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1. INTRODUCTION

Let A = [a;;] and B = [b;j] be nxn positive semidefinite matrices. By
the well-known theorem of Schur the Hadamard product Ao B = |a;;b;j]

is positive semidefinite. Thus for each positive integer m, the mth

m
]

Hadamard power A°™ = [al] is positive semidefinite.

Suppose A is positive semidefinite and all its entries a;; are nonneg-
ative. We say A is infinitely divisible if for every real number r > 0
the matrix A°" = [aj;] is positive semidefinite. By Schur’s theorem
and continuity A is infinitely divisible if and only if every fractional
Hadamard power A°Y/™ is positive semidefinite.

It is easy to see that every 2 x 2 positive semidefinite matrix with
nonnegative entries is infinitely divisible. This is not always the case for
matrices of order n > 2. We refer the reader to some old papers [H2],
[H3] on infinitely divisible matrices and the recent work [B2] where
diverse examples of such matrices are given.

The motivation for this paper stems from the following observation.
Let Ay,..., A\, be any given positive numbers. Consider the matrices

A whose entries are given by one of the following rules:

aij = min()\i,)\j),

N

G = max()\i,)\j)’

a; = H(\, ),
1

aGij = v

I AN, N\))

aij = 1/ )\z’>\j7

where H(\;, A;) is the harmonic mean of \; and A;, and A(\;, ;) their
arithmetic mean. Then all these five matrices are infinitely divisible.
How general is this phenomenon?

A binary operation m on positive numbers is called a mean if it

satisfies the following conditions:
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(i) m(a,b) = m(b,a).

(il) min(a,b) < m(a,b) < max(a,b).

(iv) m(a,b) is an increasing function of a and b.

)
)
(iii) m(«aa, ab) = am(a,b) for all a > 0.
)
)

(v
Let Ay < A < -+ < A, be positive numbers and let m(a,b) be a mean.
Suppose m(a,b) < Vab for all a and b. Let M be the matrix with

m(a,b) is a continuous function of a and b.

entries
mij = m()\z, )\])

On the other hand, suppose vab < m(a,b) for all a and b. Then let W

be the matrix with entries

1
T 0w )
Are the matrices M and W infinitely divisible? We will see that this
is the case for several families of means. However, the domination
criterion vis a vis the geometric mean is not sufficient to guarantee
infinite divisibility of these matrices and we give an example to show
that.

Some of the key ideas used here occur in our earlier work, especially
in the papers of Bhatia and Parthasarathy [BP| and Hiai and Kosaki
[HK?2] . One of them is the use of “congruence transformations”: if X is
a diagonal matrix with positive diagonal entries then the two matrices
C and XCX are positive definite (infinitely divisible, respectively) at
the same time. Another is the use of positive definite functions. A
(complex-valued) function f on R is said to be positive definite if for
all choices of n real numbers Ay, ..., A, the n x n matrices [f(\; — A;)]
are positive semidefinite. We will say that f is infinitely divisible if for
every r > 0 the function (f(x))" is positive definite.

We will use a theorem of Roger Horn [H1| on operator monotone

functions. We refer the reader to [B1l, Chapter V] for the theory of
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such functions. One of the key facts is that a (differentiable) function

f :]0,00) — [0, 00) is operator monotone if and only if for all choices

of n positive numbers Ay, ..., \,, the n X n matrices
fN) = f(A)
(1) e
Ai — A

are positive semidefinite. (If A; = \A;, the difference quotient is taken to
mean f’();).) This was proved by C. Loewner and the matrices in (1)
are called Loewner matrices. Another theorem of Loewner says that f
is operator monotone if and only if it has an analytic continuation to a
mapping of the upper half-plane into itself. Horn [H1] showed that this
analytic continuation is a one-to-one (also called univalent or schlicht)
map if and only if all Loewner matrices (1) are infinitely divisible.

The matrix E all whose entries are equal to one is called the flat
matriz. This is clearly infinitely divisible. Hence, if G(A;, A;) represents
the geometric mean of \; and A;, then the matrices [G(\;, ;)] and
[1/G(Xi, Aj)] both are infinitely divisible. As a consideration of 2 x 2
matrices shows, for no other mean can these two matrices be positive
definite at the same time.

