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1. Introduction

Let A = [aij] and B = [bij] be n×n positive semidefinite matrices. By

the well-known theorem of Schur the Hadamard product A◦B = [aijbij]

is positive semidefinite. Thus for each positive integer m, the mth

Hadamard power A◦m = [am
ij ] is positive semidefinite.

Suppose A is positive semidefinite and all its entries aij are nonneg-

ative. We say A is infinitely divisible if for every real number r ≥ 0

the matrix A◦r = [ar
ij] is positive semidefinite. By Schur’s theorem

and continuity A is infinitely divisible if and only if every fractional

Hadamard power A◦1/m is positive semidefinite.

It is easy to see that every 2 × 2 positive semidefinite matrix with

nonnegative entries is infinitely divisible. This is not always the case for

matrices of order n > 2. We refer the reader to some old papers [H2],

[H3] on infinitely divisible matrices and the recent work [B2] where

diverse examples of such matrices are given.

The motivation for this paper stems from the following observation.

Let λ1, . . . , λn be any given positive numbers. Consider the matrices

A whose entries are given by one of the following rules:

aij = min(λi, λj),

aij =
1

max(λi, λj)
,

aij = H(λi, λj),

aij =
1

A(λi, λj)
,

aij =
√

λiλj,

where H(λi, λj) is the harmonic mean of λi and λj, and A(λi, λj) their

arithmetic mean. Then all these five matrices are infinitely divisible.

How general is this phenomenon?

A binary operation m on positive numbers is called a mean if it

satisfies the following conditions:
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(i) m(a, b) = m(b, a).

(ii) min(a, b) ≤ m(a, b) ≤ max(a, b).

(iii) m(αa, αb) = αm(a, b) for all α > 0.

(iv) m(a, b) is an increasing function of a and b.

(v) m(a, b) is a continuous function of a and b.

Let λ1 < λ2 < · · · < λn be positive numbers and let m(a, b) be a mean.

Suppose m(a, b) ≤
√

ab for all a and b. Let M be the matrix with

entries

mij = m(λi, λj).

On the other hand, suppose
√

ab ≤ m(a, b) for all a and b. Then let W

be the matrix with entries

wij =
1

m(λi, λj)
.

Are the matrices M and W infinitely divisible? We will see that this

is the case for several families of means. However, the domination

criterion vis a vis the geometric mean is not sufficient to guarantee

infinite divisibility of these matrices and we give an example to show

that.

Some of the key ideas used here occur in our earlier work, especially

in the papers of Bhatia and Parthasarathy [BP] and Hiai and Kosaki

[HK2] . One of them is the use of “congruence transformations”: if X is

a diagonal matrix with positive diagonal entries then the two matrices

C and XCX are positive definite (infinitely divisible, respectively) at

the same time. Another is the use of positive definite functions. A

(complex-valued) function f on R is said to be positive definite if for

all choices of n real numbers λ1, . . . , λn the n× n matrices [f(λi − λj)]

are positive semidefinite. We will say that f is infinitely divisible if for

every r ≥ 0 the function (f(x))r is positive definite.

We will use a theorem of Roger Horn [H1] on operator monotone

functions. We refer the reader to [B1, Chapter V] for the theory of
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such functions. One of the key facts is that a (differentiable) function

f : [0,∞) → [0,∞) is operator monotone if and only if for all choices

of n positive numbers λ1, . . . , λn, the n × n matrices

(1)

[

f(λi) − f(λj)

λi − λj

]

are positive semidefinite. (If λi = λj, the difference quotient is taken to

mean f ′(λi).) This was proved by C. Loewner and the matrices in (1)

are called Loewner matrices. Another theorem of Loewner says that f

is operator monotone if and only if it has an analytic continuation to a

mapping of the upper half-plane into itself. Horn [H1] showed that this

analytic continuation is a one-to-one (also called univalent or schlicht)

map if and only if all Loewner matrices (1) are infinitely divisible.

The matrix E all whose entries are equal to one is called the flat

matrix. This is clearly infinitely divisible. Hence, if G(λi, λj) represents

the geometric mean of λi and λj, then the matrices [G(λi, λj)] and

[1/G(λi, λj)] both are infinitely divisible. As a consideration of 2 × 2

matrices shows, for no other mean can these two matrices be positive

definite at the same time.

A matrix C whose entries are

cij =
1

λi + λj
,

is called a Cauchy matrix. This is an infinitely divisible matrix. See

[B2] for different proofs of this fact. From this it follows that the matrix

W with entries

wij =
1

A(λi, λj)
,

where A(., .) represents the arithmetic mean is infinitely divisible, as is

the matrix M with entries

mij = H(λi, λj),

where H represents the harmonic mean. This fact about Cauchy ma-

trices will be used again in the next section.
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2. Examples

2.1. The logarithmic mean. The logarithmic mean L(a, b) is defined

as

L(a, b) =







a−b
log a−log b

, (a 6= b),

a (a = b).

