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1. Introduction

In 1953 Hoffman and Wielandt [13] proved what has now become one of the best-
known matrix inequalities. The aim of this paper is to obtain an infinite-dimensional
version of this inequality.

Let A be an n x n complex matrix. An n-tuple {ery,. -, %) 1S called an enumeration
of the eigenvalues of A if its elements are the eigenvalues of A each counted as often
as its multiplicity. The eigenvalues of (A* A)"/? are called the singular values of A
and are denoted as s, (A) =s2(4) =2 5,(4). We will use the symbol || 4], to denote
what is often called the Frobenius norm in the matrix theory literature and the Hilbert—
Schmidt norm in the operator theory literature. This is defined as ” :

j=1

uAnz='(trA*A>”2=[‘is,%(A)T'z. - 5§

The Hoffman—Wielandt inequality says that if 4 and Baren xn normal matrices
and if {«y,...,0,} and {B1,...,B,} are enumerations of their eigenvalues, then there
exists a permutation 7 on n symbols such that ‘

n ‘ 1/2 ‘
[Z:lmi"ﬂu(i)\z] <[ A—Bl;- C )

Now let # be a complex separable infinite-dimensional Hilbert space. If an operator
A on # is compact then the spectrum of A is a countable set of complex numbers
with O as the only limit point. All nonzero points in the spectrum are eigenvalues of
A with finite multiplicity. The point 0 may or may not be an eigenvalue of 4, and if
it is its multiplicity may be finite or infinite. By an enumeration of the eigenvalues of
A we shall mean a sequence {ey,05,...; Whose terms consist of all the eigenvalues
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of 4 each counted as often as its multiplicity. By an extended enumeration of the
eigenvalues of 4 we shall mean a sequence {a),0},...,} whose terms consist of all
the nonzero eigenvalues of 4 each counted as often as its multiplicity and the term
0 repeated infinitely often. ‘

The singular values of 4 are defined as before. Now they are infinite in number. If

0 1/2
||Au2:=[ ) sf(A)] <o ©)

i=1

the operator 4 is said to be in the Hilbert—Schmidt Class and the collection of all
such operators is denoted as .#,.

A bijection 7 of the set of natural numbers N onto itself will be called a permutation
of N.

The following two theorems are infinite-dimensional analogues of the Hoffman—
Wielandt Theorem: '

Theorem 1. Let A and B be normal Hilbert—Schmidt operators and let {ot3,05,...} and

{B1,B,,...} be enumerations of their eigenvalues. Then for each & >0 there exists a
permutation n of N such that

.

Theorem 2. Let A and B be normal Hilbert—Schmidt operators and let {a’l,a’z, - and

{B1,B,,...} be extended enumerations of their eigenvalues. Then there exists a
permutation © of N such that

® 12 ‘
[Z Jo; — ;(i)lz] < ||A - Bj,. | ‘ (%)

i=1

s

1/2
Idi—ﬁ,,(i)lz} <|4-Bj,+e A S

1

It seems essential to either add an ¢ as in Theorem 1 or to extend the enumerations
asin Theorem 2. This point will be discussed in § 2 after the theorems have been proved.

In the special situation when 4 and B are Hermitian our Theorem 2 has already
been proved by Markus [16], Friedland [12] and Kato [14], each of whom proved
‘generalisations of this in different directions. Another rather special case was
considered by Sakai [18]. '

The Hilbert—Schmidt norm is one of a family of norms called Schatten p-norms.
These norms are defined as

0 1/p | '
IIAII,,=[_Z s;’(A)] ,  1<p<oo (6)

14l = 5,(4) | ™

The class of operators for which || 4| p 18 finite is an ideal .# in the space of compact
operators which itself is denoted as .# . Basic facts about these norms may be found
in several standard texts such as [19].

