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Abstract

A neuro-fuzzy methodology is described which involves connectionist minimization of a fuzzy feature evaluation

index with unsupervised training. The concept of a ¯exible membership function incorporating weighed distance is in-

troduced in the evaluation index to make the modeling of clusters more appropriate. A set of optimal weighing coe�-

cients in terms of networks parameters representing individual feature importance is obtained through connectionist

minimization. Besides, the investigation includes the development of another algorithm for ranking of di�erent feature

subsets using the aforesaid fuzzy evaluation index without neural networks. Results demonstrating the e�ectiveness of

the algorithms for various real life data are provided. Ó 1998 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

Feature selection or extraction is a process of
selecting a map of the form x0 � f �x� by which a
sample x�x1; x2; . . . ; xn� in an n-dimensional mea-
surement space �Rn� is transformed into a point
x0�x01; x02; . . . ; x0n0 � in an n0-dimensional (n0 < n) fea-
ture space �Rn0 �. The problem of feature selection
deals with choosing some of the xis from the
measurement space to constitute the feature space.
On the other hand, the problem of feature
extraction deals with generating new x0js (consti-
tuting the feature space) based on some xis in the
measurement space. The main objective of these
processes is to retain the optimum salient charac-
teristics necessary for the recognition process and
to reduce the dimensionality of the measurement
space so that e�ective and easily computable al-

gorithms can be devised for e�cient categoriza-
tion.

Fuzzy set theory enables one to deal with un-
certainties in di�erent tasks of a pattern recogni-
tion system, arising from de®ciency (e.g.,
vagueness, incompleteness, etc.) in information, in
an e�cient manner. Arti®cial Neural Networks
(ANNs), having the capability of fault tolerance,
adaptivity and generalization, and scope for mas-
sive parallelism, are widely used in dealing with
learning and optimization tasks. Fuzzy set theo-
retic approaches for feature selection are mainly
based on measures of entropy and index of fuzzi-
ness (Pal and Chakraborty, 1986; Pal, 1992), fuzzy
c-means and fuzzy ISODATA algorithms (Bezdek
and Castelaz, 1977). Some of the recent attempts
made for feature selection in the framework of
ANN are mainly based on multilayer feedforward
networks and self-organizing networks (Priddy et
al., 1993; Steppe and Bauer, Jr., 1996; De et al.,
1997; Pregenzer et al., 1996). Note that, depending
on whether the class information of the samples is
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known or not, these methods are classi®ed under
supervised or unsupervised mode. For example,
the algorithms described in (Pal and Chakraborty,
1986; Pal, 1992; Bezdek and Castelaz, 1977; Priddy
et al., 1993; Steppe and Bauer, Jr., 1996; De et al.,
1997) fall under the supervised category, whereas
those in (Bezdek and Castelaz, 1977; Pregenzer
et al., 1996) are in unsupervised mode.

Recently, attempts have been made to integrate
the merits of fuzzy set theory and ANN under the
heading `neuro-fuzzy computing' for making the
systems arti®cially more intelligent. In the area of
pattern recognition, neuro-fuzzy approaches have
been attempted mostly for designing classi®cation/
clustering methodologies, not much for feature
selection or extraction.

The present article is an attempt in this regard
and provides a neuro-fuzzy approach for feature
selection under unsupervised mode of training.
First of all, a fuzzy feature evaluation index for a
set of features is de®ned in terms of membership
values denoting the degree of similarity between
two patterns. The similarity between two patterns
is measured by a weighed distance between them.
The weight coe�cients are used to denote the de-
gree of importance of the individual features in
characterizing/discriminating di�erent clusters and
to provide ¯exibility in modeling various clusters.
The evaluation index is such that, for a set of
features, the lower its value, the higher is the im-
portance of that set in characterizing/discriminat-
ing various clusters. A layered network is then
formulated for performing the task of minimiza-
tion of the evaluation index by an unsupervised
learning process, thereby determining the opti-
mum weight coe�cients providing an ordering of
the individual features.

