
PERTURBATION BOUNDS FOR THEOPERATOR ABSOLUTE VALUERajendra BhatiaIndian Statistical Institute,New Delhi 110 016, IndiaandSonderforschungsbereich 343,Universit�at Bielefeld, Bielefeld, GermanyAbstract. It is shown how to estimate the norms of the derivatives (of all orders)of the map that takes an invertible operator to the positive part in its polar de-composition. Using this, perturbation bounds of any order can be obtained for thismap.
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Perturbation Bounds for the Operator Absolute Value.Let A be a bounded linear operator on a Hilbert space H . Let jAj = (A�A)1=2be the positive part or the absolute value of A .In this note we show how to derive inequalities of the type(1) jj jAj � jBj jj � NXn=1 an jjA �Bjjn +O(jjA �BjjN+1);where A is an invertible operator, B an operator close to it, N is any positiveinteger and an are coe�cients which can be explicitly determined.For N = 2 this was done in [1] and the approach used in that paper is developedfurther here.Let B(H) denote the space of all linear operators on H and let Binv(H); Bs(H)and B+(H) denote its subsets consisting of the invertible, the self{adjoint and thepositive operators, respectively. Let ' : Binv(H)! B+(H) be the map'(A) = jAj . Let Dn'(A) denote the nth order (Frech�et) derivative of ' . Letan = jjDn'(A)jj:Then by Taylor's Theorem [3, Ch. 8] we have the inequality (1). So, our problemis reduced to estimating jjDn'(A)jj for all n .Now ' = f � g; where g(A) = A�A and f(A) = A1=2 is the positive square rootof a positive operator A. We will study f and g separately and then combine theinformation obtained.More generally, let f be any function mapping (0;1) into itself. This induces amap on B+(H) which, for convenience, is again denoted by f . Let f (n) be the(ordinary) n{th derivative of f when it is viewed as a map on (0;1) , and letDnf(A) be its n{th order Frech�et derivative at A when f is viewed as a mapon B+(H) . If(3) jjDnf(A)jj = jjf (n)(A)jj for all A 2 B+(H);we will say that f is in the class Dn . The following Proposition is crucial for ouranalysis.Proposition 1. Let f be an operator monotone function. Then f 2 1\n=1 Dn .Proof. In [1, Equations (10), (13)] we showed that an operator monotone functionsatis�es (3) for n = 1; 2 . The same argument will show that this is the case for alln . First note that if h(A) = A�1 then(4) Dnh(A) (B1; B2; : : : ; Bn)= (�1)n X� A�1 B�(1)A�1 B�(2) A�1 : : : A�1 B�(n) A�1;2



where, � runs over all cyclic permutations on n symbols. This gives(5) jjDnh(A)jj = n! jjA�1jjn+1:Next, use the fact that if f is operator monotone then it can be expressed as(6) f(t) = �+ � t+ 1Z0 ( ��2 + 1 � 1� + t ) d�(�);where � 2 R , � � 0 and � is a positive measure. From this one obtains using(4), for n > 2 ,jjDnf(A)jj � n! 1Z0 jj(�+A)�1jjn+1 d�(�) = jjf (n)(A)jj:We skip the details, as they are essentially the same as in [1]. �Corollary 2. Let f(A) = A1=2 . ThenjjDf(A)jj = 12 jjA�1=2jj;jjDnf(A)jj = 1 � 3 � 5 : : : (2n� 3)2n jjA�n+1=2jj; n � 2:Proposition 3. Let g be the map on B(H) de�ned as g(A) = A�A . ThenjjDg(A)jj = 2 jjAjj;jjD2g(A)jj = 2;jjDng(A)jj = 0 for n � 3:Proof. The �rst two equalities were derived in [1] from the relationsDg(A)(B) = A�B +B�A;D2g(A)(B1; B2) = B�1 ; B2 +B�2B1:Since D2g(A) is a constant map we have Dng(A) = 0 for n � 3 . �Our next task is to combine the information provided by the above two propositions.For this we �rst need expressions for the n{th Frech�et derivative of a composite map' = f � g . We will write these down in a general set up. Let X;Y;Z be Banachspaces and let g be a smooth map from X to Y and f a smooth map from Y3