A problem of much interest in perturbation theory has been that of obtaining
analogues of the Hoffman-Wielandt inequality for all these p-norms (and for the
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larger class of symmetric norms). See [3] for a detailed discussion. In both the finite
and the infinite dimensional cases this problem has been solved completely when
A, B are both Hermitian (see [2], [141, [15], [16]) and when A is Hermitian and B
is skew-Hermitian (see [1], [20])- When A and B are both unitary this problem has
been solved only partially: sharp analogues of the inequality (2) are known only for
the values p=1and p=© and good bounds are known for other values. (See [23,
[51, (7], (81, [10]). But when A and B are arbitrary normal operators a sharp
analogue of (2) for any value of p other than 2 has not been found even in the finite-
dimensional case. See [6] and [7] for the known results when p = co.
In this direction we shall prove:

Theorem 3. Let A be a Hermitian and B a normal operator, both lying in the Schatten
class £, for some 1<p<. Let {o),0,...} and {B,.B5--} be extended
enumerations of the eigenvalues of A and B. Then there exists a permutation T of N
such that

' ‘oo i/p :
[Zlaz—ﬂ;ﬁ,v] <pht|4—Bl,  i1<p<2, ®)
i=1 .
and
o0 1/p .
[,led’,-— ’,E(i,l"] <212-YP | A— B, if2<p< o0, ©)

In the finite-dimensional case, the inequality (9) for the special case p = o© has been
observed earlier. See, e.g., [3, P- 112]. For other p these results seem to be new even
in this case. .

2. Proofs and remarks

The proofs of Theorems 1 and 2 are both built upon the finite-dimensional case. In

the first this involves a straightforward approximation argument, in the second some
more intricacies.

Proof of Theorem 1. Label the eigenvalues of A and B as ay,0%s;-.- and B;,B3,..- 10
such a way that '

PSPPSR A A | (10)

Then choose orthonormal bases uy, s, .- and v,,0,,... for # 80 that
0 [e]
A= 2 aiuiur, B= Z BiviU?. (11)
i=1 i=1

Since A and B are both Hilbert-Schmidt operators, given any 6 >0 we can choose
a positive integer r such that

$ <o, Y IBP<E (12)

i=r+1 i=r+1
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So, if we define operators A4, and B, as

Ar= Z aiuiu?: Br= Z ﬂiviv;k: ' (13)
i=1 i=1 .
then,
l4—-A4,l,<d, [[B=B,||,<8é. (14)

Now consider the linear space spanned by the vectors u, ..., u,and vy,..., 0, together.
This is a space of dimension s where r < s <2r. Call this space . The operators
4, and B, both leave s, invariant and vanish on its orthogonal complement. Let
Wi,...,Ws be an orthonormal basis for H#; in which w;=u; for j=1,2,...,r. Then
Aw;=a;w; for 1 <j<rand A.w;j=0for r + 1 <j <s. Define a normal operator A,
on J; by putting A,w; = a;w; for 1 <j<s. Then note that

S

lA—A Q5= 3 lol2<8> (15)

j=r+1

By a similar construction we can define a normal operator B, on ¥, which has
eigenvalues f8,,..., B, and is such that

Now apply the Hoffman—-Wielandt Theorem to the operators A, and B, on the finite-
_ dimensional space #,. This gives a permutation = of the set {1,2,...,s} such that

'Zl Iaj_ﬁn(j)lz < ”As""lelg (17)
j=
Now extend this permutation = to all of N by defining 7(j) = j if j>s. Then the
inequalities (12), (14), (15), (16) and (17) together give

2. 10— Byl* < (14 = Bl + 45 + 467,

j=

Since 6 was arbitrary this proves the theorem. , [

Proof of Theorem 2. Once again label the eigenvalues of 4 and B as in (10). Define

extended enumerations {«;}, {B;} of eigenvalues of 4 and B as the two sequences
whose terms are ‘

oz’zl._1=ozi, a’2i=0, i=1,2,...,
B,Zi‘1=ﬁi’ ﬂ,2i=0’ l=1s23 . - (18)

By a slight modification of the argument used in proving Theorem 1 we can find a
sequence ¢, of positive numbers and a sequence 7, of permutations of N such that

s

o= B |* < |4 — B2 + &2, (19)

i=1

‘and _ , :
lime, =0. ~ (20)
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To see this adopt the same notations as in the proof of Theorem 1 up to the inequality
(14). Now let 5, be any subspace of dimension n = 2r which contains all the vectors
Uyy.nrslyyVy,..., 0. The operators A, and B, both leave #, invariant and their
restrictions to this space have eigenvalues o, i, i= 1,2,...,n. So, by the Hoffman—
Wielandt Theorem there exists a permutation 7, of {1,2,...,n} such that

3, 16 Bl < I B < (14 =B 4207

7n(i

Extend the permutation 7, to all of N by putting 7,(j)=jifj>n and define &, via J
to get (19) and (20). Let
v,=m " n=12.... (21)

n b

We now construct a permutation = of N that will satisfy (5). To do this we will
describe a procedure that defines 7 and its inverse v by successively assigning values
to w(1), v(1), (2),v(2),.-- - At the same time a subsequence of the sequence {n,} of
permutations defined in the preceding paragraph is chosen. The procedure is described
below in the form of an algorithm. This has two steps o and f to be run alternately
and in each of these three mutually exclusive choices have to be made.