In another part of the investigation, the afore-
said fuzzy evaluation index is used alone to ®nd
the best subset of features. This is done by com-
puting the evaluation index (with weight coe�-
cients equal to 1) on di�erent subsets of features
and then ordering them accordingly. The e�ec-
tiveness of these algorithms is demonstrated on
four di�erent data sets, namely, vowel (Pal and
Dutta Majumder, 1986; Pal and Chakraborty,
1986), Iris (Fisher, 1936), medical (Hayashi, 1991)
and mango-leaf (Pal, 1992) .

2. Feature evaluation index

In this section we ®rst of all provide a de®nition
of the fuzzy feature evaluation index. The mem-
bership function for its realization is then de®ned in
terms of a distance measure and weight coe�cients.

2.1. De®nition

Let, lO
pq be the degree that both the pth and qth

patterns belong to the same cluster in the n-di-
mensional original feature space, and lT

pq be that in
the n0-dimensional (n0 < n) transformed feature
space. l values determine how similar a pair of
patterns are in the respective features spaces. That
is, l may be interpreted as the membership value
of a pair of patterns belonging to the fuzzy set
``similar''. Let s be the number of samples on
which the feature evaluation index is computed.

The feature evaluation index for a subset (X) of
features is de®ned as

E � 2

s�sÿ 1�
X

p

X
q6�p

1

2
lT

pq 1ÿ lO
pq

� �
� lO

pq 1ÿ lT
pq

� �h i
:

�1�
It has the following characteristics.
1. If lO

pq � lT
pq � 0 or 1, the contribution of the

pair of patterns to the evaluation index E is zero
(minimum).

2. If lO
pq � lT

pq � 0:5, the contribution of the pair
of patterns to E becomes 0.25 (maximum).

3. For lO
pq < 0:5 as lT

pq ! 0, E decreases. For
lO

pq > 0:5 as lT
pq ! 1, E decreases.

Therefore, the feature evaluation index decreases
as the membership value representing the degree of
belonging of the pth and qth patterns to the same
cluster in the transformed feature space tends to
either 0 (when lO < 0:5) or 1 (when lO > 0:5). In
other words, the feature evaluation index de-
creases as the decision on the similarity between a
pair of patterns (i.e., whether they lie in the same
cluster or not) becomes more and more crisp. This
means, if the intercluster/intracluster distances in
the transformed space increase/decrease, the fea-
ture evaluation index of the corresponding set of
features decreases. Therefore, our objective is to
select those features for which the evaluation index
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becomes minimum; thereby optimizing the deci-
sion on the similarity of a pair of patterns with
respect to their belonging to a cluster.

2.2. Computation of membership function

In order to satisfy the characteristics of E
(Eq. (1)), as stated in the previous section, the
membership function (l) in a feature space may be
de®ned as

lpq �
1ÿ dpq=D; if dpq6D;

0; otherwise:

�
�2�

dpq is a distance measure which provides similarity
(in terms of proximity) between the pth and qth
patterns in the feature space. Note that the higher
the value of dpq, the lower is the value of lpq, and
vice-versa. D is a parameter which re¯ects the
minimum separation between a pair of patterns
belonging to two di�erent clusters. When dpq � 0
and dpq � D, we have lpq � 1 and 0, respectively. If
dpq � D=2, lpq � 0:5. That is, when the similarity
between the patterns is just in between 0 and D, the
di�culty in making a decision, whether both pat-
terns are in the same cluster or not, becomes
maximum, thereby making the situation most
ambiguous. We can take D � bdmax where dmax is
the maximum separation between a pair of pat-
terns in the entire feature space, and 0 < b < 1 is a
user de®ned constant. In one extreme case,
D � dmax when b is chosen as 1.

