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Abstract

A method is proposed for finding decision boundaries, approximated by piecewise linear segments, for the classification
of patterns in R?, using an elitist model of a genetic algorithm. It involves the generation and placement of a set of lines
(represented by strings) in the feature space that yields minimum misclassification. The effectiveness of the algorithm is
demonstrated, for different parameter values, on both artificial data and speech data having non-linear class boundaries. Its

comparison with the k-NN classifier is also made.
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1. Introduction

Genetic Algorithms (GAs) (Goldberg, 1989) are
randomized search and optimization techniques
guided by the principles of evolution and natural
genetics. They are efficient, adaptive and robust
search processes, producing near-optimal solutions
and have a large amount of implicit parallelism. GAs
have applications in fields as diverse as VLSI design,
pattern recognition, image processing, neural net-
works, etc. (Proceedings, 1991).

In this paper, an attempt is made to study the
application of GAs for pattern classification in two-
dimensional data space. Classification is a problem
of generating decision boundaries that can success-
fully distinguish the various classes in the feature
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space. In real-life problems, the boundaries between
the different classes are usually non-linear. In the
present investigation, the characteristics of GAs have
been exploited in searching for a number of lines
which can approximate the non-linear boundaries
which provide minimum misclassification.

The feature space is generally unbounded and
continuous in nature. However, if bounding informa-
tion can be derived from the training patterns and the
space is discretized to sufficiently small intervals in
each dimension, then the classification problem can
be handled within the framework of Genetic Algo-
rithms. A distinguishing feature of this approach is
that the boundaries (approximated by piecewise lin-
ear segments) are generated explicitly for making
decisions. Note that in the conventional methods or
in multilayered perceptron-based approaches to pat-
tern classification, the generation of boundaries is a
consequence of the respective decision making pro-
cesses.
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2. Description of the methodology

We consider a fixed number of lines (say H) to
denote a decision boundary in a two-dimensional
feature space F,—F,. The value of H varies from
problem to problem, depending on the number as
well as the nature of the classes. These H lines need
to be encoded as a single string. Note that each line
provides two halfspaces — a positive halfspace and a
negative halfspace, thereby yielding two regions. For
H lines, the maximum number of such regions is 2%.
The methodology to find a near-optimal classifier is
described below.

2.1. Search space for lines

Let us assume that there are ¢r training patterns
available. Then in the first step the maximum and
minimum values of each of the two features, F, and
F,, are computed. Let these be Max,, Min,, Max,,
Min, for the features F, and F,, respectively. Then
the rectangle enclosing the sample points is given by
the vertices (Min,, Min,), (Min,, Max,),
(Max,, Min,), (Max,, Max,). Fig. 1 shows an ex-
ample. The rectangle represents the search space for
the possible lines which may be considered as candi-
dates for the formation of the decision boundary.

2.2. Line generation

In this section we describe how to generate a
finite number of parallel lines in a finite number of
directions, so that even the two closest points of the
data set, which may belong to two different classes,
can be separated by a line in at least one direction.
For this purpose, a distance dist is computed as
follows:

Let & represent the training data set. Then we
define

dist = min{dist( x, y) | x €, ye &, x +y}

Marz——» v—*
Min, ----L

Min, Ma r‘

Fig. 1. Training patterns and the enclosing rectangle.

where dist(x, y) denotes the Euclidean distance be-
tween points x and y. Consequently, the separation
between two consecutive parallel lines, in any direc-
tion, is taken to be dist/2. Thus, the maximum
number of parallel lines, max_lines, which may
have to be considered for searching in any particular
direction within the search space, is computed as

dia
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max_lines = [

where [ x] gives the smallest integer greater than or
equal to x and diag is the length of the diagonal of
the rectangle enclosing the training points.

One way of representing a line is by the equation
x, cos a+x,sin a=d. (1)

Here «a is the angle between the F-axis and the unit
normal to the line; d is the perpendicular distance of
the normal from the origin. The way of specifying
the two variables « and d is mentioned below.

® Angle (direction) specification. The entire
feature space will be spanned if the angle « is
allowed to vary in the range from 0 to w radians.
The angle space is discretized to sufficiently small
intervals as

0, ém,26m,...,

The number of discrete angles considered is then
equal to n+ 1, and 6= 1/n. An angle o can thus
be specified by a number angle in the range [0, n]
such that a = angle * 6.