A matrix C' whose entries are

!
NN

is called a Cauchy matriz. This is an infinitely divisible matrix. See

Cij

[B2] for different proofs of this fact. From this it follows that the matrix

W with entries
1
AN, )\j) ’

where A(.,.) represents the arithmetic mean is infinitely divisible, as is

’UJZ'j =

the matrix M with entries
mi; = H(\i, \j),

where H represents the harmonic mean. This fact about Cauchy ma-

trices will be used again in the next section.
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2. EXAMPLES

2.1. The logarithmic mean. The logarithmic mean L(a,b) is defined
as

—b
logZ—logb’ (a 7& b)?

L(a,b) =
() a (a =0).

We have Vab < L(a,b) < %(a + b), which is a refinement of the

arithmetic-geometric mean inequality. The matrix W with entries

1 _log A; —log \;

2 =
(2) YT TN N—

is the Loewner matrix of the schlicht function log z mapping the upper
half-plane into itself. Hence, by the theorem of Horn [H1] this matrix
is infinitely divisible. We will see other proofs of this fact later in this
paper.

Another representation for the mean L is given by the integral for-

mula

1 o0 dt
L(a,b) /0 (t+a)t+b)

For each t > 0, the matrix with entries

1
(t+ )+ A))

is congruent to the flat matrix, and is thus positive definite (and infin-
itely divisible). It follows immediately that the matrix (2) is positive
definite.

It was observed in [BP] that the positive definiteness of all matrices

(2) is equivalent to the function

T

fx) =

sinh =

being positive definite. The same argument now shows that this func-

tion is infinitely divisible.
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2.2. The Heinz means. For 0 < v < 1, the Heinz mean is defined as

aubl—u + al—ubu

H,(a,b) = 5

For each pair (a,b) of positive numbers the function H,(a,b) of v is
symmetric about the point ¥ = 1/2 and attains its minimum value
there. The minimum value is H/2(a,b) = vab. The maximum value
is Hy(a,b) = Hy(a,b) = 5(a+0b). For 0 <v < 1/2let W be the matrix
with entries

1 2
Hy(Niy i) AT+ ATV
2
NN AT N

J

Then W = XCX, where X is a positive diagonal matrix and C' is a

Cauchy matrix. Hence W is infinitely divisible.

2.3. The Binomial means. The binomial means also called power

means, are defined as

« e 1/a
Ba(avb): (a —Qi_ ) ) _OOSQSOO

It is understood that

Bo(a,b) = lim B,(a,b) = Vab,

a—0

Boo(a,b) = lim Bg(a,b) = max(a,b),

a—00

B_«(a,b) = lim B,(a,b) = min(a,b).

a——0Q

For fixed a and b the function B,(a,b) is increasing in «. Further

ab
By (a,b)’

For o« > 0 let W be the matrix with entries

(3) B_o(a,b) =

1 21/04

Ba(AisAj)  (he 4 A0y
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This matrix is infinitely divisible since every Cauchy matrix has that
property. The relation (3) then shows that for each o > 0 the matrix
M with entries

mij = B_a (Ai, Aj)

is also infinitely divisible.

2.4. The Lehmer means. This family is defined as

aPl + bP o<
Gy OSpEee

L,(a,b) =
The special values p = 0,1/2, and 1 give the harmonic, geometric, and
arithmetic means, respectively. For fixed a and b, the function L,(a, b)

is an increasing function of p. We have

Lo(a,b) = lim L,(a,b) =max(a,b),

p—00

L_(a,b) = lim L,(a,b) = min(a,b).

p——00

A small calculation shows that

ab
4 Li_ b) = )
( ) 1 p(a7 ) Lp(a, b)
We will show that for each p > 1/2 the matrix W with entries
1 APt
(5) wij = = ;

L,(Ni, Aj) N+ )\57 ’
is infinitely divisible.
First, observe that it is enough to prove this for p > 1, because that

would say that every matrix of the form

6 A+ A 0 )

is infinitely divisible. If 1/2 < p < 1, we let r = 1 — p, and note that

0 <r <1/2. The expression (5) in this case can be written as

CNTHEAT T NN

A NS Uil VIS U U

Since r/p < 1, the infinite divisibility of this last matrix W follows
from that of (6).
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Observe further that if the matrices in (5) have been proved to be
infinitely divisible for p > 1/2, then the relation (4) can be used to
show that for each p < 1/2, the matrix M with entries

mij = Lp(Ai, Aj)

is infinitely divisible. Thus we may restrict our attention to the matri-
ces in (6).
Following the ideas in [BP] we make the substitution A\; = e*, and

then write the entries of (6) as

evTi | eV Ti €in/2 6V(xi—zj)/2+€u(xj—zi)/2 6wcj/2

eri + e%j - exi/2 e(Ii—Ij)/2+6(Ij—Ii)/2 eril2

Thus the matrix in (6) is infinitely divisible if and only if the matrix

[cosh v(z; — ;)

0<rv<l
cosh (z; — ;) } ’ e

is infinitely divisible. This is equivalent to the statement of the follow-

ing theorem:

Theorem 1. For 0 < v < 1 the function

cosh vz

fz) =

cosh x

is infinitely divisible.