The distance dpq (Eq. (2)) can be expressed in
many ways. Let us consider, for example, the
Euclidian distance between the two patterns.
Then,

dpq �
X

i

�xpi ÿ xqi�2
" #1=2

; �3�

where xpi and xqi are the values of the ith feature (in
the corresponding feature space) of the pth and qth
pattern, respectively. dmax is de®ned as

dmax �
X

i

�xmaxi ÿ xmini�2
" #1=2

; �4�

where x maxi and x mini are the maximum and mini-
mum values of the ith feature in the corresponding
feature space.

2.3. Incorporating weight coe�cients

In the above discussion, we have measured the
similarity between two patterns in terms of prox-
imity, as conveyed by the expression for dpq

(Eq. (3)). Since, dpq is a Euclidian distance, the
methodology implicitly assumes that the clusters
are hyperspherical. But in practice, this may not be
the case. To model the practical situation we have
introduced the concept of weighed distance such
that

dpq �
X

i

w2
i �xpi ÿ xqi�2

" #1=2

�
X

i

w2
i v

2
i

" #1=2

; vi � �xpi ÿ xqi�;
�5�

where wi 2 �0; 1� represents weight coe�cient cor-
responding to ith feature.

The membership value lpq is now obtained by
Eqs. (2)±(5), and becomes dependent on wi. The
values of wi (< 1) make the lpq function of Eq. (2)
¯attened along the axis of dpq. The lower the value
of wi, the higher is the extent of ¯attening. In the
extreme case, when wi � 0; 8i, dpq � 0 and lpq � 1
for all pairs of patterns, i.e., all patterns lie on the
same point making them indiscriminable.

In pattern recognition literature, the weight wi

(Eq. (5)) can be viewed to re¯ect the relative im-
portance of the feature xi in measuring the simi-
larity (in terms of distance) of a pair of patterns. It
is such that the higher the value of wi, the more is
the importance of xi in characterizing a cluster or
discriminating various clusters. wi � 1 �0� indi-
cates most (least) importance of xi.

Note that one may de®ne lpq in a di�erent way
satisfying the above mentioned characteristics. The
computation of lpq in Eq. (2) does not require
class information of the patterns, i.e., the algo-
rithm is unsupervised. In addition, it does not
depend on the number of clusters present in the
feature space. It is also to be noted that the
algorithm does not explicitly provide clustering of
the feature space. That is, unlike the method in
(Bezdek and Castelaz, 1977), the present algorithm
is independent of the number of clusters and is
able to select a set of salient features without
(explicitly) clustering the feature space.
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3. Feature selection

In this section we describe two unsupervised al-
gorithms for feature selection. The ®rst one con-
siders the fuzzy feature evaluation index alone for
ranking of di�erent feature subsets. The second one
is based on a neuro-fuzzy approach, where the fuzzy
feature evaluation index is minimized with a layered
neural network for ranking of individual features.

3.1. Ordering of feature subsets using E (Method 1)

From the aforesaid discussion we see that if a
particular subset (X1) of features is more impor-
tant than another subset (X2) then E computed
over X1 will be less than that computed over X2.
Therefore, the task of feature subset selection re-
quires selecting the subset X from a given set of n
features for which E is minimum. This is done by
computing the E values for all possible �2n ÿ 1�
subsets of features using Eqs. (1)±(4), and ranking
them accordingly. Here lO is computed on the n-
dimensional original feature space, whereas lT is
done on its various subsets. Note that, if the subset
X contains only one feature, it provides individual
feature ranking. Let us call this algorithm Method
1 in the subsequent discussion.

3.2. Ordering of individual features through connec-
tionist minimization of E (Method 2)

In Method 1, we have considered the Euclidian
distance (Eq. (3)) to compute l-values. Here we
consider Eq. (5) instead of Eq. (3). Therefore, the
evaluation index E (Eq. (1)) becomes a function of
w �� �w1;w2; . . . ;wn�), if we consider ranking of n
features in a set. Here lO and lT are both com-
puted over the original n-dimensional feature
space. The only di�erence is that lO needs
Eqs. (2)±(4), while lT needs Eqs. (2), (4) and (5)
for their computation.