® Perpendicular distance specification. Once the
angle « is fixed, the orientation of the line becomes
fixed. For a given orientation, the perpendicular
distances of the two lines passing through the base
points ((Min,, Min,) and (Max,, Min,)) of the en-
closing rectangle, from the origin, are computed
from Eq. (1). (The perpendicular distance, d, as-
sumes a negative value if it lies in the negative
halfspace of the F,-axis.) Among these, the one with
the minimum value, d_;,, is selected as the base line.
This is demonstrated in Fig. 2 where the line through
point 2 is the base line. The search space for lines
with this orientation is restricted at one end by the
base line. In other words, all lines with d <d_;,, are
automatically discarded from the search space. At
the other end is a parallel line at a perpendicular

nxdm.
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Fig. 2. Fixing the base line.

distance of (d
origin.

Therefore any line at a distance offser from the
base line can be specified by a number p in the
range [0, max_lines] such that offset = p * dist/2.
The perpendicular distance d of that line from the
origin is therefore

d=d_, + offset.

+ max_lines X (dist /2)) from the

min

A line In is now specified by the two integer
variables angle and p.

2.3. String representation and population initializa-
tion

Each string is composed of a fixed number, H, of
lines. Each line is encoded in terms of an angle
variable and a perpendicular distance variable (both
assume integer values). If the angle variable is repre-
sented by b_ang number of bits and the perpendicu-
lar distance by b_perp bits, then the length of each
string, str_len equals

str_len=(b_ang + b_perp)+ H.

The GA generally works with a fixed population size
of Pop. Initially, each binary string, of length
str_len, is generated by randomly selecting two
variables angle and p from the intervals [0, n] and
[0, max _lines] respectively, for each of the H lines
in a string.

2.4. Region identification and fitness computation

The computation of the fitness is done for each
string in the population. The fitness of a string is
characterized by the number of points it misclassi-
fies. A string with the lowest misclassification is
therefore considered to be the fittest among the
population of strings. Note that every string str,,
i=1,2,..., Pop, represents H lines denoted by ln;,
j=1L2,...  H

For each In}, the parameters [/, Iy and d"/ are
retrieved. For each training pattern point (x¥, x£%),
k=1,2,...,1r, the sign with respect to the line In},
i.e., the sign of the expression
cos a’l xf +sin o' xf—dY (2)
is found. The sign is digitized as 1 (0) if the point
lies on the positive (negative) side of the line In!.
The process is repeated for each of the lines, at the
end of which we have a string sign®, subsequently to
be referred to as the sign string. This string, of length
H, corresponds to the classification yielded by the
string str; of the population, for the kth training
pattern. The class information of the kth training
point is stored along with the sign string sign® for
str; in a linked list. This procedure is repeated for all
the ¢r pattern points.

It is to be noted that although sign® can take on at
most 27 possible values (since H lines will yield a
maximum of 2 possible classifications), all of them

LINE,

LINE,

Fig. 3. An example with H =3 and tr =8.
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Fig. 4. Link list for the given example.

may not occur in practice. These sign strings, in fact,
represent different regions of the search space. With
each such sign string, a linked list is maintained.
Each element of the list is an ordered pair indicating
a class and its cardinality. The cardinality of a class
denotes the number of training samples of that class
which have been identified to fall into the region
represented by the sign string.

The maximum class cardinality in the list for each
sign string is found next. Then the region corre-
sponding to that sign string is considered to provide
the demarcation for the class possessing the maxi-
mum cardinality. All the points belonging to other
classes which have been included in the same list,
i.e. which lie in the same region, are considered to

825 1111111112111111111111111131111
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1111111112111111111111111111111111
111111211111111111111111111111111111

11111111111 1111111111
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11111111 11111111
1111111 2 22222222 1111111
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111111 2222 22222222 11111
11111 222222 22222222 11111
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11111 2222 22222222 11111
111111 22 22222222 11111
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1111111 111111
11111111 1111111

111111111213211311113311111111311311121111
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300 — 11111111111111111111112311111111

|
800 2750
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Fig. 5. Artificial data.

be misclassified. The number of misclassifications
corresponding to all possible sign strings are summed
up to give the resulting misclassification for the
entire classifier string. It may so happen that the
maximum cardinalities for two (or more) different
sign strings may correspond to the same class. In that
case, all these strings (correspondingly, union of all
the different regions) are considered to provide the
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Fig. 6. Vowel data.
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Fig. 7. Classification of 90% test data set using the final boundary
generated with 10% training data set for H = 6. Training patterns
are underscored.

region for the class. A tie is resolved arbitrarily. The
example stated below will clarify this method.

