Y

Y

Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 106, No. 2, April 1994, pp. 387-392.
© Printed in India.

Stationary coupled cluster response: Role of cubic terms in molecular
properties

NAYANA VAVAL,KEYA GHOSE, PRIYA NAIR and SOURAV PAL*
National Chemical Laboratory, Physical Chemistry Division, Pune 411008, India

Abstract. We have demonstrated an application of a stationary coupled cluster response
approach for molecular properties using an Euler functional. This involves terms which are
of cubic power in cluster amplitudes. We have shown that these are important terms and
have also discussed the convergence properties of the functional for higher order properties.
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1. Imntroduction

The study of nonlinear molecular properties using ab initio quantum mechanical
methods has recently been of great interest in electronic structure theory (Ratner
1992). The higher order properties are important in the realm of nonlinear materials.
The ab initio accurate calculation of these properties critically depends on the use of
proper basis sets and adequate treatment of electron correlation effects. For the
incorporation of correlation effects coupled cluster (CC) based techniques (Cizek
1966, 1969) are well established in the area of electronic energies as well as molecular
properties. The CC methods provide us with the size extensive values of energies and
molecular properties. (For a discussion on size extensive values see Mukherjee and
Pal 1989). Thus it is particularly attractive to use this method for higher order
properties like polarizability, hyperpolanzablhty etc. where correlation effects are
extremely pronounced.

Among different versions of CC methods, a nonvariational version is more
traditional (Cizek 1966, 1969) and has been applied extensively to the electronic
energies (Paldus et al 1972; Paldus and Cizek 1973; Bartlett and Purvis 1978; Bartlett
1981; Lee and Bartlett 1984). Application to properties has been done with a response
approach (Monkhorst 1977; Mukherjee and Mukherjee 1979; Sekino and Bartlett
1984, 1986). On the other hand, a stationary version of CC is more difficult to
implement and has not been popular for energy calculation either for ground or
excited/ionized states, although such formalisms with pilot applications are available
(Pal et al 1983, 1984). However, the stationary version of theory, using a response
based approach, can compute the moleculgr properties efficiently because of the
built-in generalised (2n + 1) rule in theory (Handy and Schaefer 1984; Pal 1984,
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Jorgenson and Helgaker 1988; Bartlett et al 1989; Koch et al 1990; Ghose et al 1993).
There are associated problems in implementing a stationary CC theory (Noga and
Urban 1988; Pal 1990; Pal and Ghose 1992). Various stationary. approaches for
properties using CC (Pal 1984; Bartlett et al 1989; Koch et al 1990; Ghose et al 1993)
or CI (Handy and Schaefer 1984; Jorgensen and Helgaker 1988). Wave functions
differ in structure from one another. In one novel stationary CC formulation for
properties we started from a Euler expectation value functional and computed the
amplitudes as well as the derivatives through a stationary principle (Pal 1984). Within
the CC fremework there is a formulation by Koch et al (1990), which starts from a
nonvariational energy expression and computes derivatives of this. However, this
formulation was specially tailored to the calculation of energy gradients. With a
nonvariational wave function and using intermediate variational Lagrangian,
Helgaker and Jorgensen (1992) have shown simplications similar to stationary theory
for time independent molecular properties. Then there is an approach by Arponen
and coworkers (Arponen 1983; Arponen et al 1987) which starts from a biorthogonal
expectation value and is adapted to the calculation of ground state energy and general
expectation value functional. This functional has also been used for an alternative
formulation of response approach by us (Pal 1986; Ghose and Pal 1987). Then there
is a fixed perturbation order based expectation CC (XCC) and unitary CC (UCC)
methods developed by Bartlett et al (1989) and applied for ground state energy and
properties.

In our theory using Euler functional (Pal 1984; Ghose et al 1993), we truncated
the functional to total of quadratic power in cluster amplitudes. The Euler functional
CY|H| W) /{y ) can be written in terms of only the linked part of the numerator in
CC approach and is identical to the one based on unitarized CC (Kutzelnigg 1987).
The series is normally a non-terminating series and so it needs to be truncated for
practical computations. For nonlinear properties, the truncation to qu&dratic power
is not so good and the properties (like first hyperpolarizability) are not even correct
up to second order in electron correlation. To obtain more accurate values of
molecular properties, it is important to include the cubic terms. Results of this study
will be presented in this paper. There is yet another aspect i.e. the convergence of
the expansion of the Euler series. We will address this aspect as well in this paper.
In a related work Kutzelnigg (1991) discussed the error analysis of an expectation
value and an improvement of coupled cluster theory.