The problem of feature selection/ranking thus
reduces to ®nding a set of wis for which E becomes
minimum, the wis indicating the relative impor-
tance of xis. The task of minimization is performed
using a gradient-descent technique in a connec-
tionist framework in unsupervised mode. Let us
now describe the model.

3.3. Connectionist model

The network (Fig. 1) consists of an input, a
hidden and an output layer. The input layer con-
sists of a pair of nodes corresponding to each
feature, i.e., the number of nodes in the input layer
is 2n, for an n-dimensional (original) feature space.
The hidden layer consists of n nodes which com-
pute the part v2

i of Eq. (5) for each pair of pat-
terns. The output layer consists of two nodes. One
of them computes lO, and the other lT. The fea-
ture evaluation index E (Eq. (14)) is computed
from these l-values o� the network.

Input nodes receive activations corresponding
to feature values of each pair of patterns. A jth
node in the hidden layer is connected only to an ith
and �i� n�th input nodes via connection weights
�1 and ÿ1, respectively, where j; i � 1; 2; . . . ; n
and j � i. The output node computing lT-values is
connected to a jth node in the hidden layer via
connection weight Wj (� w2

j ), whereas that com-
puting lO-values is connected to all the nodes in
the hidden layer via connection weights �1 each.

During training, each pair of patterns is pre-
sented at the input layer and the evaluation index
is computed. The weights Wjs are updated using a
gradient-descent technique in order to minimize
the index E. Note that dmax is directly computed
from the unlabeled training set. The values of dmax

and b are stored in both the output nodes for the
computation of D. When the pth and qth patterns
are presented to the input layer, the activation
produced by the ith (16 i6 2n) input node is

v�0�i � u�0�i ; �6�
where

u�0�i � xpi for 16 i6 n

and

u�0�i�n � xqi for 16 i6 n; �7�
the total activations received by the ith and
�i� n�th (16 i6 n) input node, respectively. The
total activation received by the jth hidden node
(connecting ith and �i� n�th, 16 i6 n, input
nodes) is given by

u�1�j � 1� v�0�i � �ÿ1� � v�0�i�n; for 16 i6 n; �8�
and the activation produced by it is
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v�1�j � �u�1�j �2: �9�
The total activation received by the output node
which computes the lT-values, is

u�2�T �
X

j

Wjv
�1�
j ; �10�

and that received by the other output node which
computes the lO-values, is

u�2�O �
X

j

v�1�j : �11�

Therefore, u�2�T and u�2�O represent d2
pq as given by

Eqs. (5) and (3), respectively. The activations, v�2�T

and v�2�O , of the output nodes represent lT
pq and lO

pq
for the pth and qth pattern pair, respectively. Thus,

v�2�T � 1ÿ u�2�T

� �1=2

=D if u�2�T

� �1=2

6D;

0 otherwise;

8<: �12�

and

v�2�O � 1ÿ u�2�O

� �1=2

=D if u�2�O

� �1=2

6D;

0 otherwise:

8<: �13�

The evaluation index (which is computed o� the
network), in terms of these activations, is then
written (from Eq. (1)) as

E�W� � 2

s�sÿ 1�
X

p

X
q6�p

1

2
v�2�T 1ÿ v�2�O

� �h
�v�2�O 1ÿ v�2�T

� �i
: �14�

As mentioned before, the task of minimization of
E�W� (Eq. (14)) with respect to W is performed
using a gradient-descent technique, where the
change in Wj (DWj) is computed as

DWj � ÿg
oE
oWj

; 8j; �15�

where g is the learning rate.
For the computation of oE=oWj, the following

expressions are used:

Fig. 1. A schematic diagram of the neural network model.
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oE�W�
oWj

� 2

s�sÿ 1�
X

p

X
q 6�p

1

2
1ÿ 2v�2�O

h i ov�2�T

oWj
; �16�

ov�2�T

oWj
� ÿ

1
2

u�2�
T� �ÿ1=2

ou�2�
T
=oWj

D ; if u�2�T

� �1=2

6D

0 otherwise

8<: �17�

and

ou�2�T

@Wj
� v�1�j : �18�

Algorithm

· Calculate dmax from the unlabeled training set.
Store dmax and the user speci®ed constant b in
the output nodes.

