,16,2 33 
Saliency 6,9,17,4,15 43 

Table 13. Misclassifications obtained by MLP (after training 
for 30,000 epochs) with the top three features of Crude-oil 

ranked by different ranking schemes described 

Ranking based on Features used Misclassification 

FQI 1,4,5 6 
Entropy 5,4,2 18 
J-function 4,2,1 18 
Saliency 1,4,3 10 

CONCLUSION AND DISCUSSION 

We have proposed a scheme for both feature ranking 
and feature selection based on a multilayer perceptron 
network. The scheme is based on the idea that the effect 
of a missing feature (setting the feature value to zero) on 
the output of a trained network will depend heavily on the 
importance of the feature. In fact, the more important a 
feature is, the more will be its impact on the output of the 
network. We have also provided a scheme for selecting a 
feature subset based on the same idea. A feature subset 
may be regarded as good if the network outputs are 
heavily affected by assuming the absence of these fea- 
tures (in the subset), i.e. setting the values of the features 
to zero. In addition to this, we have modified an existing 

fuzzy entropy-based method. Both schemes are tested on 
three different data sets. The results have been compared 
with three existing approaches. The superiority of the 
proposed MLP-based scheme has been established em- 
pirically with several data sets. The novelty of the 
proposed MLP-based scheme and its difference to the 
method of Ruck et al., which is also based on a similar 
concept, have been analyzed. 
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