Proof. We will show that for a,b > 0 the function

cosh bx
cosh(a + b)x

is infinitely divisible. Using the identity
cosh (a + b)z = 2 cosh ax cosh bz — cosh (a — b)x

we obtain

cosh bx 1 1

cosh (a +b)xr 2 cosh ar 1 _ __coshle=bz
2 cosh az cosh bx

(7)
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Let r be any real number in (0, 1). Then for |{| < 1 we have the power

series expansion
[e.e]

1
(1—1) —
where the coefficients a,, are the nonnegative numbers given by ay = 1
and
0 — r(r+1)(7‘+2)~--(7‘+m—|—1)7 _—
m)!
Hence we have from (7)
@) cosh bz \" 1 i a, cosh™(a—b)x
cosh(a+b)x ) — 27(cosh ax)" £— 2" cosh” azx cosh” bz’

We already know that the function 1/ cosh(z) is infinitely divisible. So
the factor outside the summation in (8) is positive definite. We know
also that for 0 < v < 1, the function cosh(vz)/ cosh(z) is positive
definite. Consider each of the summands in (8). Depending on whether
a > bora<b, one of

cosh(a — b)z cosh(a — b)x
cosh ax and cosh bx

is positive definite. Hence, in either case

cosh(a — b)x
cosh ax cosh bx

is positive definite, and so are all its nth powers. Thus the series in (8)
represents a positive definite function for 0 < r < 1. This is enough to

show that the function in (7) is infinitely divisible. B

2.5. Power difference means. This is not a standard terminology
for the following family of means that are of interest and have been
studied in detail in [HK2] and [HK3]. For any real number p let

p—1 aP =0
p ap~l—prl

K,(a,b) =

It is understood that

K,(a,b) = a.
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For fixed a and b, the quantity K,(a,b) is an increasing function of p.

This family includes some of the most familiar means:

K_«(a,b) = min(a,b),

2
K_i(a,b) = e, the harmonic mean,
Kij2(a,b) = Vab, the geometric mean,
a—b
K b) = lim K )= ———

the logarithmic mean,
b
Ky(a,b) = a—21— , the arithmetic mean,

Ko(a,b) = max(a,b).

The analysis of these means is very similar to that of Lehmer means.

A small calculation shows that

ab

) Kiplat) = g

and as for Lehmer means it is enough to show that for p > 1, the

matrix W with entries
1 1
1 p AN =X

YT R0 N)  p—1 NN

(10)

is infinitely divisible. (The reader can check that from this it follows
that this matrix is infinitely divisible also for 1/2 < p < 1; and then
using the relation (9) one can see that for p < 1/2, the matrix M with
entries m;; = K,(\;, A;) is infinitely divisible.)

So consider the matrix (10) with p > 1. This is infinitely divisible if

every matrix of the form
A\
(1) fy

Ai — A
is infinitely divisible. We can prove this by appealing to Horn’s theorem

], O<v<l,

cited earlier. Alternately, we can follow our analysis in Section 2.5.
Now the function cosh is replaced by sinh and we have the following

theorem in place of Theorem 1. We note that this theorem can be
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deduced from Horn’s theorem on schicht maps, but we give a direct

proof akin to our proof of Theorem 1.