· Initialize Wj with small random values in [0,1].
· Repeat until convergence, i.e., until the value of

E becomes less than or equal to a certain prede-
®ned small quantity, or until the number of iter-
ations attains a certain prede®ned value:

± For each pair of patterns:
* Present the pattern pair to the input layer.
* Compute DWj for each j using the updat-

ing rule in Eq. (15).
± Update Wj for each j with the average value

of DWj.
After convergence, E�W� attains a local minimum.
Then the weights (Wj � w2

j ) of the links connecting
hidden nodes and the output node computing the
lT-values, indicate the order of importance of the
features. Let us call this algorithm Method 2 in the
subsequent discussion.

Note that Method 2, which is based on a neuro-
fuzzy approach for individual feature ranking,
®nds the set of wis (for which E is minimum)
considering the e�ect of interdependence of the
features, whereas in Method 1, each feature is
considered independent of the others.

4. Results

Here we demonstrate the e�ectiveness of the
algorithms presented above on four data sets,
namely, vowel data (Pal and Dutta Majumder,
1986; Pal and Chakraborty, 1986), Iris data

(Fisher, 1936), medical data (Hayashi, 1991) and
mango-leaf data (Pal, 1992). The vowel data con-
sists of a set of 437 Indian Telugu vowel sounds
collected by trained personnel. These were uttered
in a consonant-vowel-consonant context by three
male speakers in the age group of 30 to 35 years.
The data set has three features, F1, F2 and F3,
corresponding to the ®rst, second and third vowel
formant frequencies obtained through spectrum
analysis of the speech data. Fig. 2 shows a 2-D
projection of the 3-D feature space of the six vowel
classes (o, a, i, u, e, o) in the F1±F2 plane (for ease
of depiction). The details of the data and its ex-
traction procedure are available in (Pal and Dutta
Majumder, 1986). This vowel data is being exten-
sively used for more than two decades in the area
of pattern recognition.

Fisher's Iris data (Fisher, 1936) set contains
three classes, i.e., three varieties of Iris ¯owers,
namely, Iris Setosa, Iris Versicolor and Iris Vir-
ginica consisting of 50 samples each. Each sample
has four features, namely, Sepal Length (SL), Se-
pal Width (SW), Petal Length (PL) and Petal
Width (PW). This data set has been used in many
research investigations related to pattern recogni-
tion and has become a sort of benchmark-data.

The medical data consisting of nine input fea-
tures and four pattern classes, deals with various
Hepatobiliary disorders (Hayashi, 1991) of 536
patient cases. The input features are the results of
di�erent biochemical tests, viz., Glutamic Oxal-
acetic Transaminate (GOT, Karmen unit), Glu-
tamic Pyruvic Transaminase (GPT, Karmen Unit),
Lactate Dehydrase (LDH, iu/l), Gamma Glutamyl
Transpeptidase (GGT, mu/ml), Blood Urea Ni-
trogen (BUN, mg/dl), Mean Corpuscular Volume
of red blood cell (MCV, ¯), Mean Corpuscular
Hemoglobin (MCH, pg), Total Bilirubin (TBil,
mg/dl) and Creatinine (CRTNN, mg/dl). The he-
patobiliary disorders Alcoholic Liver Damage
(ALD), Primary Hepatoma (PH), Liver Cirrhosis
(LC) and Cholelithiasis (C), constitute the four
output classes.

