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Fuzzy Multi-Layer Perceptron, 
Inferencing and Rule Generation 

Sushmita Mitra and Sankar K. Pal, Fellow, IEEE 

Abstmct- A connectionist expert system model, based on a 
fuzzy version of the multilayer perceptron developed by the 
authors, is proposed. It infers the output class membership 
value(s) of an input pattern and also generates a measure of 
certainty expressing confidence in the decision. The model is 
capable of querying the user for the mure important input feature 
information, if and when required, in case of partial inputs. 
Justification for an inferred decision may be produced in rule 
form, when so desired by the user. The magnitudes of the con- 
nection weights of the trained neural network are utilized in every 
stage of the proposed inferencing procedure. The antecedent and 
consequent parts of the justificatory rules are provided in natural 
forms. The effectiveness of the algorithm is tested on the speech 
recognition problem, on some medical data and on artificially 
generated intractable (linearly nonseparable) pattern classes. 

I. INTRODUCTION 

RTIFICIAL neural networks [ 1,2] are massively parallel A interconnections of simple neurons that function as a 
collective system. An advantage of neural nets lies in their 
high computation rate provided by massive parallelism, so 
that real-time processing of huge data sets becomes feasible 
with proper hardware. Information is encoded among the 
various connection weights in a distributed manner. The utility 
of fuzzy sets [3, 4, 51 lies in their capability in modelling 
uncertain or ambiguous data so often encountered in real 
life. There have been several attempts recently [6, 7, 81 in 
making a fusion of fuzzy logic and neural networks for better 
performance in decision making systems. The uncertainties 
involved in the input description and output decision are taken 
care of by the concept of fuzzy sets while the neural net theory 
helps in generating the required decision regions. 

An expert system [9, 101 is a computer program that func- 
tions in a narrow domain dealing with specialized knowledge 
generally possessed by human experts. It is expected to be able 
to draw conclusions without seeing all possible information 
and be capable of directing the acquisition of new information 
in an efficient manner. It should also be able to justify a 
conclusion arrived at. The major components of an expert 
system are the knowledge base, inference engine and user 
interface. Traditional rule-based expert systems encode the 
knowledge base in the form of If-Then rules while the connec- 
tionist expert system [ 111 uses the set of connection weights 
of the trained neural net model for this purpose. However, 
the knowledge base itself is a major source of uncertain 
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information [ 101 in expert systems, the causes being unreliable 
information, imprecise descriptive languages, inferencing with 
incomplete information, and poor combination of knowledge 
from different experts. 

In this work we consider an application of the fuzzy version 
of the MLP (already developed by the authors) [ 121 to design 
a connectionist expert system. The model is expected to be 
capable of handling uncertainty and/or impreciseness in the in- 
put representation, inferring output class membership value(s) 
for complete and/or partial inputs along with a certainty 
measure, querying the user for the more essential missing 
input information and providing justification (in the form of 
rules) for any inferred decision. Note that the input can be in 
quantitative, linguistic or set forms or a combination of these. 
The model is likely to be suitable in data-rich environments 
for designing classijication-type expert systems. 

Initially, in the leaming phase the training samples are 
presented to the network in cycles until it finally converges 
to a minimum error solution. The connection weights in this 
stage constitute the knowledge base. Finally, in the testing 
phase the network infers the output class membership values 
for unknown test samples. When partial information about a 
test vector is presented at the input, the model either infers 
its category or asks the user for relevant information in the 
order of their relative importance (decided from the learned 
connection weights). A measure of confidence (certainty) 
expressing belief in the decision is also defined. 

If asked by the user, the proposed model is capable of 
justifying its decision in rule form with the antecedent and 
consequent parts produced in linguistic and natural terms. The 
connection weights and the certainty measure are used for this 
purpose. It is expected that the model may be able to generate 
a number of such rules in If-Then form. These rules can then 
also be used to automatically form the knowledge base of a 
traditional expert system. 

The effectiveness of the algorithm is demonstrated on the 
speech recognition problem, on some medical data and on 
artificially generated intractable (linearly nonseparable) pattem 
classes. 

n. FUZZY VERSION OF THE MLP 

The MLP [2, 13, 141 consists of multiple layers of sigmoid 
processing elements or neurons that interact using weighted 
connections. Consider the network given in Fig. 1. The output 
of a neuron in any layer other than the input layer (h > 0) 
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Fig. 1. The fuzzy neural network with three hidden layers. 

is given as 

where y! is the state of the i th neuron in the preceding hth 
layer and is the weight of the connection from the i th  
neuron in layer h to the j t h  neuron in layer h + 1. For nodes in 
the input layer we have y: = xy, where xy is the j t h  component 
of the input vector. 

The Least Mean Square error in output vectors, for a given 
network weight vector w, is defined as 

where yfc(w) is the state obtained for output node j in layer 
H in input-output case c and dj,c is its desired state specified 
by the teacher. One method for minimization of E is to apply 
the method of gradient-descent by starting with any set of 
weights and repeatedly updating each weight by an amount 

dE A~jh;(t) = - 6 -  + ~Awjh;(t - 1) 
d W j i  

(3) 

where the positive constant E controls the descent, 0 5 Q 5 1 
is the momentum coefficient and t denotes the number of 
the iteration currently in progress. After a number of sweeps 
through the training set, the error E in (2) may be minimized. 

The fuzzy version of the MLP, discussed here, is based on 
the model reported in [12] and is capable of classification of 
fuzzy pattems. Each input feature F3 is expressed in terms 
of membership values indicating a measure of belongingness 
to each of the linguistic properties low, medium and-high 
modelled as 7r-sets [4]. An n-dimensional pattern F, = 
[Fal,  Fap, . . . , F,,] is represented as a 3n-dimensional vector 

f l  = [ P l n w ( F . ~ )  <@z), k”lum(F,1)  <@z)) Phigh(F,I) (Fa), 
. . . , Phigh(F,,)(@z)] (4) 

where the p value indicates the membership to the correspond- 
ing linguistic w-set along each feature axis. The overlapping 

structure of the three w-functions for a particular input feature 
Fj ( j th axis) is the same as reported in [12]. 

