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1 Introduction

Let det : M(n) → C be the map taking an n × n complex matrix to its determinant.

The Fréchet derivative of this at a point A is a linear map D det A from M(n) into C;

and for each X in M(n).

D det A(X) =
d

dt

∣∣∣∣
t=0

det(A + tX). (1)

The famous Jacobi formula says that

D det A(X) = tr (adj(A)X), (2)

where the symbol adj(A) stands for the adjugate (the classical adjoint) of A. The principal

goal of this paper is to describe higher order derivatives of the determinant map.

Basic ideas of matrix differential calculus are summarised in Section X.4 of [2], and

we follow the notations used there. A full length book on the subject by Magnus and

Neudecker [9] has much to offer; the formula (2) is given there on page 149. The recent

book by Higham [8] is devoted to various aspects of matrix functions, and the role of the

Fréchet derivative in estimating condition numbers is emphasized at several places.

It would be convenient to have some equivalent descriptions of Jacobi’s formula. For

1 ≤ i, j ≤ n let A(i, j) be the (n − 1) × (n − 1) matrix obtained from A by deleting its

ith row and jth column. Then (2) can be restated as

D det A(X) =
∑

i,j

(−1)i+j det A(i, j)xij . (3)

For 1 ≤ j ≤ n let A(j; X) be the matrix obtained from A by replacing the jth column of

A by the jth column of X and keeping the rest of the columns unchanged. The relation

(3) can be expressed also as

D det A(X) =
n∑

j=1

det A(j; X). (4)

The kth derivative of det at a point A is a map Dk det A from the k-fold product

M(n)× . . .×M(n) into C. This map is linear in each of the k arguments and is symmetric

in them. Its value at a point (X1, . . . , Xk) is

Dk det A(X1, . . . , Xk) =
∂k

∂t1 · · ·∂tk

∣∣∣∣
t1=···=tk=0

det(A + t1X
1 + · · · + tkX

k). (5)

We will give different formulas for this map that are visible generalisations of (2), (3)

and (4). Some notation is needed first.
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Let Qk,n be the collection of multiindices I = (i1, . . . , ik) in which 1 ≤ i1 < · · · <

ik ≤ n. We use the symbol |I| for the sum i1 + · · · + ik. Given two elements I and J

of Qk,n let A[I|J ] be the k × k matrix obtained from A by picking its entries from the

rows corresponding to I and the columns corresponding to J and let A(I|J ) be the

(n − k) × (n − k) matrix obtained from A by deleting these entries. We use the symbol

X[j] to mean the jth column of the matrix X. Given n × n matrices X1, . . . , Xk and

an element J of Qk,n, the symbol A(J ; X1, . . . , Xk) will stand for the matrix Z that

is obtained from A by replacing the jpth column of A by the jpth column of Xp for

1 ≤ p ≤ k, and keeping the rest of the columns unchanged. In other words Z[jp] = X
p

[jp]

for all j1, . . . , jk in J , and Z[ℓ] = A[ℓ] if the index ℓ does not occur in J . The symbol

Y[J ] will stand for the n × n matrix which has Y[jp] = X
p

[jp] for 1 ≤ p ≤ k and the rest of

whose columns are zero. Let Sk be the set of all permutations on k symbols and let σ

be a typical element of this set. We write Y σ
[J ] for the n × n matrix whose columns are

described as Y σ
[jp] = X

σ(p)
[jp] for 1 ≤ p ≤ k, and the remaining n − k columns are zero.

Theorem 1 For 1 ≤ k ≤ n we have

Dk det A(X1, . . . , Xk) =
∑

σ∈Sk

∑

J∈Qk,n

det A(J ; Xσ(1), . . . , Xσ(k)). (6)

In particular,

Dk det A(X, . . . , X) = k!
∑

J∈Qk,n

det A(J ; X, . . . , X). (7)

Theorem 2 For 1 ≤ k ≤ n we have

Dk det A(X1, . . . , Xk) =
∑

σ∈Sk

∑

I,J∈Qk,n

(−1)|I|+|J | det A(I|J ) det Y σ
[J ][I|J ]. (8)

In particular,

Dk det A(X, . . . , X) = k!
∑

I,J∈Qk,n

(−1)|I|+|J | det A(I|J ) det X[I|J ]. (9)

Very clearly (6) and (7) are generalisations of the formula (4); and (8) and (9) gen-

eralise (3). To describe an analogue of Jacobi’s formula (2) we need more of notation.

Let H be an n-dimensional Hilbert space, and let
⊗k H = H ⊗ · · · ⊗ H be its

k-fold tensor product. We denote by ∧kH the space of antisymmetric tensors. If ei,

1 ≤ i ≤ n, is the standard basis for H, then the standard basis for ∧kH consists of the

vectors eI = ei1 ,∧ . . . ∧ eik , where the index set Qk,n is ordered lexicographically. (See

[2] Chapter I.) Given an operator A on H we use the symbol
⊗k

A for its k-fold tensor

product. This operator on
⊗k H leaves invariant the subspace ∧kH, and its restriction
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to this space is called the kth exterior power, kth antisymmetric tensor power, or the kth

compound of A. With respect to the standard basis the (I,J ) entry of ∧kA is det A[I|J ],

the k × k minor of A corresponding to the rows of A in the index set I and the columns

in J .