Theorem 2. For 0 < v < 1 the function

sinh vz

(12) g(x) =

sinh =«

is infinitely divisible.
Proof. Use the identity
sinh(a + b)z = 2 sinh ax cosh bz — sinh(a — b)x

to obtain

sinh ax B 1 1
sinh(a +b)z  2cosh by 1 _ _sinhla—be

2sinh ax cosh bx

Let 0 < b <aand0<r <1 We have the expansion

sinh ax " 1 . a, sinh™(a—b)x
(13) <—) = — Z —— ( )

sinh(a + b)z 2" cosh” b £ 2" sinh™ ax cosh” br’

Compare this with (8). We know that the function sinh(vx)/sinh(z)
is positive definite for 0 < v < 1. See [BP]. Thus the argument used in
the proof of Theorem 1 shows that (13) represents a positive definite
function. Since we assumed 0 < b < a, this shows that the function
(12) is infinitely divisible for 1/2 < v < 1. But if v is any number in

(0,1) we can choose a sequence
V=1 << <- - <V,=1

with v; /v 1 > 1/2. Then

sinh vx H sinh v;x

sinh x sinh v; 1@

is infinitely divisible since each factor in the product has that property.
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sinh v
Taking the limit v | 0 of the function ———— we get from Theo-
v sinh x
rem 2 another proof of the fact that the function is infinitely
sinh x

divisible.

2.6. Stolarsky means. Another favourite family of mean theorists is

the class of Stolarsky means defined for —oo < v < 00 as

a — i\ YO 1 b 1/(v-1)
o (5 (e L)

For fixed a and b, S, (a,b) is an increasing function of . Some special

values are
b
Sa(a,b) = a—2|— , the arithmetic mean,
a—b . .
So(a,b) = —— .  the logarithmic mean,
log a —log b

S_i(a,b) = Vab, the geometric mean.

It is understood that

a\ 1/(a—b)
Si(a,b) = lim S, (a,b) = - (“—) |

y—1 e \ b
This is called the identric mean of a and b.
This family too leads to infinitely divisible matrices. Consider first
the case v > 1, and the matrix W with entries

oy YO
(14) Wi = L = (’Y(iz ):{J)) .
Sy (Ais Aj) )\j — )\j

From the result proved in Section 2.5 the matrix

A — A
N =X

is infinitely divisible, and therefore so is the matrix W in (14). Next

let 0 < v < 1 and consider the matrix W whose entries are

1 < )\;Y _ )\;Y )1/(1—7)
TS (N A) Y(Ni = Aj)
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Again, by the infinite divisibility of (11) this matrix too has that prop-
erty. Now consider the case —1 < v < 0. Then v = —9, where

0 < § < 1. The matrix W with entries

J(5+1)

A0\ !

(15) wz‘j:#: — :
Sv()‘ia >‘j) o(Ai — )‘j))\i)‘j

is a positive Hadamard power of a matrix of the form X LX, where X

is a positive diagonal matrix and L is a Loewner matrix of the form

JUDY,
A=A |
This matrix is infinitely divisible, and therefore so is the matrix W in

(15).
Finally, let v < —1. Then v = —¢ where ¢ > 1. Let M be the matrix

with entries

/(0+1)
NN — A\
i J

The arguments in the earlier cases can be applied again to show that

this matrix is infinitely divisible.

2.7. Heron means. The pattern established by our examples so far

is broken by this family of means defined as
b
Fu(a,b) = (1—04)\/%”%, 0<a<l.

This is the linear interpolant between the geometric and the arithmetic
means, and each member of this family dominates the geometric mean.

Let W be the matrix with entries

1 2

WTRNA) T el ) 20— a) /A

(16)

The question of positive definiteness of such matrices has been studied

in [B3]. Changing variables, this reduces to the question: for what
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values of ¢ is the matrix V with entries

1
TN N

(17)

infinitely divisible? It has been observed in [B2] that V is infinitely
divisible for —2 < t < 2. When n = 2, the matrix V' is known to be
positive definite for all £ > —2; hence it is infinitely divisible as well. In
general, however, a matrix of the form V' need not be positive definite
for ¢t > 2. See [BP].

Returning to (16), we can conclude from the discussion above that
the matrix W is infinitely divisible for 1/2 < a < 1. However, when
0 < 1/2 < «a not all such matrices are positive definite, even though
the mean F, dominates the geometric mean.

As observed in [BP], the positive definiteness of all matrices V' of the
form (17) for —2 < ¢ < 2 is equivalent to the positive definiteness of
the function

1

=  1<t<l1.
cosh x + ¢

(18) /()

The infinite divisibility of the matrices V' shows that this function is,

in fact, infinitely divisible. We discuss this again in Section 3.

3. FURTHER RESULTS AND REMARKS.

More theorems on positive definiteness and infinite divisibility can
be obtained from the examples in Section 2. As in our earlier work,
Schur’s theorem, congruence, positive definite functions, and hyper-

bolic functions play an important role.