We have
√

ab ≤ L(a, b) ≤ 1
2
(a + b), which is a refinement of the

arithmetic-geometric mean inequality. The matrix W with entries

(2) wij =
1

L(λi, λj)
=

log λi − log λj

λi − λj

is the Loewner matrix of the schlicht function log z mapping the upper

half-plane into itself. Hence, by the theorem of Horn [H1] this matrix

is infinitely divisible. We will see other proofs of this fact later in this

paper.

Another representation for the mean L is given by the integral for-

mula

1

L(a, b)
=

∫

∞

0

dt

(t + a)(t + b)
.

For each t ≥ 0, the matrix with entries

1

(t + λi)(t + λj)

is congruent to the flat matrix, and is thus positive definite (and infin-

itely divisible). It follows immediately that the matrix (2) is positive

definite.

It was observed in [BP] that the positive definiteness of all matrices

(2) is equivalent to the function

f(x) =
x

sinh x

being positive definite. The same argument now shows that this func-

tion is infinitely divisible.
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2.2. The Heinz means. For 0 ≤ ν ≤ 1, the Heinz mean is defined as

Hν(a, b) =
aνb1−ν + a1−νbν

2
.

For each pair (a, b) of positive numbers the function Hν(a, b) of ν is

symmetric about the point ν = 1/2 and attains its minimum value

there. The minimum value is H1/2(a, b) =
√

ab. The maximum value

is H0(a, b) = H1(a, b) = 1
2
(a+ b). For 0 ≤ ν ≤ 1/2 let W be the matrix

with entries

wij =
1

Hν(λi, λj)
=

2

λν
i λ

1−ν
j + λ1−ν

i λν
j

=
2

λν
i

(

λ1−2ν
i + λ1−2ν

j

)

λν
j

.

Then W = XCX, where X is a positive diagonal matrix and C is a

Cauchy matrix. Hence W is infinitely divisible.

2.3. The Binomial means. The binomial means also called power

means, are defined as

Bα(a, b) =

(

aα + bα

2

)1/α

, −∞ ≤ α ≤ ∞.

It is understood that

B0(a, b) = lim
α→0

Bα(a, b) =
√

ab,

B∞(a, b) = lim
α→∞

Bα(a, b) = max(a, b),

B−∞(a, b) = lim
α→−∞

Bα(a, b) = min(a, b).

For fixed a and b the function Bα(a, b) is increasing in α. Further

(3) B−α(a, b) =
ab

Bα(a, b)
.

For α ≥ 0 let W be the matrix with entries

wij =
1

Bα(λi, λj)
=

21/α

(

λα
i + λα

j

)1/α
.
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This matrix is infinitely divisible since every Cauchy matrix has that

property. The relation (3) then shows that for each α ≥ 0 the matrix

M with entries

mij = B−α (λi, λj)

is also infinitely divisible.

2.4. The Lehmer means. This family is defined as

Lp(a, b) =
ap + bp

ap−1 + bp−1
, −∞ ≤ p ≤ ∞.

The special values p = 0, 1/2, and 1 give the harmonic, geometric, and

arithmetic means, respectively. For fixed a and b, the function Lp(a, b)

is an increasing function of p. We have

L∞(a, b) = lim
p→∞

Lp(a, b) = max(a, b),

L−∞(a, b) = lim
p→−∞

Lp(a, b) = min(a, b).

A small calculation shows that

(4) L1−p(a, b) =
ab

Lp(a, b)
.

We will show that for each p ≥ 1/2 the matrix W with entries

(5) wij =
1

Lp(λi, λj)
=

λp−1
i + λp−1

j

λp
i + λp

j

,

is infinitely divisible.

First, observe that it is enough to prove this for p ≥ 1, because that

would say that every matrix of the form

(6)

[

λν
i + λν

j

λi + λj

]

, 0 < ν < 1,

is infinitely divisible. If 1/2 ≤ p ≤ 1, we let r = 1 − p, and note that

0 ≤ r ≤ 1/2. The expression (5) in this case can be written as

wij =
λ−r

i + λ−r
j

λp
i + λp

j

=
1

λr
i

λr
i + λr

j

λp
i + λp

j

1

λr
j

.

Since r/p ≤ 1, the infinite divisibility of this last matrix W follows

from that of (6).
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Observe further that if the matrices in (5) have been proved to be

infinitely divisible for p ≥ 1/2, then the relation (4) can be used to

show that for each p ≤ 1/2, the matrix M with entries

mij = Lp(λi, λj)

is infinitely divisible. Thus we may restrict our attention to the matri-

ces in (6).

Following the ideas in [BP] we make the substitution λi = exi , and

then write the entries of (6) as

eνxi + eνxi

exi + exj
=

eνxi/2

exi/2

eν(xi−xj)/2 + eν(xj−xi)/2

e(xi−xj)/2 + e(xj−xi)/2

eνxj/2

exj/2
.