It is to be noted here that an n-dimensional feature space is 
decomposed into 3” overlapping sub-regions corresponding to 
the three primary properties. This enables the model to utilize 
more local information of the feature space [ 151 and is found 
to be more effective in handling linearly nonseparable pattem 
classes having nonconvex decision regions [ 161. Therefore, 
numerical data are also fuzzified to enable a better handling 
of the feature space. Besides, this three-state structure of (4) 
helps in handling linguistic input suitably. 

When the input feature is linguistic, its membership values 
for the 7r-sets low, medium and high are quantified as 

{ 0:5,0&6, OF} 
l o w r  __ - - 

{ Oi7, O:, g} 
medium - - 

{ 0:2, Oi6, Or} 
high = - - - 

When Fj is numerical we use the %-fuzzy sets [17] (in the 
one-dimensional form), with range [0, 13, given as 

where X > 0 is the radius of the %-function with c as the central 
point. The choice of A’s and c’s for each of the linguistic 
properties low, medium and high are the same as reported in 
[121. 

To model real-life data with finite belongingness to more 
than one class, we clamp the desired membership values (lying 
in the range [O, 11) at the output nodes during training. For 
an 2-class problem domain, the membership of the ith pattem 
to class c k  is defined as 

(7) 

where z ; k  is the weighted distance between the i th  pattem 
and the mean of the kth class (based on the training set) 
and the positive constants F d  and Fe are the denominational 
and exponential fuzzy generators controlling the amount of 
fuzziness in this class-membership set. For the i t h  input pattem 
we define the desired output of the j t h  output node as 

d j  = p j ( F i )  (8) 

where 0 5 d j  5 1 for all j .  When the pattern classes are 
known to be nonfuzzy, z;k of (7) may be set to 0 for a 
parti5ular class and infinity for the remaining classes so that 

The t of (3) is gradually decreased in discrete steps, taking 
values from the chosen set (2, 1, 0.5, 0.3, 0.1, 0.05, 0.01, 
0.005,0.001}, while the momentum factor a is also decreased 

/ J k ( F i )  E 

1121. 
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111. INFERENCING IN THE FUZZY EXPERT SYSTEM MODEL 
The most difficult, time-consuming and expensive task in 

building an expert system is constructing and debugging its 
knowledge base. In practice the knowledge base construc- 
tion can be said to be the only real task in building an 
expert system, given the proliferating presence of expert 
shells. Several approaches have been explored for easing 
this knowledge-acquisition bottleneck. Connectionist expert 
systems offer an altemative approach in this regard. Rules are 
not required to be supplied by humans. Instead, the connection 
weights encode among themselves, in a distributed fashion, the 
information conveyed by the input-output combinations of the 
training set. Such models are especially suitable in data-rich 
environments and enable human intervention to be minimized. 
Moreover, using fuzzy neural nets for this purpose, helps one 
to incorporate the advantages of approximate reasoning [ 181 
into the connectionist expert system. This leads to the design 
of fuzzy connectionist expert systems [19, 201. A study of 
neuro-fuzzy expert systems may be found in [21]. 

In this work we consider an (H + 1)-layered fuzzy MLP 
(as depicted in Fig. 1) with 3n neurons in the input layer and 
1 neurons in the output layer, such that there are H - 1 hidden 
layers. The input vector with components xy represented as 
F‘ by (4) is clamped at the input layer while the desired 
E-dimensional output vector with components dj by (8) is 
clamped during training at the output layer. At the end of 
the training phase the model is supposed to have encoded 
the input-output information distributed among its connection 
weights. This constitutes the knowledge base of the desired 
expert system. Handling of imprecise inputs is possible and 
natural decision is obtained associated with a certainty measure 
denoting the confidence in the decision. The model is capable 
of inferencing based on complete and/or partial information, 
querying the user for unknown input variables that are key to 
reaching a decision, and producing justifications for inferences 
in the form of If-Then rules. Fig. 2 gives an overall view of 
the various stages involved in the process of inferencing and 
rule generation. 

A. Input Representation 
The input can be in quantitative, linguistic or set forms or 

a combination of these. It is represented as a combination of 
memberships to the three primary linguistic properties low, 
medium and high as in (4), modelled as a-functions. When 

the information is in exact numerical form like F3 is T I ,  say, 
we determine the membership values in the corresponding 
3-dimensional space of (4) by the r-function using (6). 

When the input is given as Fj is prop (say), where prop 
stands for any of the primary linguistic properties low, medium 
or high, the membership values in the 3-dimensional space of 
(4) are assigned using the a-sets of (5 ) .  The proposed model 
can also handle the linguistic hedges [15] very, more or less 
(Mol)  and not. The sets very low and low or, say, very high 
and high are considered to be pairs of different but overlapping 
sets [ 151, such that the minimum (maximum) feature value has a 
higher membership to the set very low (very high) as compared 
to that in the set low (high). Hence a-functions are found to 
be appropriate for modelling these linguistic sets. The hedge 
not is defined as 

In the set form, the input is a mixture of linguistic hedges 
and quantitative terms. Since the linguistic term increases the 
impreciseness in the information, the membership value of a 
quantitative term is lower when modified by a hedge [15]. The 
modifiers used are about, less than, greater than and between. 