Theorem 3. The function

x cosh ax

(19) fx) =

sinh

is infinitely divisible for —1/2 < a < 1/2.
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Proof. Making the substitution \; = e*, the matrix W in (2) may

be written as

evi — % evi/2 sinh(z; — x;)/2 i/’

wij =

So, the infinite divisibility of W implies that the function x/sinhz is
infinitely divisible. The identity

x cosh ax x/2 cosh ax

sinh #  sinh /2 cosh z/2

displays f(z) as the product of two functions, the first of which is
infinitely divisible, and by Theorem 1 so is the second, provided —1/2 <
a<l1/2. 1

In [BP], [K1], [HK1] and [HK2] the positive definiteness of functions
like (19) was used to obtain inequalities for norms of operators. The
next corollary of Theorem 3 is a refinement of some of these. Here |||-|||

stands for a unitarily invariant norm (see [B1, Chap.IV] for instance).

Corollary. Let A and B be positive definite matrices and let X be

any matrix. Then for 1/4 < v < 3/4 we have

1 1
(200 SlAXB 4+ AXBY| < | / ALX Bt
0

Proof. As explained in [BP] and [HK1], this inequality is a conse-

quence of the positive definiteness of the matrix V' with entries

)\;.’)\}_” + )\3_”)\5 log \; — log A
2 M=\

Uij =

for 1/4 < v < 3/4. Making the substitution A\; = ¢, a small calculation
shows

Uij =

The positive definiteness of all such matrices is equivalent to the func-

tion (19) being positive definite. W
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To put the inequality (20) in perspective, let us recall the generalised
Heinz inequality proved by Bhatia and Davis [BD1]:

1 1
[[AY2X BR[| < S||A"X B! + A X BY||| < S| AX + X B]]|

for 0 < v < 1; and the operator arithmetic-logarithmic-geometric mean

inequality proved by Hiai and Kosaki [HK1]
1
1
IlA2XBP| < ||| [ AXBat]] < 51X + XB]|
0

The inequality (20) is a refinement of these two.
The next two propositions are generalisations of Theorems 1 and 2,

respectively.

Proposition 4. Let vy, vs,...,1, be nonnegative real numbers and
suppose > ., v; < 1. Then the function

[T, cosh(v;z)
cosh z

fz) =

is infinitely divisible. In particular, if n and m are positive integers with

n > m, then the function cosh™ x/ cosh (nx) is infinitely divisible.

Proof. We use induction on n. The case n = 1 is covered by Theorem

1. The equation (8) can be written in another form as

[e.e]

cosh vy z\" 27T a, cosh” (1 — 2uy)x
cosh x ~ cosh (1 —vy)x = 2 cosh™(1 — 1)z cosh™ vz

Multiply both sides of this equation by (J]}_, cosh v; z)" to get

(H?:l cosh l/ix) "

cosh z

_ g (M)i a,  cosh"(1—2u)z

cosh (1 — 1)z . 27 cosh™(1 — 1)z cosh™ via”

Since Y1, v; < 1 — vy, the induction hypothesis implies that

< [T, cosh vz )T

cosh (1 — 1)z
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is positive definite. The infinite divisibility of f can now be deduced

by repeating the arguments in Theorem 1. B

Proposition 5. Let vy, v, ..., 1, be nonnegative real numbers. Sup-
pose Y . v; < 1land Y ! v <1/2. Then the function

sinh oz [];_, cosh vz

(21) fz) =

sinh =

is infinitely divisible.

Proof. The function f can be expressed as

fx) = sinh vy sinh (1 —->" )z [[., cosh vz
= sinh (1 =" )« sinh z '

i=1

The given conditions imply that vy <1—3" ;. So, by Theorem 2
the first factor in the product above is infinitely divisible. So to prove
the infinite divisibility of the function (21) we may, and do, assume
that vy = 1—>""" , 1. Then, we have vy > 1/2 by the given conditions.
As in the proof of Theorem 2, we have instead of (13) the equality

[e.e]

sinh voz\" 27" Z a, sinh"(2vy — 1)z
sinh x ) cosh’(1 — vz 27 sinh” vox cosh” (1 — vg)x

n=0

Hence

(sinh vox []}, cosh Vﬁ;)r

sinh

gt <H:‘:1 cosh Vl-x)r = an sinh"(2vy — 1)z ‘
cosh (1 =)z ) 4= 2" sinh" pz cosh"(1 —1p)x
The factor outside the summation is positive definite by Proposition 4.
The function represented by the infinite sum above is positive definite
by the argument used for the sum in (13). Hence f is infinitely divisible.
|

Remark. The requirements in Proposition 5 are optimal: it is known
that if a,b > 0 and a + b < 1, then the function

sinh ax cosh bx

sinh z
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is positive definite if and only if b < 1/2. See [K2].