The Mango-leaf data (Pal, 1992) provides in-
formation on di�erent kinds of mango-leaf with 18
features, (i.e., 18-dimensional data) for 166 pat-
terns. It has three classes representing three kinds
of mango. The feature set consists of measure-
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ments like Z-value (Z), area (A), perimeter (Pe),
maximum length (L), maximum breadth (B), pet-
iole (P), K-value (K), S-value (S), shape index (SI),
L + P, L/P, L/B, (L + P)/B, A/L, A/B, A/Pe, upper
midrib/lower midrib (UM/LM) and perimeter up-
per half/perimeter lower half (UPe/LPe). The
terms `upper' and `lower' are used with respect to
maximum breadth position.

Although the data considered here have known
classes, one may note that this class information
has in no way been utilized during the experiment
of feature evaluation. In other words, the methods,
as described before, are entirely based on unsu-
pervised training.

4.1. Ordering of feature subsets using Method 1

Table 1 shows the ordering of di�erent subsets
for the four types of data using Method 1. Note

that for the vowel and Iris data, we have computed
E-values for all possible subsets, including the in-
dividual features (i.e., seven for vowel and ®fteen
for Iris data), and ranked them accordingly. For
medical and mango-leaf data, since the number of
features is large, we have, ®rst of all, computed the
E-values for the individual features. A few of the
best (e.g., GOT, LDH, GPT, GGT for medical
data, and Pe, (L + P)/B, UM/LM, L/B, Z for
mango-leaf data) are selected after ranking. Then
we have computed the E-values for di�erent sub-
sets containing only these selected features. As a
result, we have 20 subsets for the medical data and
44 subsets for the mango-leaf data. (However, for
the mango-leaf data, we have shown in Table 1 the
ordering of the ®rst twenty subsets only, for
brevity.)

It is seen from Table 1 that a subset of higher
cardinality is not necessarily more important than

Fig. 2. Two-dimensional (F1 ÿ F2) plot of the vowel data.
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ones of lower cardinality. For vowel, F2 being the
best individual feature is seen to be a member of
the best four subsets. This conforms to an earlier
investigation (Pal, 1992). Similarly, for the Iris
data, it is PL which has become a member of the
®rst ®ve best subsets. For the medical data, the
best 15 subsets contain at least one of the four best
individual features (GOT, LDH, GPT and GGT).
Similarly, for the mango-leaf data, it is the ®rst 10
subsets in which at least one of the ®ve best indi-
vidual features (Pe, (L + P)/B, UM/LM, L/B, Z)
became a member.

In a part of the investigation, we used the k-nn
classi®er to study the importance of these selected
features in classifying the data set in supervised
mode. For this purpose, we used only the vowel
data with a 50% training set and k� 3. It is found
that the order of importance of the individual
features as obtained by the k-nn classi®er is
F2 > F3 > F1, which is the same as that obtained in
Table 1. For the pairwise features also, the k-nn
classi®er and Method 1 produce the same ordering
i.e., fF1; F2g > fF2; F3g > fF1; F3g. It may be noted
that the k-nn classi®er provides the best classi®-
cation performance with F1, F2 and F3 taken to-
gether, although this subset ranks third in case of
Method 1.

4.2. Ordering of individual features using Method 2

Tables 2±5 provide the degrees of importance
(w-value) of di�erent features corresponding to
these data sets obtained by the neuro-fuzzy ap-
proach. Note that their initial values were con-

sidered to be random numbers in [0,1] while
training the network. In all the cases, the value of b
is taken as 2.0.

The order of importance of the features for the
vowel data is found to be F2 > F1 > F3 (Table 2)

Table 2

w-values for the vowel data using Method 2

Feature w Order

F1 0.590065 2

F2 0.896044 1

F3 0.120944 3

Table 3

w-values for the Iris data using Method 2

Feature w Order

SL 0.058414 4

SW 0.194421 3

PL 0.965575 1

PW 0.603508 2

Table 4

w-values for the medical data using Method 2

Feature w Order

GOT 0.851015 1

GPT 0.665853 8

LDH 0.733647 2

GGT 0.055946 9

BUN 0.704469 6

MCV 0.704249 7

MCH 0.706765 4

TBil 0.706562 5

CRTNN 0.707109 3

Table 1

Importance of di�erent feature subsets using Method 1 (X > Y means X is more important than Y)