If any input feature Fj is not available or missing, we clamp 
the three corresponding neurons x: = = = 0.5, 
s u c h t h a t k = ( j - 1 ) * 3 + l . H e r e l ~ k : 5 3 n a n d l  < j i n ,  
where n is the dimension of the input pattem vector. We use 

as 0.5 represents the most ambiguous value in the fuzzy 
membership concept. We also tag these input neurons with 
noinfi = noin&+, = noin&+, =. 1. Note that in all other 
cases the variable noinfi is tagged with 0 for the corresponding 
input neuron k ,  indicating absence of ambiguity in its input 
information. 

The appropriate input membership values obtained by 
(-,lo), with/without the hedges or modifiers, are clamped 
at the corresponding input neurons. 

B .  Forward Pass 
The I-dimensional output vector with components 9: is 

computed using (1) in a single forward pass. This output 
vector, with components in the range [0, 11, gives the inferred 
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membership values of the test pattem to the 1 output classes. 
Associated with each neuron j in layer h + 1 are also 

its confidence estimation factor cant+' 
a variable unknown:" providing the sum of the weighted 
information from the preceding ambiguous neurons a in 
layer h having noinf = 1 
a variable known;+1 giving the sum of the weighted in- 
formation from the (remaining) non-ambiguous preceding 
neurons with noinf = 0. 

Note that for a neuron j in layer h + 1 with no preceding 
neurons i tagged with noint  = 1, we have unknown;" = 0. 
For neuron j we define 

a 

i 

for all i having noinff = 1 and 

z 

for all i with noinf = 0, where for neurons in layer h > 0 
we have 

(13) 
1 if lknownjhI 5 lunknowntl 

noin8 = { 0 otherwise 

For neuron j in the input layer (h = 0), the value of noin8 
is assigned as explained earlier. Neuron j with noin8 = 1 
signifies the lack of meaningful information. For an input 
neuron this implies missing input information while for other 
neurons (h > 0) this is an indicator to the transmission of 
a larger proportion of weighted ambiguous information as 
compared to more certain information from the input layer. 
Using (1,ll-13), we define 

Note that con f! is comparable either among the set of neurons 
having noin fjh = 1, or among those with noin f! = 0, but not 
between the neurons belonging to these two different sets. 
In the output layer (h = H) if noin f fl = 0 then c o n f y  

belongingness to output class j .  Hence this is a measure of 
the confidence in the decision. However if noinfy  = 1 then 
c o n f y  gives a measure of the confidence of the ambiguous 
neuron output. This is because as unden? by (11) (absolute 
sum of connection weights from ambiguous preceding layer 
neurons) increases, the confidence con fjh decreases and vice 
versa. 

If there is no output neuron j with noinf = 1, then the 
system finalizes the decision inferred irrespective of whether 
the input information is complete or partial. In case of par- 
tial inputs, this implies presence of all the necessary fea- 
tures required for taking the decision. It may be. mentioned 
that the weights (learned during training), that constitute the 

is higher for neurons having larger yj €2 , implying a greater 

knowledge-base, play an important part in determining whether 
a missing input feature information is essential to the final 
inferred decision or not. This is because these weights are 
used in computing the noint 's  for the neurons by (11-13) 
and these in tum determine whether the inferred decision may 
be taken. 

It is to be noted that the difficulty in arriving at a particular 
decision in favor of class j is dependent not only on the 
membership value y r  but also on its differences with other 
class membership values yy, where i # j .  To take this factor 
into account, a certainty measure (for each output neuron) is 
defined as 

bel; = yj" - y y  (15) 
i#.i 

where bel; 1. The higher the value of bel? (> 0), the lower 
is the difficulty in deciding an output class j and hence the 
greater is the degree of certainty of the output decision. 

C. Querying 
If the system has not yet reached a conclusion at the output 

layer (as explained in Section III. B.) to complete the session, 
it must find an input neuron with unknown activation and ask 
the user for its value. If there is any neuron j in the output layer 
H with noinfy = 1 by (13), we begin the querying phase. 

We select the unknown output nehron jl from among the 
neurons with n o i n f y  = 1 such that c o n e  by (14) (among 
them) is maximum. This enables starting the process at an 
output neuron that is most certain among the ambiguous 
neurons. We pursue the path from neuron jl in layer H, 
in a top-down manner, to find the ambiguous neuron il in 
the preceding layer (h  = H - 1) with the greatest absolute 
influence on neuron 11. For this, we select i = il such that 

IwtlL1 * y,,h, I = r y x  I W ~ , ~  * y: I where noinf? = 1 (16) 

This process is repeated until the input layer (h = 0) is 
reached. Then the model queries the user for the value of 
the corresponding input feature u1 such that 

(17) 

where 1 5 il 5 3n, 1 5 u1 5 n and n is the dimension of 
the input pattem vector. 

When the user is asked for the value of a missing variable, 
she can respond in any of the forms stated in Section 1II.A. 
However if a missing input variable of (1  0) is found to be 
missing once again, we now tag it as unobtainable. This 
implies that the value of this variable will not be available 
for the remainder of this session. The inferencing mechanism 
treats such variables as known with values T:, = x:l+l = 

= 0.5 but with noinfi, = noinffl+, = noinf:,+, = 0 
such that kl = (u1 - 1) * 3 + 1. We now have 

u1 = (il - 1) mod 3 + 1 

information { - Oi5 - Oh5 - Oi5} 

Note the difference from (IO) in the value of noinfi and its 
effect in the confidence estimation by (1 1-14). The response 
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from an unobtainable input variable might allow the neuron 
activations in the following layers to be inferred, unlike that of 
a missing variable. Besides, a missing variable has a temporary 
value of 0.5 that may be changed later in the session, whereas 
an unobtainable variable has a knownfinal value of 0.5. 

Once the requested input variable is supplied by the user, 
the procedure in Section 111. B. is followed either to infer 
a decision or to again continue with further querying. On 
completion of this phase all neurons in the output layer have 
noinf," = 0 by (13). 