Thus the matrix in (6) is infinitely divisible if and only if the matrix

[

cosh ν(xi − xj)

cosh (xi − xj)

]

, 0 < ν < 1,

is infinitely divisible. This is equivalent to the statement of the follow-

ing theorem:

Theorem 1. For 0 < ν < 1 the function

f(x) =
cosh νx

cosh x

is infinitely divisible.

Proof. We will show that for a, b > 0 the function

cosh bx

cosh(a + b)x

is infinitely divisible. Using the identity

cosh (a + b)x = 2 cosh ax cosh bx − cosh (a − b)x

we obtain

(7)
cosh bx

cosh (a + b)x
=

1

2 cosh ax

1

1 − cosh (a−b)x
2 cosh ax cosh bx

.
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Let r be any real number in (0, 1). Then for |t| < 1 we have the power

series expansion

1

(1 − t)r
=

∞
∑

n=0

antn,

where the coefficients an are the nonnegative numbers given by a0 = 1

and

an =
r(r + 1)(r + 2) · · · (r + m + 1)

m!
, m > 1.

Hence we have from (7)

(8)

(

cosh bx

cosh(a + b)x

)r

=
1

2r(cosh ax)r

∞
∑

n=0

an

2n

coshn(a − b)x

coshn ax coshn bx
.

We already know that the function 1/ cosh(x) is infinitely divisible. So

the factor outside the summation in (8) is positive definite. We know

also that for 0 ≤ ν ≤ 1, the function cosh(νx)/ cosh(x) is positive

definite. Consider each of the summands in (8). Depending on whether

a ≥ b or a ≤ b, one of

cosh(a − b)x

cosh ax
and

cosh(a − b)x

cosh bx

is positive definite. Hence, in either case

cosh(a − b)x

cosh ax cosh bx

is positive definite, and so are all its nth powers. Thus the series in (8)

represents a positive definite function for 0 < r < 1. This is enough to

show that the function in (7) is infinitely divisible. �

2.5. Power difference means. This is not a standard terminology

for the following family of means that are of interest and have been

studied in detail in [HK2] and [HK3]. For any real number p let

Kp(a, b) =
p − 1

p

ap − bp

ap−1 − bp−1
.

It is understood that

Kp(a, b) = a.
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For fixed a and b, the quantity Kp(a, b) is an increasing function of p.

This family includes some of the most familiar means:

K−∞(a, b) = min(a, b),

K−1(a, b) =
2

a−1 + b−1
, the harmonic mean,

K1/2(a, b) =
√

ab, the geometric mean,

K1(a, b) = lim
p→1

Kp(a, b) =
a − b

log a − log b
,

the logarithmic mean,

K2(a, b) =
a + b

2
, the arithmetic mean,

K∞(a, b) = max(a, b).

The analysis of these means is very similar to that of Lehmer means.

A small calculation shows that

(9) K1−p(a, b) =
ab

Kp(a, b)
,

and as for Lehmer means it is enough to show that for p > 1, the

matrix W with entries

(10) wij =
1

Kp(λi, λj)
=

p

p − 1

λp−1
i − λp−1

j

λp
i − λp

j

is infinitely divisible. (The reader can check that from this it follows

that this matrix is infinitely divisible also for 1/2 ≤ p < 1; and then

using the relation (9) one can see that for p ≤ 1/2, the matrix M with

entries mij = Kp(λi, λj) is infinitely divisible.)

So consider the matrix (10) with p > 1. This is infinitely divisible if

every matrix of the form

(11)

[

λν
i − λν

j

λi − λj

]

, 0 < ν < 1,

is infinitely divisible. We can prove this by appealing to Horn’s theorem

cited earlier. Alternately, we can follow our analysis in Section 2.5.

Now the function cosh is replaced by sinh and we have the following

theorem in place of Theorem 1. We note that this theorem can be
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deduced from Horn’s theorem on schicht maps, but we give a direct

proof akin to our proof of Theorem 1.

Theorem 2. For 0 < ν < 1 the function

(12) g(x) =
sinh νx

sinh x

is infinitely divisible.

Proof. Use the identity

sinh(a + b)x = 2 sinh ax cosh bx − sinh(a − b)x

to obtain

sinh ax

sinh(a + b)x
=

1

2 cosh bx

1

1 − sinh(a−b)x
2 sinh ax cosh bx

.

Let 0 ≤ b ≤ a and 0 < r < 1. We have the expansion

(13)

(

sinh ax

sinh(a + b)x

)r

=
1

2r coshr bx

∞
∑

n=0

an

2n

sinhn(a − b)x

sinhn ax coshn bx
.

Compare this with (8). We know that the function sinh(νx)/ sinh(x)

is positive definite for 0 < ν < 1. See [BP]. Thus the argument used in

the proof of Theorem 1 shows that (13) represents a positive definite

function. Since we assumed 0 ≤ b ≤ a, this shows that the function

(12) is infinitely divisible for 1/2 ≤ ν ≤ 1. But if ν is any number in

(0, 1) we can choose a sequence

ν = ν0 < ν1 < ν2 < · · · < νm = 1

with νi/νi+1 ≥ 1/2. Then

sinh νx

sinh x
=

m−1
∏

i=0

sinh νix

sinh νi+1x

is infinitely divisible since each factor in the product has that property.