The matrix adj(A) is the transpose of the matrix whose entries are (−1)i+j det A(i, j),

and can be identified with an operator on the space ∧n−1H. We call this operator ∧̃
n−1

A.

It is unitarily equivalent to the operator ∧n−1A. (Put in other words adj(A) is a ma-

trix representation of the operator ∧n−1A but not in the standard orthonormal basis.)

Likewise the transpose of the matrix with entries (−1)|I|+|J | det A(I|J ) can be identified

with an operator on the space ∧n−kH. We call this operator ∧̃
n−k

A, and note that it is

unitarily equivalent to ∧n−kA.

Given operators X1, . . . , Xk on H consider the operator

1

k!

∑

σ∈Sk

Xσ(1) ⊗ Xσ(2) ⊗ · · · ⊗ Xσ(k), (10)

on the space
⊗k H. One can check that this leaves invariant the space ∧kH, and we use

the notation

X1 ∧ X2 ∧ . . . ∧ Xk, (11)

for the restriction of the operator (10) to the subspace ∧kH.

Jacobi’s formula (2) can be written also as

D det A(X) = tr
(
∧̃

n−1
A

)
X. (12)

The next theorem is an extension of this.

Theorem 3 For 1 ≤ k ≤ n, we have

Dk det A(X1, . . . , Xk) = k! tr
[
(∧̃

n−k
A)(X1 ∧ . . . ,∧Xk)

]
. (13)

In particular,

Dk det A(X, . . . , X) = k! tr
[
(∧̃

n−k
A)(∧kX)

]
. (14)

Let s1(A) ≥ · · · ≥ sn(A) be the singular values of A, and let ‖A‖ := s1(A) be the

operator norm of A. The norm of the linear operator D det A is defined as

‖D det A‖ = sup
‖X‖=1

‖D det A(X)‖. (15)

For 1 ≤ k ≤ n let pk(x1, . . . , xn) be the kth elementary symmetric polynomial in n

variables. A simple consequence of (12) is the equality

‖D det A‖ = pn−1(s1(A), . . . , sn(A)), (16)
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which in turn leads to inequality

‖D det A‖ ≤ n‖A‖n−1. (17)

In [5] Bhatia and Friedland proved a more general theorem giving exact expressions for

‖D ∧k A‖ for all 1 ≤ k ≤ n. The special case k = n reduces to the determinant. Using

the theorems stated above we can extend (16) to all derivatives. We have the following.

Theorem 4 Let A be an n × n matrix with singular values s1(A), . . . , sn(A). Then for

k = 1, 2, . . . , n, we have

‖Dk det A‖ = k! pn−k(s1(A), . . . , sn(A)). (18)

As a corollary we have the following perturbation bound obtained in a recent paper

of Ipsen and Rehman [10].

Corollary 5 Let A and X be n × n matrices. Then

|det(A + X) − det A| ≤
n∑

k=1

pn−k (s1(A), . . . , sn(A)) ‖X‖k. (19)

2 Proofs

The easiest approach to the derivative formulas is to prove Theorem 1 first and to derive

the others from it. The quantity det(A+ tX) is a polynomial in t, and from (1) it is clear

that D det A(X) is the coefficient of t in this polynomial. The determinant is a linear

function of each of its columns. Using this we obtain the equality (4) at once.

The same idea can be carried further. It is clear from the definition (5) that Dk det A(X1, . . . , Xk)

is the coefficient of the term involving t1t2 · · · tk in the expansion of det(A+ t1X
1 + · · ·+

tkX
k). Again we can identify this coefficient using the linearity of the det function with

respect to each of the columns. The reader can check that the result is the formula (6).

We should note here the special case

Dn det A(X, . . . , X) = n! det X, (20)

and the fact that for k > n

Dk det A(X, . . . , X) = 0. (21)

The formula (9) can be obtained from (7) using the Laplace expansion formula [11].

If T is any n × n matrix, and J any element of Qk,n, then Laplace’s formula says

det T = (−1)|J |
∑

I∈Qk,n

(−1)|I| det T (I|J ) det T [I|J ]. (22)
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Using this we get from (7)

Dk det A(X, . . . , X)

= k!
∑

J∈Qk,n

(−1)|J |
∑

I∈Qk,n

(−1)|I| det A(I|J ) det X[I|J ]

= k!
∑

I,J∈Qk,n

(−1)|I|+|J | det A(I|J ) det X[I|J ].

This is the formula (9). In the same way, one obtains the expression (8) from (6).

There is another way of writing these formulas in terms of mixed discriminants [1].

If X1, . . . , Xn are n × n matrices, then their mixed discriminant is defined as

∆(X1, . . . , Xn) =
1

n!