D. Justification 

The user can ask the system why it inferred a particular 
conclusion. The system answers with an If-Then rule appli- 
cable to the case at hand. It is to be noted that these If-Then 
rules are not represented explicitly in the knowledge base; they 
are generated by the inferencing system from the connection 
weights as needed for explanations. As the model has already 
inferred a conclusion (in this stage), we take a subset of 
the currently known information to justify this decision. A 
particular conclusion regarding output j is inferred depending 
upon the certainty measure beE7. It is ensured that output 
nodes j with bel7 > 0 (or, large y y  values) are chosen 
for obtaining the justification. This is because explanation 
becomes feasible only when the decision is not uncertain. 

Output Layer: Let the user ask for the justification about 
a conclusion regarding class j. Starting from the output layer 
h = H, the process continues in a top-down manner until 
the input layer (h = 0) is reached. In the first step, for 
layer H, we select those neurons i in the preceding layer 
that have a positive impact on the conclusion at output 
neuron j. Hence we choose neuron i of layer H - 1 if 

> 0. Let the set of m ~ - l  neurons of layer H - 
1, so selected, be a?-',aF-',. . . , a H - l  m H - J .  and let their { 
{wet H - - L  = wz;',, . , ,wet H - I  = . For the re- 
connection weights to neuron j in layer 

maining layers we obtain the maximum weighted paths through 
these neurons down to the input layer. 

Intermediate Layers: We select neuron i in layer 0 < h < 
H - l i f  

)" given as a1 Jam,-, 

9; > 0.5, and 
weti& = maxiwet h + l  + wtki]  (19) 

,h+l 

such that wetih > 0. Let the set of mh neurons so chosen be 
given by {a:, a i ,  . . . , a k h }  and their cumulative link weights 
to neuron j in layer H be (wet,:, wet,;, . . . , wetah 
respectively, by (19). Note that this heuristic ensures that 
each of the selected mh neurons have a significant output 
response yt .  This implies choosing a path with neurons that 
are currently active for deciding the conclusion that is being 
justified. It also enables each neuron i to lie along one of the 
maximum weighted paths from the input layer (h = 0) to the 
output node j in h = H ,  by choosing only one of the mh+l 

previously selected paths that provides the largest net weight 
Wetah * 

1 mh 

Input Layer: Let the process of (19) result in mo chosen 
neurons (paths) in (from) the input layer (h = 0). These 
neurons indicate inputs that are known and have contributed 
to the ultimate positivity of the conclusion at neuron j in the 
output layer H. It may happen that mo = 0, such that no clear 
justification may be provided for a particular input-output case. 
This implies that no suitable path can be selected by (19) and 
the process terminates. 

Let the set of the selected mo input neurons be 
{ay, U!&. . . , a:,} and their corresponding path weights 
to neuron 3 in layer H be wetay, wet,;, . . . , wet,o }. we 
arrange these neurons in the decreasing order of their net 
impacts, where we define the net impact for neuron i as 

net impact, = yp * wet,o 

Then we generate clauses for an If-Then rule from this ordered 
list until 

{ m 0  

wet;: > 2 weti; (20) 
in 

where i, indicates the input neurons selected for the clauses 
and in denotes the input neurons remaining from the set 
{ay ,  U:, ..., such that 

l i s l  + (in1 = mo 

and li,l, lz,l refer respectively to the number of neurons 
selected and remaining from the said set. This heuristic allows 
selection of those currently active input neurons contributing 
the most to the final conclusion (among those lying along the 
maximum weighted paths to the output node j) as the clauses 
of the antecedent part of a rule. Hence, it enables the currently 
active test pattern inputs (current evidence) to influence the 
generated knowledge base (connection weights learned during 
training) in producing a rule to justify the current inference. 

Clause Generation: For a neuron i,, in the input layer 
(h = 0), selected for clause generation, the corresponding 
input feature U,, is obtained as in (17). The antecedent of the 
rule is given in linguistic form with the linguistic property 
being determined as 

if i,l - 3 ( ~ , 1  - 1) = 1 
prop = medium if i,l - 3 ( ~ , 1  - 1) = 2 (21) ('"" high otherwise 

Here, the 3-dimensional components for the input feature 
U,, correspond to the appropriate part of the test pattern vector 
(given in quantitative, linguistic or set form and converted to 
the respective 3-dimensional space of (4)). Suppose that the 
relevant input feature had been initially supplied in linguistic 
form as medium with the individual components given by (5). 
The neuron i,, selected for clause generation by (19-20) can, 
however, result in feature U,, corresponding to any of the 
three properties low, medium or high by (21). This is because 
the path generated during backtracking is primarily determined 
by the connection weight magnitudes encoded during training. 
However, the test pattern component magnitudes at the input 
also play a part in determining whether the input neuron is, 
can be selected or not. In the example under consideration, 



56 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 1. JANUARY 1995 

the input feature components being (0.7, 0.95, 0.7}, the 
linguistic property prop can be either low or medium or high 
and is not constrained to be medium only. Therefore, feature 
properties highlighted for the input pattem may not necessarily 
be reflected in a similar manner while selecting the value of 
prop in feature uQl for a clause of the rule. In fact, such an 
input feature component may also not be selected at all as an 
antecedent clause. 

A linguistic hedge very, more or less or not may be attached 
to the linguistic property in the antecedent part, if necessary. 
We use the mean square distance d(uB1,pr,) between the 
3-dimensional input values at the neurons corresponding to 
feature us1 and the linguistic property prop by (21), with or 
without modifiers, represented as pr,. The corresponding 3- 
dimensional values of p r ,  (without modifiers) for prop are 
given by (5). The incorporation of the modifiers very, more 
or less and not result in the application of different operators 
(as reported in [15]) to generate the corresponding modified 
values for pr,. That value of pr, (with/without modifiers) for 
which d(uS1, pr,)  is the minimum is selected as the antecedent 
clause corresponding to feature U,, (or neuron is,) for the rule 
justifying the conclusion regarding output neuron j. 