Data sets Order of importance

Vowel fF1; F2g > fF2g > fF1; F2; F3g > fF2; F3g > fF1; F3g > fF3g > fF1g
Iris {PL} > {PL,PW} > {SW,PL} > {SL,PL} > {SW,PL,PW} > {PW} > {SL,PL,PW} > {SL,SW,PL} > {SL,SW,PL,

PW} > {SL,PW} > {SL} > {SL,SW,PW} > {SW,PW} > {SL,SW} > {SW}

Medical {GOT} > {GOT,GPT} > {LDH} > {GPT,LDH} > {GOT,LDH} > {GOT,GPT,LDH} > {GOT,GGT} >

{GOT,GPT,GGT} > {LDH,GGT} > {GPT} > {GPT,LDH,GGT} > {GOT,LDH,GGT} > {GOT,GPT,LDH,

GGT} > {GGT} > {GPT,GGT} > {CRTNN} > {TBil} > {BUN} > {MCV} > {MCH}

Mango-leaf fPeg > fPe;UM=LMg > fPe; L=Bg > fPe;L=B;UM=LMg > fPe; �L� P�=Bg > fPe; �L� P �=B;UM=LMg >
fPe;L=B; �L� P �=Bg > fPe; L=B; �L� P�=B;UM=LMg >
fZ;Pe;UM=LMg > fZ;Pe;L=Bg > fZ;Pe;L=B;UM=LMg > fZ;Pe; �L� P�=Bg > fZ;Pe; �L� P�=B;UM=LMg >
fZ;Pe; L=B; �L� P�=Bg > fZ;Pe; L=B; �L� P�=B;UM=LMg >
f�L� P�=Bg > f�L� P�=B;UM=LMg > fL=B; �L� P�=Bg > fL=B; �L� P�=B;UM=LMg > fUM=LMg > � � �
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which conforms to that obtained in an earlier in-
vestigation (Pal, 1992). For the Iris data, the best
two features are found to be PL and PW (Table 3)
which are also the best two individual features
obtained by Method 1 (Table 1) and in an earlier
investigation (Steppe and Bauer, Jr., 1996). Simi-
larly for the medical data, the best two features are
GOT and LDH (Table 4) which are also the best
two individual features found by Method 1 (Ta-
ble 1). However, for the mango-leaf data, only the
best feature (Pe) obtained by Method 2 (Table 5)
matches with that of Method 1.

5. Conclusions

In this article we have demonstrated how the
concept of neuro-fuzzy computing can be ex-
ploited for developing a methodology for feature
selection in unsupervised mode. The methodology
developed involves connectionist optimization of a
fuzzy feature evaluation index, thereby determin-
ing the ranking of various features. The algorithm
considers interdependence of the original features.
Unlike the method based on the fuzzy c-means
algorithm (Bezdek and Castelaz, 1977), the algo-
rithm provides a ranking of the individual fea-
tures, without clustering the feature space

explicitly. The e�ectiveness of the method is dem-
onstrated extensively on 3-d speech (vowel) data,
4-d Iris data, 9-d medical data and a 18-d mango-
leaf data set.

Besides the neuro-fuzzy method, we have de-
veloped another unsupervised feature selection
algorithm (Method 1) where the aforesaid fuzzy
evaluation index is used alone to ®nd the best
subset of features from a given set. Here the al-
gorithm assumes, unlike the neuro-fuzzy methods,
independence of the original features. Experimen-
tal results on the ordering of original features by
both algorithms conform well to those obtained
using other methods (Pal, 1992; Steppe and Bauer,
Jr., 1996). Although a network is used in Method 2
for minimization of the evaluation index, one may
consider other optimization techniques also for
this task.

We have also provided a comparison of the
feature subset selection algorithm (Method 1) with
the k-nn classi®er. However, one may note that the
former is based on unsupervised partitioning,
whereas the later is a supervised classi®cation
method.
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