Example. Let there be 8 training patterns belonging
to two classes, 1 and 2, in a two-dimensional feature
space F|—F,. Let us assume H to be 3, i.e., 3 lines
will be used to classify the points. Let the training
set and a set of 3 lines be as shown in Fig. 3. Each
point i i=1,2,...,8, j=1, 2, indicates that it is
the ith training point and that it belongs to class j.
Let the positive and the negative sides of the lines be
as shown in Fig. 3. Then, point 1, yields a sign
string 111 since it lies on the positive side of all the
three lines Line,, Line,, and Line,. The correspond-
ing linked list formed for all the eight points is
shown in Fig. 4. It is to be noted that one region
(denoted by sign string 110) is accidentally empty,
while two regions (100 and 101) do not exist. The
number of misclassifications for the example is found

to be 1+ 1=2, one each for sign strings 001 and
111. Note that in this example both the strings 000
and 001 are providing the regions for class 2 (assum-
ing that the tie for region 111 is resolved in favour of
class 1).

In a similar fashion, the number of misclassified
cases for all the strings in the population is com-
puted. If the number of misclassified points for a
string is denoted by miss, then the fitness of the
string is computed as ¢r — miss, where tr is the
cardinality of the training set. The best string of each
generation or iteration is the one which has the
fewest misclassifications. This string is stored after
each iteration. If the best string of the previous
generation is found to be better than the best string
of the current generation, then the previous best
string replaces the worst string of the current genera-
tion. This is known as the elitist strategy, where the
best string seen upto the current generation is propa-
gated to the next generation.

2.5. Genetic operators

Selection. The roulette wheel selection procedure
has been adopted here to implement a proportional
selection strategy. Each string is allocated a slot of
the roulette wheel subtending an angle, proportional
to its fitness, at the center of the wheel. A random
number in the range of 0 to 2 is generated. A copy
of a string goes into the mating pool if the random
number falls in the slot corresponding to the string.
For a fixed population size Pop, this process is
repeated Pop times, at the end of which as many
strings go into the mating pool for further operations.

Crossover. A pair of strings is picked up at random
and the single-point crossover operator is applied

Table 1
Correct classification (%) of the artificial data
Class Lines

8 7 6 5 4 3 2
1 98.55 92.01 100.00 100.00 97.83 93.24 92.74
2 80.68 97.70 86.21 75.00 63.63 70.45 39.08
Overall % 95.41 93.00 97.41 95.62 91.83 89.24 83.40
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Table 2
Correct classification (%) of the vowel data
Class Lines

8 7 6 5 4 3 2
8 39.06 26.56 41.54 29.69 0.00 0.00 0.00
a 86.25 80.00 86.42 82.50 75.00 93.75 0.00
i 85.71 87.66 85.81 87.66 76.62 86.36 87.66
u 71.85 62.96 88.97 87.41 97.04 66.67 0.00
e 72.04 91.93 80.21 68.28 69.89 88.71 0.00
o 83.85 83.85 70.37 78.26 67.70 79.50 100.00
Overall % 75.90 77.82 78.24 75.77 70.25 75.77 37.95

according to a fixed crossover probability. For this
operation, a random number cr_pt in the range of 0
to str_len is generated. This is called the crossover
point. The portion of the strings lying to the right of
the crossover point are interchanged to yield two
new strings.

Mutation. Mutation is done on a bit by bit basis (for
binary strings) (Goldberg, 1989; Filho and Tre-
leaven, 1994) according to some mutation probabil-
ity mut_prob. So, theoretically, more than one bit
may be flipped in the same string if mut_prob so
permits. The mutation probability is varied with the
number of iterations. Initially it has a high value,
thus ensuring a lot of diversity in the population. As
training progresses and the GA reaches the vicinity
of an optimal solution, mut_prob is decreased. Fi-
nally, to ensure that the GA does not get stuck at a
local optimum, mut_prob is increased again.

Termination. The process of fitness computation,
selection, crossover and mutation is continued for a
fixed number of iterations or till the termination
condition (a string with misclassification number
reduced to zero) is achieved.

3. Implementation and results

The effectiveness of the methodology described
earlier has been demonstrated on both artificial data
(Fig. 5) and real-life speech data (Fig. 6), both of
which are not linearly separable. The artificial data
set consists of 557 samples and has two classes, 1
and 2. X- and Y-coordinates represent the two fea-

tures in a Euclidean space. The vowel data set
corresponds to 871 Indian Telugu vowel sounds (Pal
and Dutta Majumder, 1977). These were uttered in a
consonant-vowel-consonant context by three male
speakers in the age group of 30-35 years. The data
set has two features corresponding to the first and
second vowel formant frequencies and six classes
{8, a, i, u, e, o}.