This procedure is repeated for all the lisI neurons selected 
by (20) to generate a set of conjunctive antecedent clauses 
for the rule regarding inference at output node j. All input 
features (of the test pattern) need not necessarily be selected 
for antecedent clause generation. 

Consequent Deduction: The consequent part of the rule can 
be stated in quantitative form as membership value yf to 
class j. However a more natural form of decision can also be 
provided for the class j, having significant membership value 
y f ,  considering the value of bel$ of (15). For the linguistic 
output form, we use 

1. very likely for 0.8 5 bel: 5 1 
2. likely for 0.6 5 bel: < 0.8 
3. more or less likely for 0.4 5 bel: < 0.6 
4. not unlikely for 0.1 5 bel: < 0.4 
5 .  unable to recognize for bel$ < 0.1 
In principle it should be possible to examine a connectionist 

network and produce every such If-Then rule. These rules can 
also be used to form the knowledge base of a traditional expert 
system. 

An Example: Consider the simple 3-layered network given 
in Fig. 3 demonstrating a simple rule generation instance 
regarding class 1. Let the paths be generated by (19). A 
sample set of connection weights wti, input activation y: 
and the corresponding linguistic labels are depicted in the 
figure. The solid and dotteddashed paths (that have been 
selected) terminate at input neurons is and in respectively, 
as determined by (20). The dashed lines indicate the paths 
not selected by (19), using the wti and yf values in the 
process. Let the certainty measure for the output neuron under 
consideration be 0.7. Then the rule generated by the model in 
this case to justify its conclusion regarding class 1 would be 

If F1 is very medium AND F2 is high 
then likely class 1. 

-Selected paths W l t h  Class 1 
neurons is 

- Selected paths with 
neurons i n  

Poms not selected 

_ _  
_ _  _ _  '. 

0.49 0.97 0.49 0.02 0.6 0.95 0.49 0.97 0.49 0.02 0.6 0.95 
L M H L M H - +- 

F1 62 

Input pattern 

Fig. 3. 
tracking. 

An example to demonstrate the rule generation scheme by back- 

In this case, the netpath weights by (20) at the end of the clause 
selection process are found to be 2.7 (= 1.6 + 1.1) and 1.05 
for the selected is and not selected a, neurons respectively 
such that 2.7 > 2 * 1.05. The modifier very is obtained by 
applying appropriate operators [ 151, and this is found to result 
in the minimum value for d(uS1,pr,). 

To demonstrate querying, let us consider F1 to be initially 
unknown. Then yy = yg = yg = 0.5, with the other values 
corresponding to those given in Fig. 3. From (1 1-13), we have 
known: = 0.57, known; = 0.618, unknown: = 0.575, 
unknown: = 0.65, and therefore noinf; = n o i n f i  = 
noinf;  = 1. As the system cannot reach any conclusion in 
this state, the querying phase is started. In this case, the only 
unknown input feature is Fl and it can be supplied in any of 
the forms mentioned in Section 111. A. 

Iv. IMPLEMENTATION AND RESULTS 

The above-mentioned algorithm was first tested on a set 
of 871 Indian Telugu vowel sounds. These were uttered in a 
Consonant-Vowel-Consonant context by three male speakers 
in the age group of 30 to 35 years. The data set has three 
features; FI ,  F2 and F3 corresponding to the first, second and 
third vowel formant frequencies obtained through spectrum 
analysis of the speech data. Thus the dimension of the input 
vector in (4) for the proposed model is 9. Note that the 
boundaries of the classes in the given data set are seen to 
be ill-defined (fuzzy). Fig. 4 shows a 2D projection of the 3D 
feature space of the six vowel classes (8, U ,  2, U ,  e ,  0) in the 
Fl - Fz plane (for ease of depiction). The training data has 
the complete set of input features in the 9-dimensional form 
while the desired output gives the membership to the 6 vowel 
classes. The test set uses complete/partial sets of inputs and 
the appropriate classification is inferred by the trained neural 
model. 

The model has also been implemented on a medical diagno- 
sis problem that deals with kafu-mar [22], a tropical disease, 
using a set of 68 patient cases. The input features are the 
symptoms while the output indicates the presence or absence 
of the disease. The symptoms are the measurements of blood 
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Fig. 5. Pattern Set A in the F1 - Fz plane. 

urea (mg %), serum creatinine (mg %), urinary creatinine (mg 
%) and creatinine clearance (mumin) indicated respectively as 
F1, Fz, F3 and F4. These are represented in the linguistic form 
of (4). The training data has the complete set of symptoms with 
the desired classification indicating presence or absence of the 
disease. 

Lastly, the model was used on two sets (A, B respectively) 
of artificially generated intractable (linearly nonseparable) 
pattem classes represented in the 2D feature space F1 - Fz, 
each set consisting of 880 pattern points. These are depicted 
in Figs. 5-6. The training set consists of the complete pattem 
vectors in the 6-dimensional form of (4). 

A. Vowel Data 

The details regarding the classification performance on 
various training and test sets as well as the choice of the 
parameters for the said model (on the vowel data) have already 
been reported in [12]. Here we demonstrate a sample of 
the inferencing ability of a trained neural model (with five 
layers having 10 nodes per hidden layer) that functions as 
a knowledge base for the vowel recognition problem. It was 
trained using 50% samples from each representative class. The 
results are demonstrated in Tables 1-111. 