�
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Taking the limit ν ↓ 0 of the function
sinh νx

ν sinh x
we get from Theo-

rem 2 another proof of the fact that the function
x

sinh x
is infinitely

divisible.

2.6. Stolarsky means. Another favourite family of mean theorists is

the class of Stolarsky means defined for −∞ < γ < ∞ as

Sγ(a, b) =

(

aγ − bγ

γ(a − b)

)1/(γ−1)

=

(

1

b − a

∫ b

a

tγ−1dt

)1/(γ−1)

.

For fixed a and b, Sγ(a, b) is an increasing function of γ. Some special

values are

S2(a, b) =
a + b

2
, the arithmetic mean,

S0(a, b) =
a − b

log a − log b
, the logarithmic mean,

S−1(a, b) =
√

ab, the geometric mean.

It is understood that

S1(a, b) = lim
γ→1

Sγ(a, b) =
1

e

(

aa

bb

)1/(a−b)

.

This is called the identric mean of a and b.

This family too leads to infinitely divisible matrices. Consider first

the case γ > 1, and the matrix W with entries

(14) wij =
1

Sγ(λi, λj)
=

(

γ(λi − λj)

λγ
j − λγ

j

)1/(γ−1)

.

From the result proved in Section 2.5 the matrix
[

λi − λj

λγ
i − λγ

j

]

is infinitely divisible, and therefore so is the matrix W in (14). Next

let 0 < γ < 1 and consider the matrix W whose entries are

wij =
1

Sγ(λi, λj)
=

(

λγ
i − λγ

j

γ(λi − λj)

)1/(1−γ)

.
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Again, by the infinite divisibility of (11) this matrix too has that prop-

erty. Now consider the case −1 < γ < 0. Then γ = −δ, where

0 < δ < 1. The matrix W with entries

(15) wij =
1

Sγ(λi, λj)
=

(

λδ
i − λδ

j

δ(λi − λj)λδ
i λ

δ
j

)1/(δ+1)

,

is a positive Hadamard power of a matrix of the form XLX, where X

is a positive diagonal matrix and L is a Loewner matrix of the form

[

λδ
i − λδ

j

λi − λj

]

.

This matrix is infinitely divisible, and therefore so is the matrix W in

(15).

Finally, let γ < −1. Then γ = −δ where δ > 1. Let M be the matrix

with entries

mij = Sγ(λi, λj) =

(

δλδ
i λ

δ
j(λi − λj)

λδ
i − λδ

j

)1/(δ+1)

.

The arguments in the earlier cases can be applied again to show that

this matrix is infinitely divisible.

2.7. Heron means. The pattern established by our examples so far

is broken by this family of means defined as

Fα(a, b) = (1 − α)
√

ab + α
a + b

2
, 0 ≤ α ≤ 1.

This is the linear interpolant between the geometric and the arithmetic

means, and each member of this family dominates the geometric mean.

Let W be the matrix with entries

(16) wij =
1

Fα(λi, λj)
=

2

α(λi + λj) + 2(1 − α)
√

λiλj

.

The question of positive definiteness of such matrices has been studied

in [B3]. Changing variables, this reduces to the question: for what
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values of t is the matrix V with entries

(17) vij =
1

λ2
i + λ2

j + tλiλj

infinitely divisible? It has been observed in [B2] that V is infinitely

divisible for −2 < t ≤ 2. When n = 2, the matrix V is known to be

positive definite for all t > −2; hence it is infinitely divisible as well. In

general, however, a matrix of the form V need not be positive definite

for t > 2. See [BP].

Returning to (16), we can conclude from the discussion above that

the matrix W is infinitely divisible for 1/2 ≤ α ≤ 1. However, when

0 < 1/2 < α not all such matrices are positive definite, even though

the mean Fα dominates the geometric mean.

As observed in [BP], the positive definiteness of all matrices V of the

form (17) for −2 < t ≤ 2 is equivalent to the positive definiteness of

the function

(18) f(x) =
1

cosh x + t
, −1 < t ≤ 1.

The infinite divisibility of the matrices V shows that this function is,

in fact, infinitely divisible. We discuss this again in Section 3.

3. Further results and remarks.

More theorems on positive definiteness and infinite divisibility can

be obtained from the examples in Section 2. As in our earlier work,

Schur’s theorem, congruence, positive definite functions, and hyper-

bolic functions play an important role.

Theorem 3. The function

(19) f(x) =
x cosh ax

sinh x

is infinitely divisible for −1/2 ≤ a ≤ 1/2.
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Proof. Making the substitution λi = exi, the matrix W in (2) may

be written as

wij =
xi − xj

exi − exj
=

1

exi/2

(xi − xj)/2

sinh(xi − xj)/2

1

exj/2
.