For our experiment, a fixed population size of 10
was chosen. The crossover probability was fixed at
0.8. A variable value of mut_prob was selected
from the range [0.015, 0.333]. Initially it had a high
value, gradually decreasing at first, and then increas-
ing again in the later stages of the algorithm. 100
iterations were performed with each value of the
mutation probability. The process was executed for a
maximum of 1500 iterations in case it did not attain
a solution with zero misclassification. The experi-
mental results are described below when the size of
the training set is considered to be 10%, i.e. perc =
10.

Table 1 shows the classwise recognition scores
and the overall recognition score for the artificial
data (Fig. 5) taking the values of H to be 8, 7, 6, 5,
4, 3 and 2 successively. Since this data set has a very
small class totally surrounded by a larger class, the

Table 3

Comparative recognition scores (%) for the artificial data

Class k-NN GA
k=1 k=3 k=yur H=6

1 100.00 99.76 92.75 100.00

2 90.91 87.50 63.63 86.21

Overall % 98.40 97.60 87.64 97.41
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Table 4
Comparative recognition scores (%) for vowel data
Class k-NN GA
k=1 k= k=vir H=6
8 43.08 58.46 44.61 41.54
a 59.26 72.84 83.95 86.42
i 85.16 87.10 87.10 85.81
u 78.68 79.41 90.44 88.97
e 68.98 67.38 67.38 80.21
o 82.72 78.40 69.14 70.37
Overall % 73.53 75.44 75.44 78.24

classwise recognition score in this case is of greater
importance than the overall score. Thus, it is seen
from Table 1, H = 2 is not a good choice in this case
since the recognition of class 2 is very poor, al-
though the overall score is reasonably good. Fig. 7
shows the decision boundaries obtained from 10%
training data (for H = 6) and their ability in classify-
ing the remaining 90% test data. The training pattern
points are underscored in the figure. This boundary
was obtained on termination of training after 538
iterations when a string with no misclassified points
had been found.

Table 2 shows the classification results on the
vowel data. Here too, for H =2, the recognition
score is drastically reduced, which is as expected.
Again H = 6 provided the best recognition score as
in the previous case. In each case, class 6 is classi-
fied very poorly as this is the class with maximum
overlap. This was also found in (Pal and Dutta
Majumder, 1977) where a fuzzy set theoretic classi-
fier and a Bayes classifier were used for this prob-
lem.

A comparison of the performance of our algo-
rithm (for H=6 and perc =10) with the k-NN
classifier (Tou and Gonzalez, 1974), which is also
capable of generating piecewise linear boundaries, is
shown in Tables 3 and 4, for the two data sets
respectively, where the value of k& is chosen as 1, 3
and Vir . It is apparent from the tables that the results
of the GA-based algorithm are comparable to those
of the k-NN classifier, with a better performance for
the overlapping vowel data set for all values of &.

4. Conclusions and discussion

A method of determining class boundaries in R?
using GAs has been described along with its demon-
stration on both artificial and real-life non-linearly
separable data sets. The results are found to be
comparable to those of the k-NN classifier.

An observed feature of the methodology is that
increasing the number of lines (for approximating
the decision boundaries) does not necessarily result
in an increase of the classification performance. The
reason behind this is that increasing the number of
lines means tuning more and more to the peculiari-
ties in the training set, which is not necessarily
beneficial to the test set. A point to be noted here is
that although one line is redundant in Fig. 7, for
H =6, yet assuming H =5 produces an inferior
result as seen from Table 1. A reason behind this
may be the insufficient knowledge about the termina-
tion of the algorithm.

It is known in the literature (Bhandari et al.,
1994) that as the number of iterations goes towards
infinity, the Elitist model of GA will certainly result
in the optimal string. Thus, for the problem under
consideration, for infinitely many iterations, any
value of H will certainly provide the minimal mis-
classification for that H. However, a proper choice
of H, which provides the least misclassification is of
crucial importance.

Proper selection of control parameters for an ap-
plication of GA is still an open issue. In this work
we have taken a fixed population size and crossover
probability. mut_prob is kept variable, having a
high initial value, then decreasing and finally in-
creasing again. Ideally, this cycle of increasing and
decreasing mut _prob should continue for a number
of times. We have terminated it after just one cycle
due to practical limitations.
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