We observed in Section 2 that the function (18) is infinitely divisible.
This may be concluded also by a calculation of Fourier transforms that

may have independent interest.

Proposition 6. The Fourier transform of the function

1

f(x):m,

—-1<t<l, O<r<l

is given by the formula

2o 2sinar [ 2 sinh(af) do * sin(af) da
(22)  f(&) = sinh 7€ {/0 (cosax — t)" +/0 (cosh o — t)’“} ‘

Proof. We use the well-known integral

., sinm’/OO x  dA >0
" = —,
T Jo T+ -

to write f as

(23)

o) = sin 77 /°° (cosh z +t)~1  dA
7 Jo (coshz+4t)~L+ X A7

_ sin /°° 1 dA
71 Jo Acosh x41t)+1 N

_ sin7r / *° 1 d\
N T Jo cosha:+t+§ AT
sin 7r 1 d\

N T [/0 coshx+t+§)\2—’”
+/°° 1 d)\]
ﬁcoshx+t+§>\2—’“‘

The quantity ¢+ 1/\ appearing in the denominators decreases from oo

to 1 as A varies from 0 to 1/(1 — t), and it decreases from 1 to ¢ as A

varies from 1/(1 —¢) to co. Change variables by putting

dA

2 A= (u—1t)1).

1
u:t+x (and hence du = —
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Then we obtain from (23)

(24) f(x):sinm’[/lOO 1 du

T cosh z +u (u—1t)

/1 1 du
+ .
¢ coshx+u (u—t)

Using Fubini’s theorem we get from (24)

fley="""" 11+ 1),
where
< du B v du
I G R CT e 2

The Fourier transform of ¢ is known; see e.g. [BD2] Section 3. When

u > 1 we have
21 sin(§ arccosh u)
u2 —1 sinh 7&

9(&) =

Put this into (25) and then change the variable u to cosh . This gives

7 2w / * sin o€ d
= Q.
' sinh 7€ J,  (cosh a —t)

When —1 < ©w < 1 we have

2 sinh(§ arccos u)
V1 —u? sinh ¢

Put this expression into (25) and then change the variable u to cos a.

27T arccos t sinh Ofé
]2 = VY D —— dOK
sinh 7€ J, (cosav — t)"

Putting everything together we get the formula (22). B
We claim that f (&) > 0 for all €. Being the Fourier transform of the

even function f(x), f is even. Hence it suffices to show that f(€) > 0

9(&) =

This gives

for all ¢ > 0. Consider, one by one, the quantities occurring on the right
hand side of (22). The factor outside the brackets is clearly positive.
So is the first of the two integrals. For fixed ¢ and ¢, the function

(cosh @ — t)™" decreases monotonically as « increases while sin af is
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oscillatory. Hence the second integral in (22) is also positive. Thus

A~

f(€) >0.

It follows from Bochner’s theorem that the function f of Proposition
6 is positive definite. Hence the function (18) is infinitely divisible.

We end this section with a few remarks and questions.

In the earlier works [BP], [HK3], several ratios of means have been
studied and many matrices arising from these have been proved to be
positive definite. It seems most of them are also infinitely divisible.
Several more examples using computations with Fourier transforms
will appear in the paper by Kosaki [K2]. In a recent paper Drissi [D]
has shown that the function in (19) is positive definite if and only if
—1/2 < a < 1/2. His argument too is based on a calculation of Fourier
transforms.

Two general questions are suggested by our work. Let £ be the
classes of all differentiable functions from [0, c0) into itself for which

all matrices of the form

S £ f(Aj)]
>\z' + )‘j

are positive definite. Let M be the classes consisting of those f for
which all these matrices are infinitely divisible.