So, the infinite divisibility of W implies that the function x/ sinh x is

infinitely divisible. The identity

x cosh ax

sinh x
=

x/2

sinh x/2

cosh ax

cosh x/2

displays f(x) as the product of two functions, the first of which is

infinitely divisible, and by Theorem 1 so is the second, provided −1/2 ≤
a ≤ 1/2. �

In [BP], [K1], [HK1] and [HK2] the positive definiteness of functions

like (19) was used to obtain inequalities for norms of operators. The

next corollary of Theorem 3 is a refinement of some of these. Here |||·|||
stands for a unitarily invariant norm (see [B1, Chap.IV] for instance).

Corollary. Let A and B be positive definite matrices and let X be

any matrix. Then for 1/4 ≤ ν ≤ 3/4 we have

(20)
1

2
|||AνXB1−ν + A1−νXBν||| ≤ |||

∫ 1

0

AtXB1−tdt|||.

Proof. As explained in [BP] and [HK1], this inequality is a conse-

quence of the positive definiteness of the matrix V with entries

vij =
λν

i λ
1−ν
j + λ1−ν

i λν
j

2

log λi − log λj

λi − λj

for 1/4 ≤ ν ≤ 3/4. Making the substitution λi = exi , a small calculation

shows

vij =
(λi − λj)/2 · cosh((2ν − 1)(λi − λj)/2)

sinh(λi − λj)/2
.

The positive definiteness of all such matrices is equivalent to the func-

tion (19) being positive definite. �
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To put the inequality (20) in perspective, let us recall the generalised

Heinz inequality proved by Bhatia and Davis [BD1]:

|||A1/2XB1/2||| ≤ 1

2
|||AνXB1−ν + A1−νXBν ||| ≤ 1

2
|||AX + XB|||

for 0 ≤ ν ≤ 1; and the operator arithmetic-logarithmic-geometric mean

inequality proved by Hiai and Kosaki [HK1]

|||A1/2XB1/2||| ≤ |||
∫ 1

0

AtXB1−tdt||| ≤ 1

2
|||AX + XB|||.

The inequality (20) is a refinement of these two.

The next two propositions are generalisations of Theorems 1 and 2,

respectively.

Proposition 4. Let ν1, ν2, . . . , νn be nonnegative real numbers and

suppose
∑n

i=1 νi ≤ 1. Then the function

f(x) =

∏n
i=1 cosh(νix)

cosh x

is infinitely divisible. In particular, if n and m are positive integers with

n ≥ m, then the function coshm x/ cosh (nx) is infinitely divisible.

Proof. We use induction on n. The case n = 1 is covered by Theorem

1. The equation (8) can be written in another form as

(

cosh ν1 x

cosh x

)r

=
2−r

cosh (1 − ν1)x

∞
∑

n=0

an

2n

coshn (1 − 2ν1)x

coshn(1 − ν1)x coshn ν1 x
.

Multiply both sides of this equation by (
∏n

i=2 cosh νi x)
r

to get

(∏n
i=1 cosh νix

cosh x

)r

= 2−r

( ∏n
i=2 cosh νix

cosh (1 − ν1)x

)r ∞
∑

n=0

an

2n

coshn (1 − 2ν1)x

coshn(1 − ν1)x coshn ν1x
.

Since
∑n

i=2 νi ≤ 1 − ν1, the induction hypothesis implies that

(∏n
i=2 cosh νix

cosh (1 − ν1)x

)r
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is positive definite. The infinite divisibility of f can now be deduced

by repeating the arguments in Theorem 1. �

Proposition 5. Let ν0, ν1, . . . , νn be nonnegative real numbers. Sup-

pose
∑n

i=0 νi ≤ 1 and
∑n

i=1 νi ≤ 1/2. Then the function

(21) f(x) =
sinh ν0x

∏n
i=1 cosh νix

sinh x

is infinitely divisible.

Proof. The function f can be expressed as

f(x) =
sinh ν0x

sinh (1 −∑n
i=1 νi) x

sinh (1 −∑n
i=1 νi)x

∏n
i=1 cosh νix

sinh x
.

The given conditions imply that ν0 ≤ 1 −
∑n

i=1 νi. So, by Theorem 2

the first factor in the product above is infinitely divisible. So to prove

the infinite divisibility of the function (21) we may, and do, assume

that ν0 = 1−∑n
i=1 νi. Then, we have ν0 ≥ 1/2 by the given conditions.

As in the proof of Theorem 2, we have instead of (13) the equality

(

sinh ν0x

sinh x

)r

=
2−r

coshr(1 − ν0)x

∞
∑

n=0

an

2n

sinhn(2ν0 − 1)x

sinhn ν0x coshn (1 − ν0)x
.

Hence
(

sinh ν0x
∏n

i=1 cosh νix

sinh x

)r

= 2−r

(∏n
i=1 cosh νix

cosh (1 − ν0)x

)r ∞
∑

n=0

an

2n

sinhn(2ν0 − 1)x

sinhn ν0x coshn(1 − ν0)x
.

The factor outside the summation is positive definite by Proposition 4.