to Z . Let ' = f � g . If X = Y = Z = R we have the following formulae for thederivatives '(n) .'(1) (x) = f (1) (g(x)) g(1) (x);'(2) (x) = f (2) (g(x)) [g(1)(x)]2 + f (1) (g(x)) g(2) (x);'(3) (x) = f (3) (g(x)) [g(1)(x)]3 + 3 f (2) (g(x)) g(1)(x) g(2) (x) + f (1) (g(x)) g(3)(x);'(4)(x) = f (4)(g(x)) [g(1)(x)]4 + 6 f (3)(g(x)) [g(1)(x)]2 g(2)(x) + 3 f (2)(g(x)) [g(2)(x)]2+ 4 f (2)(g(x)) g(1)(x) g(3)(x) + f (1) (g(x)) g(4)(x);etc.When X;Y;Z are general Banach spaces analogoues of these formulae are morecomplicated. Recall that D(n)g(x) is a symmetric n{linear map from X � : : :�Xto Y , etc.To write our expressions for Dn' compactly let us adopt the following convention.A summation P� will indicate summation over permutations � on n symbols.Since the higher Frech�et derivatives are symmetric in their variables several sum-mands in the sum P� will be identically equal. If we retaim only one representativefrom each of these identically equal terms and sum them up, the resulting sum willbe written as P�� . Thus, for example, we have, for the �rst two derivatives of' = f � g the expressionsD '(x) = Df(g(x)) Dg(x) (chain rule) ;D2 '(x) = D2f(g(x)) (Dg(x)(x1); Dg(x)(x2))+Df(g(x)) (D2g(x) (x1; x2)):With our notation we could also writeD2 '(x) =X�� D2f(g(x)) (Dg(x) (x�(1)); Dg(x) (x�(2)))+X�� Df(g(x)) (D2g(x) (x�(1); x�(2))):Since the second derivative is a symmetric bilinear map, from each of the sum P�only one of the two summands is retained when we go to P�� . Of course, in thiscase there is no advantage in going to this notation. However, for higher derivativesit is helpful to use this notation and writeD3'(x) (x1; x2; x3)= D3f(g(x)) (Dg(x) (x1); Dg(x) (x2); Dg(x) (x3))+X�� D2f(g(x)) (Dg(x) (x�(1)); D2g(x) (x�(2); x�(3)))+Df(g(x)) D3g(x) (x1; x2; x3):4



D4'(x) (x1; x2; x3; x4)= D4f(g(x)) (Dg(x) (x1); Dg(x) (x2); Dg(x) (x3); Dg(x) (x4))+X�� D3f(g(x)) (Dg(x) (x�(1)); Dg(x) (x�(2)); D2g(x) (x�(3); x�(4)))+;X�� D2f(g(x)) (D2g(x) (x�(1); x�(2)); D2g(x) (x�(3); x�(4)))+X�� D2f(g(x)) (D2g(x) (x�(1)); D3g(x) (x�(2); x�(3); x�(4)))+Df(g(x)) D4g(x) (x1; x2; x3; x4):The reader may check that in the three starred sums occuring here, the summationinvolves six, three and four summands, respectively, and that when X = Y = Z =R this reduces to the expression for '(4)(x) written earlier.Now return to the special situation g(A) = A�A; f(A) = A1=2; '(A) = g(f(A)) = jAj .Then using the above expressions for D(n)' and the results of Corollary 2 andProposition 3 one obtains the following bounds(7) jjD'(A)jj � jjA�1jj jjAjj;jjD2'(A)jj � jjA�1jj3 jjAjj2 + jjA�1jj;jjD3'(A)jj � 3 jjA�1jj5 jjAjj3 + 3 jjA�1jj3 jjAjj;jjD4'(A)jj � 15 jjA�1jj7 jjAjj4 + 18 jjA�1jj5 jjA2jj+ 3 jjA�1jj3:The �rst two inequalities in (7) were derived in [1].Bounds for derivatives of all orders can be calculated using this procedure. A sim-ple rule which can be skimmed from the above analysis is the following. For thecomposite function '(x) = f(g(x)) of a real variable write down the expressionfor its derivative '(n)(x) . This will be a sum of terms each of which is a productof factors f (1)(g(x)); f (2)(g(x)); : : : ; f (n)(g(x)) and g(1)(x); g(2)(x); : : : ; g(n)(x) .In this expression replace f (1)(g(x)) by jjA�1jj and for n � 2 replace f (n)(g(x))by 1 � 3 � : : : � 5 (2n� 3) jjA�1jj2n�1 ; replace g(1)(x) by jjAjj , g(2)(x) by 1 andfor n � 3 replace g(n)(x) by 0. The resulting expression will be a bound for thenorm jjDn'(A)jj , where '(A) = jAj .The reader can check that this rule is a consequence of the above analysis, that theinequalities (7) conform to this and that this gives, for instance,jjD5'(A)jj � 105 jjA�1jj9 jjAjj5 + 150 jjA�1jj7 jjAjj3 + 45 jjA�1jj5 jjAjj:We can thus obtain perturbation bounds like (1) to any desired order.It seems a di�cult problem to characterize the classes Dn of functions that satisfythe relation (3). When n = 1 this is already quite intricate [2].5
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