In this paper we have calculated the properties up to first hyperpolarizability for
a prototype molecule HF and compared with benchmark full configuration interaction
(FCI) or large CI values (Bauschlicher and Taylor 1987). We have also studied the
changes in the values from quadratic power to cubic power in the expansion. In the
next section we give a brief overview of our stationary CC principle explicitly
highlighting the cubic terms of the functional and their importance and in §3 we
present results for HF and discussion of these results. |

2. Theory

The perturbed Hamiltonian H(4), in the presence of an external electric field is written
as A

H(A) = H, + 10, : | (1)
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where 4 denotes the field strength, H, is the unperturbed (zeroth order) Hamiltonian
and O is the dipole operator. In a variational response approach we construct a
functional E(Z) and relate properties with various derivatives of it with respect to A
evaluated at 1=0. These are, in turn, related to the derivatives of wave function.
The eigen functions of H(4) and the expectation values may be written in terms of
linked series (Pal et al 1983)

V() =eT® ¢y, . ~ (2a)
E(A) = <ole™™ H(2)eT™|dy >, . (2b)

The subscript L denotes (connected terms only) that E(2) and T(4) can be expanded
as power series in A

E(A) = E@ 4+ AED + A2ZED 4 ... (2¢)
T(A)=TO + AT® 4 2T® 4 . : (2d)

such that the nth order property can be identified as n!E®,

In the variational response approach the functional E(1) is stationary with respect
to the first order change in the wave function. Hence, the generalized Hellmonn—
Feynmann (GHF) theorem is satisfied. More generally a (2n + 1) rule is built in the
stationary approach, by which higher order properties can be calculated using lower
order derivative amplitudes. More extensive discussion on this subject may be found
in our recent review article (Pal and Ghose 1992). But the Euler type expectation
value functional is nonterminating in nature and the use of this leads to disconnected
terms in the equation for amplitudes when different n-body Ts are used. For example,
if T, is connected exclusively to a T* vertex, then the differentiation of TT vertex
leads to disconnected terms. One may note in passing that in XCC/UCC based
methods the equations are derived on the basis of terms, which contribute at least
to a fixed nth order, and subsequently disconnected diagrams do not appear. A
response approach based on this functional has not been attempted but one can
speculate such an approach (Bartlett et al 1989). In our approach we use a stationary
principle to derive a family of equations e.g.

OE™/otT™ =0, Vmzn, ' (3)

where ™ is the nth order derivative of t amplitude. We have shown (Pal 1990) that
if the amplitudes and their derivatives are truncated to a uniform degree, then (3)
provides an identical set of equations for a fixed value of (m—n)=0,1,2,3,.... and
there is only one unique set of equations (Pal 1984) given by

FE™/9TI® =0, Vm. _ @)

To get the T amplitudes we need to solve (4) hierarchically. In our stationary coupled
cluster theory we have implemented the above equations. If we solve (4) for m=0
and 1 then we get the cluster amplitudes for the ground state as well as the first
denvatlves The stationary values may be used to compute energy derivatives up to
#1 order. Stationary energies and their derivatives will be denoted by the symbol
E (W1th appropriate superscripts), E® depends only on T'” amplitudes.

ED = (o |exp(TO)Oexp(T®)| o, ©)
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Similarly stationary E® and E® expressions depend nonlinearly on T® and T
only. One can easily derive that

E® = {$olexp(TONO TV exp(T*)|¢o v, (6)
E® = {¢olexp(TON{TWTOTM }exp(T|do D
+ o lexp(TON {13 ATOTO T 4 12(TWTH + 0) TV TM)

x exp(T@) | do >z + {Polexp(TON {131 TM Tt T
+1/2!