The function represented by the infinite sum above is positive definite

by the argument used for the sum in (13). Hence f is infinitely divisible.

�

Remark. The requirements in Proposition 5 are optimal: it is known

that if a, b ≥ 0 and a + b ≤ 1, then the function

sinh ax cosh bx

sinh x
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is positive definite if and only if b ≤ 1/2. See [K2].

We observed in Section 2 that the function (18) is infinitely divisible.

This may be concluded also by a calculation of Fourier transforms that

may have independent interest.

Proposition 6. The Fourier transform of the function

f(x) =
1

(cosh x + t)r
, −1 < t < 1, 0 < r < 1

is given by the formula

(22) f̂(ξ) =
2 sin πr

sinh πξ

[
∫ arccos t

0

sinh(αξ) dα

(cosα − t)r
+

∫

∞

0

sin(αξ) dα

(cosh α − t)r

]

.

Proof. We use the well-known integral

xr =
sin πr

π

∫

∞

0

x

x + λ

dλ

λ1−r
, x ≥ 0

to write f as

f(x) =
sin πr

π

∫

∞

0

(cosh x + t)−1

(cosh x + t)−1 + λ

dλ

λ1−r
(23)

=
sin πr

π

∫

∞

0

1

λ(cosh x + t) + 1

dλ

λ1−r

=
sin πr

π

∫

∞

0

1

cosh x + t + 1
λ

dλ

λ2−r

=
sin πr

π

[

∫ 1

1−t

0

1

cosh x + t + 1
λ

dλ

λ2−r

+

∫

∞

1

1−t

1

cosh x + t + 1
λ

dλ

λ2−r

]

.

The quantity t+1/λ appearing in the denominators decreases from ∞
to 1 as λ varies from 0 to 1/(1 − t), and it decreases from 1 to t as λ

varies from 1/(1 − t) to ∞. Change variables by putting

u = t +
1

λ
(and hence du = −dλ

λ2
, λ = (u − t)−1).
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Then we obtain from (23)

f(x) =
sin πr

π

[

∫

∞

1

1

cosh x + u

du

(u − t)r
(24)

+

∫ 1

t

1

cosh x + u

du

(u − t)r

]

.

Using Fubini’s theorem we get from (24)

f̂(ξ) =
sin πr

π
[I1 + I2] ,

where

(25) I1 =

∫

∞

1

ĝ(ξ)
du

(u − t)r
, I2 =

∫ 1

t

ĝ(ξ)
du

(u− t)r
.

The Fourier transform of g is known; see e.g. [BD2] Section 3. When

u > 1 we have

ĝ(ξ) =
2π√

u2 − 1

sin(ξ arccosh u)

sinh πξ
.

Put this into (25) and then change the variable u to cosh α. This gives

I1 =
2π

sinh πξ

∫

∞

0

sin αξ

(cosh α − t)r
dα.

When −1 < u < 1 we have

ĝ(ξ) =
2π√

1 − u2

sinh(ξ arccos u)

sinh πξ
.

Put this expression into (25) and then change the variable u to cos α.

This gives

I2 =
2π

sinh πξ

∫ arccos t

0

sinh αξ

(cos α − t)r
dα.

Putting everything together we get the formula (22). �

We claim that f̂(ξ) ≥ 0 for all ξ. Being the Fourier transform of the

even function f(x), f̂ is even. Hence it suffices to show that f̂(ξ) ≥ 0

for all ξ > 0. Consider, one by one, the quantities occurring on the right

hand side of (22). The factor outside the brackets is clearly positive.

So is the first of the two integrals. For fixed ξ and t, the function

(cosh α − t)−r decreases monotonically as α increases while sin αξ is
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oscillatory. Hence the second integral in (22) is also positive. Thus

f̂(ξ) ≥ 0.

It follows from Bochner’s theorem that the function f of Proposition

6 is positive definite. Hence the function (18) is infinitely divisible.

We end this section with a few remarks and questions.

In the earlier works [BP], [HK3], several ratios of means have been

studied and many matrices arising from these have been proved to be

positive definite. It seems most of them are also infinitely divisible.

Several more examples using computations with Fourier transforms

will appear in the paper by Kosaki [K2]. In a recent paper Drissi [D]

has shown that the function in (19) is positive definite if and only if

−1/2 ≤ a ≤ 1/2. His argument too is based on a calculation of Fourier

transforms.

Two general questions are suggested by our work. Let L± be the

classes of all differentiable functions from [0,∞) into itself for which

all matrices of the form

[f(λi) ± f(λj)

λi ± λj

]

are positive definite. Let M± be the classes consisting of those f for

which all these matrices are infinitely divisible.

The class L− is the Loewner class and consists of all operator mono-

tone functions. Horn’s theorem says that M− consists of those func-

tions in L− whose analytic continuations map the upper half-plane into

itself univalently. It is known that L− ⊂ L+. (See [K] or [BP].)

Question 1. Is M− ⊂ M+?