∑

σ∈Sn

det
[
X

σ(1)
[1] , . . . , X

σ(n)
[n]

]
. (23)

When all Xj = X we have

∆(X, . . . , X) = det X. (24)

With this notation the formula (8) can be rewritten as

Dk det A(X1, . . . , Xk)

= k!
∑

I,J∈Qk,n

(−1)|I|+|J | det A(I|J )∆
(
X1[I|J ], . . . , Xk[I|J ]

)
, (25)

and (6) as

Dk det A(X1, . . . , Xk)

=
n!

(n − k)!
∆(A, . . . , A, X1, . . . , Xk). (26)

This connection between derivatives and mixed discriminants is not surprising. It is

well-known [7] that

∆(X1, . . . , Xn) =
1

n!

∂n

∂t1 · · ·∂tn
det(t1X

1 + · · ·+ tnXn). (27)

With some manipulations the formula (26) can be derived from (27).

The matrix of the operator defined in (10) and (11) with respect to the standard

basis of ∧kH has as its (I,J ) entry the mixed discriminant

∆(X1[I|J ], . . . , Xk[I|J ]) (28)

Therefore, the formula (25) can be restated as (13).
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We have finished the proof of Theorems 1-3. Now we turn to norms. The trace norm

of A is defined as

‖A‖1 = s1(A) + · · · + sn(A). (29)

This is the dual of the operator norm [2 Ch.IV] and we have

‖A‖1 = max
‖X‖=1

|tr AX| (30)

The singular values of ∧kA are the products si1(A) · · · sik(A), 1 ≤ i1 < · · · < ik ≤ n.

Hence

‖ ∧k A‖ = s1(A) · · · sk(A), (31)

and

‖ ∧k A‖1 =
∑

1≤i1<···<ik≤n

si1(A) · · · sik(A)

= pk(s1(A), . . . , sn(A)), (32)

where pk is the kth elementary symmetric polynomial. The Jacobi formula (12) and

these considerations immediately lead us to (16).

We have, by definition

‖Dk det A‖ = max
‖X1‖=···=‖Xk‖=1

‖Dk det A(X1, . . . , Xk)‖. (33)

The relation

‖X1 ⊗ X2 ⊗ · · · ⊗ Xk‖ = ‖X1‖ ‖X2‖ · · · ‖Xk‖

is well-known. From this it follows that

‖X1 ∧ X2 ∧ · · · ∧ Xk‖ ≤ 1

if ‖Xj‖ = 1 for all j. Using the generalised Jacobi formula (13) and the relation (30) one

easily obtains Theorem 4.

Corollary 5 is a consequence of Taylor’s theorem. Let f be a p+1 times differentiable

function from a normed linear space X into Y. We use the notation x(m) for the m-tuple

(x, x, . . . , x). Then we have the Taylor expansion

f(a + x) = f(a) +

p∑

k=1

1

k!
Dkf(a)(x(m)) + O

(
‖x‖p+1

)
.

Applying this to the determinant we obtain the inequality (19) from (18). This inequality

is sharp even in the simplest commutative case. Let A = I and X = xI. Then

det(A + X) − det A = nx +

(
n

2

)
x2 + · · ·+ xn.

The coefficient of the term xk here is(
n

k

)
= pn−k(1, . . . , 1).
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3 Remarks

1. By now there are several examples of situations where the norm of the derivative

of a matrix function turns out to be the same as that of the corresponding scalar

function. See e.g. [6] for a sampler.

2. The expression (10) makes it transparent that the operator X1∧ . . .∧Xk is positive

semidefinite (p.s.d.) if all Xj are. Therefore the mixed discriminant of p.s.d.

matrices is nonnegative, a well-known fact [1].

3. Let A be p.s.d. Then the expression (13) shows that Dk det A(X1, . . . , Xk) is non-

negative whenever X1, . . . , Xk are p.s.d. In other words Dk det A is a positive lin-

ear functional [4] and by well-known theorems ‖Dk det A‖ = ‖Dk det A(I, . . . , I)‖.

That is the underlying reason for the disappearance of noncommutativity men-

tioned in Remark 1.

4. Hidden behind our proof of Theorem 1 is a formula for det(A + X). It says

det(A + X) =
n∑

k=0

∑

J∈Qk,n

det A


J ; X, . . . , X︸ ︷︷ ︸

k times


 . (34)

i.e.,

det(A + X) = det A + c1(A, X) + · · ·+ cn−1(A, X) + det X, (35)

where ck(A, X) is a sum of
(

n

k

)
determinants that result from A by replacing k of

its columns by the corresponding columns of X.

5. Perturbation bounds for the determinant have been considered by Ipsen and Rehman

[10] and there is considerable common ground between that paper and ours. Our

main interest here has been finding formulas for the kth order Fréchet derivatives

of the det function. Perturbation bounds follow as a consequence. The authors of

[10] take a different approach. Using the singular value decomposition they assume

A is diagonal, establish an expansion like (35) in this special case and use it to get

the inequality (19). The introduction of derivatives may give added insight into

these inequalities.

6. Perturbation bounds for eigenvalues can be obtained from those for the determi-

nant. See [2,3,5] for some methods that are useful.

We thank Professor R. B. Bapat for pointing out the connection between our prob-

lem and mixed discriminants. The first author is supported by a J. C. Bose National

Fellowship.
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