The class £_ is the Loewner class and consists of all operator mono-
tone functions. Horn’s theorem says that M _ consists of those func-
tions in £_ whose analytic continuations map the upper half-plane into

itself univalently. It is known that £_ C L. (See [K] or [BP].)
Question 1. Is M_ C M7

Question 2.  Are there any good characterisations of the classes
L, and M7 (The theroems of Loewner and Horn give interesting

descriptions of £_ and M _, respectively.)
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4. APPENDIX

We have the well-known formula

o) eixf T r—1 r 7 2
. [ e 2D i/

wcosh"z I(r)
See e.g. [0, p.33] and [HK3, p.138]. On the other hand, putting ¢t = 0

in (22) we see that this is also equal to

2¢in 7r ™2 sinh a * sin af
2 d do| .
(27) sinh ¢ [ /0 costa + /0 cosh” a '

In this appendix we clarify the relation between these two expressions.

We set

{z € C;Rez > 0and |Im z| < arccos t} if t €]0,1),
{z€ C;Rez >0and —7/2 < Imz < arccost} if t € (—1,0).

Then, (cosh z —t)" (= exp(rlog(cosh z — t)) makes sense as a (single-

valued) holomorphic function on D: We note
cosh z —t =cosh acosb —t +isinh asin b (for z =a+ib € D).
(i) Case t > 0: Since cosb >t > 0, we have
Re (cosh z —t) = cosh acosb —t > cosb —t > 0.

(ii) Case t < 0: For b € (—n/2,m/2) we have cosb > 0 and hence
Re (cosz —t) > 0 as above. On the other hand, for b € /2, arccos t)
we have

Im (cosh z —t) = sinh a sin b > 0.

In either case the range of cosh z — s stays in C \ (—o0,0] so that
log (cosh z — t) indeed makes sense on D in the standard way.

Note cosh (iarccos t) —t = 0 but iarccos t € D, and cosh z — ¢
does not have a zero in D. Therefore, (for a fixed real number &) the

function
sin 2§

f(Z):m
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is holomorphic on D. We note that
(28) | cosh(a + ib) — t|* = (cosh acosb — t)? 4 (sinh a sin b)?

= sinh? a + cos® b — 2t cosh acosb + 2.

Lemma A.1. For each t € (—1,1) and r € (0,1) we have

arccos t : o] :
/ sinh a& dov + / sin o o
0 (cos v —t)" o (cosh a—t)r

B /°° cosh(§ arccos t) sin(&s) + @ sinh(€ arccos t)cos(s)
~Jo (t(cosh s — 1) +iv/1 — ¢? sinh S)T

S.

Proof. We fix an ¢ > 0 sufficiently small and a large N > 0. Let
R (C D) be the rectangular region with vertices e, N, N +i(arccos t—e¢)
and €+i(arccos t —¢) so that OR is the contour (oriented counterclock-

wise) consisting of the four oriented edges
Ci : ¢— N,
Cy : N — N +i(arccos t — ),
C3 : N +i(arccos t —e) — ¢ +i(arccos t — €),

Cy : e+i(arccost —¢e) — e.

Cauchy’s theorem says

(29) ; /C f(2)dz = aRf(z)dz =0,

and we will let € — 0 here.

From the definition we directly compute

f(z)dz =
C3

B /N cosh((arccos t — ¢)£) sin(€s) + i sinh((arccos t — €)&)cos(Es)
c  (coshscos(arccos t — ¢) — ¢ + isinh s sin(arccos ¢ — 6))T

ds.

We use the dominated convergence theorem to see its behavior as € —

0. The numerator of the integrand obviously stays bounded, and we
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need to estimate the (reciprocal of) denominator. We have

| cosh s cos(arccos ¢t — ) — ¢ + isinh s sin(arccos ¢ — ¢)|?
= sinh® s + (cos®(arccos t — &) — 2t cos(arccos ¢ — €) cosh s + ¢*)
> (1 — t?) sinh?s.
Here, the first equality is a consequence of (28), and for the second
inequality we note that the difference of the two sides is
(cos®(arccos t — €) — 2t cos(arccos t — &) cosh s + ¢*) + ¢* sinh® s
— cos?(arccos t — €) — 2t cosh s cos(arccos t — ) + t? cosh? s
= (cos(arccos t — &) — t cosh 3)2 > 0.
Consequently, the modulus of the above integrand is majorized by

a constant multiple of sinh™" s, which is integrable over the interval
[0, N]. The dominated convergence theorem thus guarantees
(30) lim [ f(2)dz
e—0 Cs
B /N cosh(§ arccos t) sin(&s) + isinh(§ arccos t)cos(s)
0 (t(coshs — 1) +iv/1 — t?sinh S)T
Secondly, from the definition we have

F(2)dz = —i /amos =€ sin(e€) cosh(£s) + icos(e€) sinh(€5) s
Cy 0

(coshe coss —t + isinh € sin s)"

ds.