Table I illustrates the inferred output responses of the 
proposed model on a set of partial and complete input feature 
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Fig. 6. Pattem Set B in the F1 - F2 plane. 
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vectors. It is observed that often the two features F1 and 
F2 are sufficient for reaching a conclusion. This may easily 
be verified from the 2D representation of the vowel data in 
Fig. 4. Here the 2”d entry corresponds to no particular vowel 
class and hence the certainty measure is appreciably low with 
both classes e and i registering ambiguous output membership 
values slightly less than 0.5. The 4ath entry has only one 
accurate input value corresponding to F1. Hence this maps to 
a line parallel to the F2 axis at F1 = 700 in Fig. 4. Note that 
both classes a and d register positive belongingness, although 
class a is the more likely winner. On the other hand the 3‘d 
entry, with a complete feature vector, specifies a more certain 
decision in favor of class a. In entry 4b, with a certain value 
for Fz, the decision shifts in favor of class e. The 5th entry also 
possesses finite possibility of belongingness to classes e and 
i, as verified from the vowel diagram. However the certainty 
measure is indicative of the uncertainty in the decision. The 
ambiguity of the 6th and 7th entries are evident both from 
Fig. 4 as well as the two highest output membership values 
and the certainty measures. The llath entry corresponds to a 
horizontal band across Fig. 4 around F, = 350. The classes 
e and i, having the two highest horizontal coverages in this 
region, correspond to the significant responses obtained. This 
may be contrasted with entry 4a where at least F1 has a definite 
value 700. On the other hand, entry 1la corresponds to a 
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TABLE I 
INFERRED 0" RFSFONSES AND  CERTAIN^ MEASURES FOR A SET OF VOWEL DATA, USING 

A FIVE-LAYERED FUZZY MLP HAVING 10 NODES PER HIDDEN LAYER WITH perc = 50 

0.10 

0.34 

FI 
m 
250 

700 

700 

700 

450 

600 

low 

high 

beiween 

500k600 

#rea IC r 

fhan 650 

.bout 350 

8bOul 350 

C h  j - 
U 

C 

a 

a 

e 

e 

a 
U 

a 

e 

e 

c 

e 

TABLE II 
QUERYING MADE BY THE NEURAL NETWORK MODEL WHEN PRESENTED 
WITH A SAMPLE SET OF PARTIAL PATTERN VECTORS FOR Vowu DATA 

Serial Input features 

l a  io0 

l b  700 

2a about 350 

2b about350 

3 400 

4 400 

5 250 

missing missing 

2300 missing 

missing missing 

high 

800 

missing 

missing 

missing missing 

1550 missing 

Query 

for 

t i  

pattern point having relatively more uncertainty at all three 
frequency values. This results in the difficulty of decision as 
is evident from the value of the certainty measure. Besides, 
pattern class U (with a lower horizontal coverage around the 
broader band about 350) also does not figure among the top 
two significant responses. In entry l l b ,  as Fz becomes set at 
high, the response in favor of class i increases. However, the 
ambiguity in the decision is still evident. 

In Table I1 we demonstrate a sample of the partial input 
feature combinations that are insufficient for inferring any 
particular decision. The more essential of the feature value(s) 
is queried for by (16, 17). The 3Td and Sth entries are seen 
to lack essential information in spite of having specific values 
corresponding to two features. This can be explained from the 
ambiguity of decision (w. r. t. a class) observed at these pattern 
points in the 2D projection in Fig. 4. 

U 1  outpur 

Mcmbcnhip y," 

0.89 

0.49 

0.89 

0.85 

0.77 

0.70 

0.71 

0.48 

0.91 

0.75 

0.75 

0.70 

0.65 

CSlrinlY 

hl; 

OSB 

0.02 

OB9 

0.71 

0.68 

0.47 

039 

0.10 

0.91 

0.72 

0.60 

0.50 

0.31 

Table I11 shows the rules generated from the knowledge base 
by presenting a sample set of test patterns. The antecedent 
parts are obtained using (19-21) while the consequent parts 
are deduced from the values of the certainty measure bel:. 
The rules obtained may be verified by comparing with Fig. 4. 
Note that the 5th,  6th and gth  entries generate no justification. 

B.  Kala-azar Data 
The model was next trained with the kala-azar data using 

30 (20 diseased and 10 controlhormal) cases. The test set 
consisted of 38 samples constituting the responses of the 
above-mentioned 20 diseased patients (over the next 20 days) 
to the ongoing treatment [22] .  Some of these patients were 
cured while the conditions of a few others worsened, some- 
times ultimately culminating in death. The instances of patients 
cured constituted the output class normallcured while the 
remaining cases were clubbed under the output class diseased. 
The performance of various sizes of the proposed model on the 
kala-azar data with training set size perc = 44.1(= 38/68) is 
depicted in Table IV. Note that mean square error mse, perfect 
match p and best match b refer to the training set while mean 
square error mset and overall score t are indicative of the 
test set. 

Then a trained three-layered neural network with 10 hidden 
nodes was used to demonstrate the inferencing ability (Tables 
V-VI) of the model on the kala-azar data. Table V shows the 
inferred output responses of the model for a sample set of 
test data. Here class 1 corresponds to diseased while class 2 
refers to cured. The lSt and 6th entries correspond to patients 
experiencing speedy recovery during the course of treatment 
while the 2nd entry refers to a patient who was gradually 
cured. The certainty measure and output membership values 
bear testimony to this. Note that the lYt and 2nd rows for 
each entry refer respectively to the status of the patient at the 
end of 10 and 20 days. The 31d and 4th entries correspond 
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TABLE Ill 
RULES GENERATED BY THE NEURAL NETWORK MODEL TU JUSTIFY ITS INFERRED DECISIONS FOR A SET OF PA” VECTORS FOR VOWEL DATA. 