Fori=1,2,...,do

& Look successively at the following three options, do as instructed, then go to f:

(@) (void if i=1). If i= v(j) for some j <i define ©(i) =J.
(ID) If the set {m,(i):n= 1,2,...} is bounded let j be the minimal number which
occurs infinitely often in this set. Define (i) =j. Replace {r,} by a subsequence,

denoted again by {m,}, such that now n, (i) =j for all n.
(II) If the set {m,(i):n=1,2,.. J} is unbounded let j be the smallest even number

which has not yet been called (k) for any k < i. Define (i) =j. (Note that
in this case lim g =0 and we have defined 7 in such a way that g, =0.)

B Look successively at the following three options, do as instructed, then go back
to o with i+ 1 in place of i: :
(IV) If i = =n(j) for some j < i define v(i)=J. :

(V) If the set {v,(i):n= 1,2,...} is bounded let j be the minimal number which
occurs infinitely often in this set. Define v(i) =j. Replace {v,} by a subsequence,
denoted again by {v,}, such that now v,(i)=j for all n. This also gives a new
subsequence of {=,} if we put 7, = v L.

(IV) If the set {v,(i)in= 1,2,...} is unbounded let j be the smallest even number
that has not yet been called v(k) for any k <i. Define v(i)=j. (Note in this
case we had }El;lo o, ,=0andwehave defined v in such a way that o, = 0).

'We claim that the permutation 7 defined above satisfies the inequality (5). For this
it is enough to show that for every positive integer N we have

N .
3l Bl <14~ BI. 22
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Let ®y = {n,7,,...} be the subsequence of the original sequence {,} obtained after
running N steps of « and f in the above procedure. We will split the set {1,2,..., N}
into three disjoint subsets S,,S, and S; by separating indices according to what
happened to them in the above algorithm. These sets are defined as

= {i:1 <i<N,3n,edy such that n()) ==, (i)}

Note that if ieS; then by (II) and (V) in the above construction z(i) = =,,(i). for all
T, EDy.

S, = {i:1 <i< N, (i) was defined by (III) above}.
Note that

Brpy=lim g = if ieS,. (23)

n— o0

S;={i:1<i< N, i was defined as i = v(j) for some j <i by (VI) above}. Note that

o= lm o,y =

0  ifieS,. (24)

Now for any element =, of ®, we can use the above splitting to write

N

2 oG — By = 2. 1o = B P + Z gl * + Z Bl

i=1 ieS) ieS2 ieS3

— 2 2 2
—[ 2 le =B+ X =B P+ X 10, iy = B ]
ieSy ieS3

ieSy

+ 2 {legl — o — 1:,,(1)'2} + Z {18, (1)12 :Jn(u(i))—ﬁ;:(i)lz}‘ (25)

ieSs

As n— oo the last two sums in (25) go to zero, since both are finite sums of terms

going to zero. The limit of the three sums inside the square brackets can be written
as

N

1 2
lim z |a2_ﬁ;,,(i)‘ .

nme =g

This is bounded above by

lim 5 o —p |2
n—co igl ] i ﬂ"n(l)l :
Hence, the inequality (22) follows from (19) and (20). ‘ |

The difference between the finite-dimensional and the infinite-dimensional case
arises because of the fact that the unitary orbit of an operator A defined as the set
{UAU*:U unitary} is closed in the former case but not always in the latter. The

following simple example illustrating this phenomenon was provided to us by Peter
Rosenthal.
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Example. Let A be the normal operator given by

Forn=12,..., let

. 1.1 1 1 1
An=dlag<—:15—3"‘:"——‘9"‘——)—‘5"'>
n 2 n—1n+1n+2

Then each A, is in the unitary orbit of A. However, 4, converges (in the Hilbert—
Schmidt norm topology) to B where

11
B=diag(0, 1,—,—,...>
2°3

W |

1
A=diag| 1,-,
1.

‘and B is not in the unitary orbit of A. By the same argument we can find a sequence

of operators in the unitary orbit of A which converges to a diagonal operator having
arbitrarily many zeroes on the diagonal. '

One way to interpret the inequality (2) is that it gives a lower bound for the distance
between the unitary orbits of two diagonal matrices. In the infinite-dimensional case
such orbits are not closed. So, we should seek a lower bound for the distance between
their closures. Such a bound is provided by Theorem 2.