Question 2. Are there any good characterisations of the classes

L+ and M+? (The theroems of Loewner and Horn give interesting

descriptions of L− and M−, respectively.)
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4. Appendix

We have the well-known formula

(26)

∫

∞

−∞

eixξ dx

coshr x
=

2r−1|Γ((r + iξ)/2)|2
Γ(r)

.

See e.g. [O, p.33] and [HK3, p.138]. On the other hand, putting t = 0

in (22) we see that this is also equal to

(27)
2 sin πr

sinh πξ

[

∫ π/2

0

sinh αξ

cosrα
dα +

∫

∞

0

sin αξ

coshr α
dα

]

.

In this appendix we clarify the relation between these two expressions.

We set

D =







{z ∈ C; Re z > 0 and |Im z| < arccos t} if t ∈ [0, 1),

{z ∈ C; Re z > 0 and − π/2 < Im z < arccos t} if t ∈ (−1, 0).

Then, (cosh z − t)r (= exp(r log(cosh z − t)) makes sense as a (single-

valued) holomorphic function on D: We note

cosh z − t = cosh a cos b − t + i sinh a sin b (for z = a + ib ∈ D).

(i) Case t ≥ 0: Since cos b > t ≥ 0, we have

Re (cosh z − t) = cosh a cos b − t ≥ cos b − t > 0.

(ii) Case t < 0: For b ∈ (−π/2, π/2) we have cos b > 0 and hence

Re (cos z − t) > 0 as above. On the other hand, for b ∈ [π/2, arccos t)

we have

Im (cosh z − t) = sinh a sin b > 0.

In either case the range of cosh z − s stays in C \ (−∞, 0] so that

log (cosh z − t) indeed makes sense on D in the standard way.

Note cosh (i arccos t) − t = 0 but i arccos t 6∈ D, and cosh z − t

does not have a zero in D. Therefore, (for a fixed real number ξ) the

function

f(z) =
sin zξ

(cosh z − t)r
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is holomorphic on D. We note that

| cosh(a + ib) − t|2 = (cosh a cos b − t)2 + (sinh a sin b)2(28)

= sinh2 a + cos2 b − 2t cosh a cos b + t2.

Lemma A.1. For each t ∈ (−1, 1) and r ∈ (0, 1) we have

∫ arccos t

0

sinh αξ

(cos α − t)r
dα +

∫

∞

0

sin αξ

(cosh α − t)r
dα

=

∫

∞

0

cosh(ξ arccos t) sin(ξs) + i sinh(ξ arccos t)cos(ξs)
(

t(cosh s − 1) + i
√

1 − t2 sinh s
)r ds.

Proof. We fix an ε > 0 sufficiently small and a large N > 0. Let

R (⊆ D) be the rectangular region with vertices ε, N, N+i(arccos t−ε)

and ε+ i(arccos t−ε) so that ∂R is the contour (oriented counterclock-

wise) consisting of the four oriented edges

C1 : ε → N,

C2 : N → N + i(arccos t − ε),

C3 : N + i(arccos t − ε) → ε + i(arccos t − ε),

C4 : ε + i(arccos t − ε) → ε.

Cauchy’s theorem says

(29)

4
∑

i=1

∫

Ci

f(z)dz =

∫

∂R

f(z)dz = 0,

and we will let ε → 0 here.

From the definition we directly compute
∫

C3

f(z)dz =

−
∫ N

ε

cosh((arccos t − ε)ξ) sin(ξs) + i sinh((arccos t − ε)ξ)cos(ξs)
(

cosh s cos(arccos t − ε) − t + i sinh s sin(arccos t − ε)
)r ds.

We use the dominated convergence theorem to see its behavior as ε →
0. The numerator of the integrand obviously stays bounded, and we
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need to estimate the (reciprocal of) denominator. We have

| cosh s cos(arccos t − ε) − t + i sinh s sin(arccos t − ε)|2

= sinh2 s +
(

cos2(arccos t − ε) − 2t cos(arccos t − ε) cosh s + t2
)

≥ (1 − t2) sinh2 s.

Here, the first equality is a consequence of (28), and for the second

inequality we note that the difference of the two sides is

(

cos2(arccos t − ε) − 2t cos(arccos t − ε) cosh s + t2
)

+ t2 sinh2 s

= cos2(arccos t − ε) − 2t cosh s cos(arccos t − ε) + t2 cosh2 s

=
(

cos(arccos t − ε) − t cosh s
)2 ≥ 0.

Consequently, the modulus of the above integrand is majorized by

a constant multiple of sinh−r s, which is integrable over the interval

[0, N ]. The dominated convergence theorem thus guarantees

lim
ε→0

∫

C3

f(z)dz(30)

= −
∫ N

0

cosh(ξ arccos t) sin(ξs) + i sinh(ξ arccos t)cos(ξs)
(

t(cosh s − 1) + i
√

1 − t2 sinh s
)r ds.

Secondly, from the definition we have
∫

C4

f(z)dz = −i

∫ arccos t−ε

0

sin(εξ) cosh(ξs) + icos(εξ) sinh(ξs)

(cosh ε cos s − t + i sinh ε sin s)r ds.