I no erplanation 

- - 
S a i d  

No. 

1 
- 

2 

3 

4 

5 

6 

7 

8 

9 

10 

- 

missing 

mirring 

missing 

L 
FI 
300 

F2 i s  very medirm and 

F1 8 .  v e q  mcdirm 

no explanation 

Fz 18 htgh and 

F ;  i s  very low 

250 

Layers H + 1 

Nodes m 

perjectp (%) 

best b (%) 

lest 1 (%) 

700 

3 4 

10 5 10 

93.4 90.0 100.0 

100.0 100.0 100.0 

86.8 81.5 86.8 

700 

450 

700 

high 

bctwcen 500 & 600 

gnnfer  than 650 

nbort 350 

ut l e d u m  

Fa 
900 

1550 

Io00 

rnobtainable 

2100 

2300 

Mol low 

1600 

high 

high 

I I I I 

0.001 

0.188 

Jrutifiution / R 

rnoblainoblc 

2600 

m i h n g  

F, ia vcry low 

Fl 16 very low and 

Fz I. M o l  low 

Fa U very  low and 

F1 i s  M o l  high and 

F3 is Mol high 

F1 is M o l  high 

missing 

miming 

n o  explanation 

F1 is higb and 

F2 is Mol low 

to patients who expired after 10 days of treatment. The 5th 
and 7th entries refer to patients whose conditions deteriorated 
during treatment. All these cases may be verified from the 
patient records listed in [22]. 

In Table VI we illustrate a few of the rules generated from 
the knowledge base. The serial nos. refer to the corresponding 
test cases reported in Table V. The antecedent and consequent 
parts are deduced as explained earlier. 

C .  Artificially Generated Data 
Finally, the network was trained on the two sets of noncon- 

vex pattem classes in succession. Two nonseparable pattern 
classes 1 and 2 were considered in each case. The region of no 
pattern points was modelled as class none (no class). Table VI1 
compares the performance of the three-layered fuzzy neural 
network model with that of the conventional MLP (Vanilla 
MLP), on the two sets of nonseparable pattems A, B, (depicted 
in Figs. 5-6 respectively) Training set size of perc = 10 was 

! seneration 

Thcn wncluion 

w r y  l i k e l y  d.u U 

unable t o  ncognire 

very l ikely  dass U 

likely dass U 

vcry likely dass U 

l i k e l y  daas c 

n o f  rnlikelx dass e 

chosen from each representative pattem class. The number 
of hidden nodes used were m = 11 for Pattern Set A and 
m = 13 for Pattem Set B [ 161 for both the models. The perfect 
match p ,  best match b mean square error m s e  correspond to 
the training set while the remaining measures refer to the test 
set (classwise, corresponding to the three classes 1, 2, none 
and also overall, along with the mean square error mse,). 

In Tables VI11 and X we demonstrate the inferred output 
responses of a five-layered model (with 10 nodes per hidden 
layer and trained with perc = 50) on some partial and com- 
plete input feature vectors for the two pattem sets. Tables IX 
and XI illustrate the generation of a few rules from the above- 
mentioned two knowledge bases. Verification regarding these 
tables may be made by examining the original pattems given 
in Figs. 5 4 .  The disjunctive (Or) terms in the antecedent parts 
are obtained by combining the various conjunctive clauses 
generated for the same feature corresponding to a single 
rule (produced to justify a single inferred decision). These 
disjunctive clauses result due to the concave and/or disjoint 
nature of the pattem class(es). 

In Table VIII, the lst, 4th, 5th and 7th entries correspond to 
horizontal bands across Fig. 5 showing Pattem Set A. Class 
none, having the largest horizontal coverage at F1 = low in 
entry 1, produces a significant response. Note that entry 4 
(with F1 =I medium and inferring class 1) and entry 5 (with 
Fl = Mol medium and inferring class none) denote ambiguous 
decisions as observed from the certainty measure. However 
entry 7 with F1 = Mol high produces a more definite response 
in favor of class 1. As Fz becomes known as low in entry 2, the 
response changes from class 1 to class none. This is because of 
the fact that along the horizontal band at E; = very low, class 1 
has the larg,est horizontal coverage. However when the smaller 
region of interest is specified at F2 = low, the decision shifts 
in favor of class none and the ambiguio in decision decreases 
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Lrirl 

No. 

1 

Input f u t u r a  H i b a t  output Significant 2"d choice Catainty 

FI I Fz I F3 I FI C b l  [ Membmhipy? Membership bel: 

20.0 0.8 56.48 71.3 2 0.75 0.24 0.52 

2 

0.87 I 61.21 I 60.5 I 2 I 0.91 1 I 0.83 1 22.5 

26.0 0.9 I 51.45 I 76.6 1 1 I 0.50 I 0.49 I 0.01 I 
3 45.0 

I 0.03 I I I 29.0 I 0.97 1 48.89 I 64.0 I 2 I 0.51 I 0.49 

1 1.2 75.0 65.0 1 0.76 0.26 

7 

5 25.0 86.85 90.0 0 . 4  0.19 1 1 27.0 1 ::i 1 117.27 1 89.3 I : 1 9: 1 . I 1.0 I 