T T(I)T(ﬁT(l) + (5)}CXP(T*°’|¢0 L. (D

The expressions for E©, E) as well as the stationary values of EV, E®, and E® are
truncated up to cubic at a singles and doubles approximation. Only for E©, where
some of the cubic terms start to contribute at a very high order, we have included
the cubic terms contributing at least at the fourth order in perturbation. In EY) as
wel’ as the stationary E, the contributions of the cubic terms start at a lower
perturbation order. It may easily be seen that the T, and T, contributions are at
least at the second and first order respectively. One can find the perturbation order
analysis of the T amplitudes and their derivatives in stationary CC response (Ghose
and Pal 1993). Let us investigate the nature of (4) for m= 1, ie.

AEV/ATOT =0, (8a)
and .
FEV/TOt =0. (8b)

There are the defining equations for T¢ and T¢ containing terms. E*) contains
the terms of the type T! 0, which yields an inhomogeneous term 0 (one body) giving
rise to T containing terms with zeroth order dependence on V. This means that
these are fairly significant. E®) series, however, can contain only a T operator and
infinite summations come from T', T contributions. Thus it is expected to be still
convergent. The argument can be extended to higher order E® or any stationary E®™,
If we check JEV/dT}, = 0 equations, we find that the important inhomogeneous term
is OT, which is first order in V. Hence we conclude that T3’ depends at least on
first order in V.

3. Results and discussions

We have chosen HF as a model system for which full CI as well as related nonvariational
coupled cluster results are available. In an earlier study we used the stationary coupled
cluster theory with the Euler functional truncated to a total of quadratic power in
amplitudes. As explained earlier, in this paper we have incorporated the terms
containing cubic powers in amplitudes, except that for E? those cubic terms whose
initial contributions appear at the fourth order but not any higher, have not been
included. The stationary expressions for E®), E®), and E® are simplified using the
(2n + 1) rule in terms of T®, T™ amplitudes. We have presented results up to first
hyperpolarizability of HF in DZP basis. We have used two models, one with
disconnected terms (n,;, = 0) and another without them (n,,, = 1). The results of these

.
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Table 1. (Meunter 1972) Properties of hydrogen fluoride (DZP basis®).
All values are in atomic units; HF distance = 1:733 a.u.

Variational
Rgjs = 0 ndls = 1
Non- Full® Experi-
Property SCF Quad. Cubic Quad. Cubic  variational® CI ment
U, 0-812 0-760 0-768 0-755 0765 0-756 0765 0707¢
o,y 4261 4-597 3798 4930 4049 44 44 6-40°
e 1-516 1-696 1-429 1734 1-463 1-638 — 5-08%f
B2z — 14633 —23268 —11-510 —25-788 —12:042 —15-360 —_ —

*Double zeta basis from Bauschlicher et al (1986), a, = 0-75, a, = 1-60; ®Salter et al (1987). Exponents used
are o, = 0-70 & o, = 1-58, ny;, = 0 means dlsconnected terms have been included in the cluster amplitudes
equatxons, ng,=1 means disconnected terms have not been included in the cluster amplitudes
equations; “Bauschlicher and Taylor 1987; ¢Muenter and Klemperer (1970); *Werner and Meyer (1976);
"Muenter 1972

two models are presented in table 1. We find a large contribution of the cubic terms
in both the models. In particular, the change in the value of §,,, is dramatic. Although
itis expected that the calculation of the higher order properties is more sensitive to the
electron correlation, such a large change in the first hyperpolarizability was surprising.
Benchmark FCI results quoted here were carried out with five 3d functions, while
ours contained six 3d functions. However, this may still serve as a useful guide to
the trends of the calculation. No nonvariational results are available exactly in this
basis. But we have presented in the tables the available nonvariational results in a
slightly different basis (same DZP level, but the exponents of the polarization function
differ only slightly). One can still say that the cubic corrections with either n,, =0
or n,, = 1 are towards the FCI results. It may be pointed out that the model neglecting
the disconnected terms (n,, = 1) furnishes results closer to the FCI numbers as
compared to the other model. Comparing the two models, the absolute values of
polarizability and the first hyperpolarizability are higher when the disconnected terms
are neglected. The improvement of the dipole moment w1th the cubic terms can be
readily seen from the table 1.

+ The saturation of the dipole moment with the addition of the cubic terms is evident

from table 1. However, for a,,, «,,, and in particular f,,,, the cubic corrections are

relatively larger and it seems that these values have not saturated with the addition
of the cubic terms. To get accurate values of this, clearly still higher order terms are

- needed. This; in itself, is a problem of the stationary coupled cluster response approach

that may be addressed separately.
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