In this case we estimate

| cosh ε cos s − t + i sinh ε sin s|2

= sinh2 ε + cos2s − 2t cosh ε cos s + t2 ≥ (cos s − t)2,

or equivalently,

sinh2 ε−2t cos s (cosh ε−1) = cosh2 ε−2t cos s cosh ε+2t cos s−1 ≥ 0.

Indeed, the quadratic polynomial g(X) = X2−2(t cos s)X +2t cos s−1

takes a minimum value at X = t cos s (< 1 for s ∈ [0, arccos t]) and
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g(X) ≥ g(1) = 0 for X = cosh ε ≥ 1. Thus, the integrand is ma-

jorized by a constant multiple of (cos s− t)−r. The integrability of this

majorant over the interval [0, arccos t] (together with the dominated

convergence theorem again) yields

(31) lim
ε→0

∫

C4

f(z)dz =

∫ arccos t

0

sinh sξ

(cos s − t)r
ds.

We obviously have

(32) lim
ε→0

∫

C1

f(z)dz =

∫ N

0

sin sξ

(cosh s − t)r
ds,

and the sum of (30),(31),(32) and limε→0

∫

C2

f(z)dz is zero (due to

(29)). Then, by letting N → ∞, we get the result since limN→∞ of the

last quantity disappears thanks to the obvious estimate |
∫

C2
f(z)dz| =

O(e−rN) (based on (28)). �

When t = 0, Lemma A.1 says

∫ π/2

0

sinh αξ

cosrα
dα +

∫

∞

0

sin αξ

coshr α
dα(33)

=

∫

∞

0

cosh(πξ/2) sin(ξs) + i sinh(πξ/2)cos(ξs)

(i sinh s)r
ds

= e−iπr/2
[

cosh(πξ/2)

∫

∞

0

sin ξs

sinhr s
ds

+i sinh(πξ/2)

∫

∞

0

cos ξs

sinhr s
ds
]

thanks to (i sinh s)r =
(

eiπ/2 sinh s
)r

= eiπr/2 sinhr s.

Lemma A.2.

∫

∞

0

sin ξs

sinhr s
ds =

2r−1|Γ ((r + iξ)/2) |2Γ(1 − r)

π
· cos(πr/2) sinh(πξ/2),

∫

∞

0

cos ξs

sinhr s
ds =

2r−1|Γ ((r + iξ)/2) |2Γ(1 − r)

π
· sin(πr/2) cosh(πξ/2).
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With this lemma (whose proof is postponed) the quantity (33) is

e−iπr/2 sinh(πξ/2) cosh(πξ/2)

×2r−1|Γ((r + iξ)/2)|2Γ(1 − r)

π
×
(

cos(πr/2) + i sin(πr/2)
)

=
sinh πξ

2
× 2r−1|Γ((r + iξ)/2)|2Γ(1 − r)

π
.

Consequently, the quantity given by (27) is equal to

2 sin πr

sinh πξ
× sinh πξ

2
× 2r−1|Γ((r + iξ)/2)|2Γ(1 − r)

π

=
sin πr Γ(1 − r)

π
× 2r−1|Γ((r + iξ)/2)|2,

which is exactly (26) since Γ(r)Γ(1 − r) = π/ sin πr.

Proof of Lemma A.2. We set t = − 1
2
× log(1 − x) so that

e−2t = 1 − x and sinh x =
1

2

(

1√
1 − x

−
√

1 − x

)

=
x

2
√

1 − x
.

Since dt = dx/2(1 − x), this change of variables gives us

∫

∞

0

sin ξs

sinhr s
ds =

∫ 1

0

sin
(

− ξ
2
log(1 − x)

)

(

x/2
√

1 − x
)r

dx

2(1 − x)

= 2r−1

∫ 1

0

(1 − x)
r
2
−1x−r sin

(

− ξ
2 log(1 − x)

)

dx

= 2r−1Im

(
∫ 1

0

(1 − x)
r
2
−1− iξ

2 x−rdx

)

,

∫

∞

0

cos ξs

sinhr s
ds = 2r−1Re

(
∫ 1

0

(1 − x)
r
2
−1− iξ

2 x−rdx

)

.

With these expressions we get the lemma from the following:
∫ 1

0

(1 − x)
r
2
−1− iξ

2 x−rdx=B((r − iξ)/2, 1− r)=
Γ ((r − iξ)/2) Γ(1 − r)

Γ (1 − (r + iξ)/2)

=
sin (π(r + iξ)/2)Γ ((r + iξ)/2)Γ ((r − iξ)/2) Γ(1 − r)

π

=
|Γ ((r + iξ)/2) |2 Γ(1 − r)

π
× sin (π(r + iξ)/2) ,

where we have used the identities Γ(z)Γ(1− z) = π/ sin πz and Γ(z) =

Γ(z) (a consequence of Schwarz’ reflection principle). �
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