1 .o 

21.0 0.8 72.46 96.0 1 0.87 0.13 

30.0 1.1 96.4 85.0 1 1 .o 

6 18.0 0.83 78.8 65.5 2 0.25 1 I 19.0 I 0.9 I 71.02 I 64.0 I 2 I :::: I - 

3 

4 

5 

6 

7 

F4 m wcrp low md 

F3 is Mol high mort or I t a s  l i t c l y  dineased 

F, m r c r y  low and 

F3 is ucry  low wcry l t t c l y  diseased 

F4 in w e r y  medium and 

Fl is v c q  medium 

F4 ia v c q  medium and 

F1 is Mol h:gh 

F3 is w c r y  medium M d  

Fi is w c q  medium 

not unlikely d w d  

very l i t c l y  diseased 

mort or  Ira# likrly rurrd 

F4 in Mol AigA Md 

F2 is low h t r l y  discascd 

Fl is A:gh and 

F, is M o l  low v e r y  l i k c l y  diseased 

TABLE VI 
RULES GENERATED BY THE NEURAL NETWORK MODEL. TO 
JUSTIFY ITS hFERRED DFXISIONS FOR -A-MAR DATA 

%rid No. If C h M  Thcn condunion 1 F1 is very low more or Icra likely cured 

F3 U v c q  medium and 

F, L very  low and 

2 

Fs is wry medium md 

Fa in ver i  medium md 

F, in Mol low 

Fd L v e r y  IOW and 

Fz ia w c q  medium and 

F1 is w c r y  mcd:um and 

Fx is low 

v e r y  l i k e l y  c u r d  

unable t o  rccoanize 

Fa is v e r y  medium and I Fz io Mol hiph rnablc to rccornizc 

drastically as the certainty increases (bel? = 1 here). In case 
of entries 6, 8 the corresponding responses in favor of classes 
2 and none become more certain as F2 becomes specified. 
All results of Tables VIII-IX may be verified by comparing 

with Fig. 5. Note that in Table IX, entries 2 and 4 generate 
no justification. 

In Table X, entries 1, 2, 5 correspond to horizontal bands 
across Fig. 6 showing Pattem Set B. The lSt and 5th entries, 
for F1 = not Zow and very high respectively, generate compar- 
atively less certain decisions in favor of class 1. Entry 2 with 
F1 = medium produces a decisive response in favor of class 2. 
As F2 becomes known as low in entry 3, the response changes 
from class none to class 2 as the region of interest becomes 
more localized. But the ambiguity in decision is observed 
to be more in case of the complete input specification. All 
results of Tables X-XI may be verified by comparing with 
Fig. 6. 

V. CONCLUSION AND DISCUSSION 

In this work we considered a fuzzy neural net based expert 
system model. The trained neural network constituted the 
knowledge base for the application in hand. The network 
was capable of handling uncertainty and/or impreciseness in 
the input representation provided in quantitative, linguistic 
and/or set forms. The output decision was inferred in terms 
of membership values to one or more output classes. The 
user could be queried for the more essential feature infor- 
mation in case of partial inputs. Justification for the decision 
reached was generated in rule form. The antecedent and 
consequent parts of these rules were provided in linguistic 
and natural terms. The magnitudes of the connection weights 
of the trained neural net were used in every stage of the 
inferencing procedure. A measure of certainty expressing 
confidence (belief) in an output decision was also defined. 
The effectiveness of the algorithm was demonstrated on the 
vowel recognition problem, on some medical kala-azar data 
and on two sets of artificially generated nonconvex pattem 
classes. 

Due to the limitations of the available medical data (on 
kala-azar), the proposed model could not be shown to sug- 
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TABLE VI11 
INFERRED OUTPUT ~ F Q N S E S  AND CERTAINTY MEASURES FOR A SAMPLE OF PATTERN SET A 

DATA, USING A FIVELAYERED Fuzzy MLP HAVING m = 10 NODES IN EACH HIDDEN LAYER 
- - 
Serid 
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TABLE IX 
RULES GENERATED BY THE NEURAL NETWORK MODEL TO JUSTIFY ITS INFERRED DECISIONS FOR A SAMPLE OF hPUT VECTORS FOR PATTERN SET A DATA 

J w t i h t i o n  Rule g e m r d o n  

+=F Mol high missin# 

I f  d a w  Then conclusion 
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F, U medium Md 
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Significant 2”d choice 

CIIW M m b e ~ h i p  

none 0.19 

none 0.07 
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none 0.1 1 

none 0.18 

none 0.17 

TABLE X 
INFERRED OUTPLIT RESPONSES AND CERTAINTY MEASURES FOR A SAMPLE OF PATTERN SET B 

DATA, USING A F~E-LAYEKED FUZZY MLP HAVING 7lZ = 10 NODES IN EACH HIDDEN LAYER 

Input ratura 
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m d i r m  hi#& 
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0.61 

0.93 
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TABLE XI 
RULES GENERATED BY THE, NEURAL NETWORK MODEL TO JUSTJFY ITS INFERRED DECISIONS FOR A SAMF’LE OF ”PUT VECTORS FOR PA’ITERN SET B DATA 

lnrxrt featura 

wcry low 

not low 

mcdium 

Mol mcdium 

not medium 

h i g h  

medium 

F2 
low 

mirring 

mirriag 

/ow 

low 
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~~ 

Justification J Rule generation 
I/ clause 

Fi iS v e r y  IOW a d  

Fz is low or vcry medium 

F1 is w r y  high 

F1 i m  medium or Mol  low 

F1 is Mol mcdium or Mol low and 

Fz in low 

Fa is low or w c r y  medium 

F1 is high and 

F2 U low 

F1 is mcl ium or Mol  low and 

F2 is high 

gest therapies and/or handle multiple diseases. However the 
suitability of the model in inferring correct decisions in 
the presence of overlapping disease categories may easily 
be gauged from its efficient handling of the fuzzy vowel 
data and the subsequent generation of appropriate justifi- 
catory rules. In the presence of suitable medical data, the 
therapies could be treated as output classes such that the 
certainty in favor of any such recommendation might be 
inferred. Any evaluation of the performance of the proposed 
model on the nonconvex Pattem Sets A and B should be 
made in the context of the dificult nature of the problem 
of class separability in these cases. This accounts for the 
relatively better performance of the model on the vowel 
data. 
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