In this case we estimate

| cosh € cos s — ¢+ isinh ¢ sin s|?

= sinh® € 4 cos®s — 2t cosh ¢ cos s + 12 > (cos s — t)?,
or equivalently,
sinh® £ —2t cos s (cosh £ —1) = cosh® e —2t cos s cosh e4+2tcoss—1 > 0.

Indeed, the quadratic polynomial g(X) = X% —2(t cos s) X +2t cos s — 1

takes a minimum value at X = tcoss (< 1 for s € [0, arccos t]) and
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g(X) > g(1) = 0 for X = cosh e > 1. Thus, the integrand is ma-
jorized by a constant multiple of (cos s —t)~". The integrability of this
majorant over the interval [0,arccos t] (together with the dominated

convergence theorem again) yields

arccos t h
(31) lim / f(2)dz = / _sinh s& 0
e—0 (coss —t)"

We obviously have

i N sin s€

and the sum of (30),(31),(32) and lim.o [, f(z)dz is zero (due to
(29)). Then, by letting N — oo, we get the result since limy_o, of the
last quantity disappears thanks to the obvious estimate | [ ot (2)dz| =
O(e=™) (based on (28)). W

When ¢t = 0, Lemma A.1 says

/2 o h 0o -
(33) / sinh o da+/ smo:{ o
0 0

cos" o cosh” a

_ /°° cosh(m€/2) sin(€s) + isinh(7w&/2)cos(€s) s
0 (zsinh s)"

sin &s

= e~im/2 [cosh(ﬁﬁ/Q) /00 —
0

sinh” s

+isinh(7€/2) /OO (?08758 ds}
0

sinh” s
thanks to (isinh s)" = (¢™/2 sinh s)" = ¢"™/2 sinh" s.

Lemma A.2.

* g 21T ((r +i€) /2) |PT(1 —

/0 ssilr?h§2 ds = ILr + 22/ JT=r), cos(mr/2) sinh(7&/2),
o0 or=11 ; N 12T(1 —

/0 s(i(;lshﬁi ds = T + 2573/ JTa=r), sin(7r/2) cosh(7€/2).



Mean matrices and infinite divisibility 25

With this lemma (whose proof is postponed) the quantity (33) is

e~""/2 sinh(7€ /2) cosh(ré /2)
2N +i6)/2)PT (1 — )
_ sinh 7€ " 2D ((r +4€)/2)]PT(1 — 1)
2 T ‘

x (cos(mr/2) + isin(rr/2))

Consequently, the quantity given by (27) is equal to

2sin 7 « sinh 7€ y 2D ((r +4€)/2)]PT(1 — )
sinh ¢ 2 s
sin 7 T'(1 — )

= BT (e + i) /)P

which is exactly (26) since I'(r)I'(1 — r) = 7/ sin 7r.
Proof of Lemma A.2. We set ¢ = —3 x log(1 — z) so that

1 1 T
—9t .
e““=1—-2 and sinhrzr=-—mmm-—-V1l—2) = —rn—.
2(\/1—x ) 2v/1—ux

Since dt = dx/2(1 — z), this change of variables gives us

/°O sin s g — /1 sin (—%log(l—x)) dx
o sinh’s T Jy (z/2vT—2) 20—z

1
_ grl / (1—2)2 'z " sin (5 log(1 — z)) dx
0

1 .
= 2" m (/ (1-— a:);_l_fx_’"dx) ,
0

00 1 )
/ COSES 15— 21Re (/ (1 _m)S—l—%—’”dx) .
o sinh"s 0

With these expressions we get the lemma from the following:

/o (- 0)i S rdu=B((r — i€)/2,1 — r) =" (g}f _Zf()r/ . 2()1/2—)0

_osin(n(r +i€)/2) T ((r +14€)/2) T ((r —d€)/2) T(1 — 1)

™

_ P (r +1€)/2) It —r) x sin (7 (r +14£)/2) ,

where we have used the identities I'(2)['(1 — z) = 7/ sin 7z and ['(Z) =

I'(2) (a consequence of Schwarz’ reflection principle). B
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