The other, more standard, interpretation of (2) is that it gives an upper bound for
the distance between the eigenvalues of two normal matrices. This distance is metric
on the space of unordered n-tuples of complex numbers. More precisely, consider
the space C" with the Euclidean norm |||, Let II, be the group of permutations on

" nindices. For xeC" let x(r) be the vector whose coordinates are obtained by applying

the permutation 7 to the coordinates of x. Calling two such vectors equivalent let X
be the equivalence class of x. Let €r = C"/I1, be the space of such equivalence classes.
Then this is a metric space with the metric - ‘

4(3,5) =min [x = y(@) 2.

Since the eigenvalues of an n.xn matrix are known only up to a permutation it
is natural to identify them with a point in the space C". The inequality (2) then gives
a bound for the distance between the cigenvalues of two normal matrices A and Bin
terms of the distance between A and B. Now when A is a Hilbert—Schmidt operator
we have to replace the space C" in the above discussion by the space 1,. Let IT denote
the set of all bijections of the set of natural numbers onto itself.

Consider the space I, = I,/T1. The eigenvalues of A can be identified with a point

in this space. We can now define for %, 7 in this space
d(%,9) = inf [x = (@) |2-

_ However, the example given above also shows that this does not give a metric on
I,. It only gives a pseudometric. Indeed, given any x in 1, we can ﬁnd a y which has
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the same nonzero entries as x but arbitrarily many additional zero entries, and for
which d(%, ) = 0. The quotient space Tz /d with respect to this pseudometric is a metric
space. To identify this space let I, be the subset of I, consisting of vectors with
infinitely many zero entries. For each xel, let x' =(x,,0,x,,0,...). Then x'el},. Let
X' be the image of this point in 7, = I /IT. Now define

d(%,7) = inf [x" — ' (m) | 5.

It can be seen that this defines a metric on the space 72. It would be most natural
to use this metric to measure the distance between the eigenvalues of two Hilbert-
Schmidt operators. Theorem 2 is then seen to be the natural extension of the finite-
dimensional Hoffman—Weilandt Theorem.

Since 0 is always an accumulation point of the eigenvalues of a compact operator,
in any case there is good reason to include it with infinite multiplicity in a count of
the eigenvalues.

Now we recall briefly some of the known results for the special class of Hermitian
operators. Let 4 and B be n x n Hermitian matrices with eigenvalues enumerated as
oy =0y = =a,and B, 2 f, > - = f, respectively. Then we have

n 1/p
[ > Iarﬁil"] <|[|A-B|, forl<p<co. (26)
i=1

This is a consequence of a theorem of Lidskii and Wielandt. See [3, Chapter 3]. This
theorem was extended to infinite dimensions by Markus [16]. If 4 is a compact
Hermitian operator associate with it a doubly infinite sequence {a 4 eN} satisfying
the following conditions

(1) a1>a2>"‘203

a_,<a_,< <0
(ii) if A has infinitely many positive and infinitely many negative eigenvalues then
the sequence {«, ;} contains only these numbers each repeated as often as its

multiplicity as an eigenvalues of 4 (0 is not included in the sequence in this case
even if it is an eigenvalue of A);

(iif) if A has only finitely many positive eigenvalues then the sequence {a i} contains

these repeated according to their multiplicities and an infinite number of zero
terms; and if 4 has only finitely many negative eigenvalues then the sequence

_{oc_ ;) contains these repeated according to their multiplicities and an infinite
number of zero terms.

With this notation Markus proves a result from which it follows that if 4 and B

are compact Hermitian operators and if {«, ;} and {§, ;} are sequences associated
with them according to the above rules then ' :

wd 1/p ‘ ‘
[;{Eocj—ﬂjlp+|a_j—ﬁ..j|f’}:| <|4-B|, fori<p<o.  (27)

This device of adding zeroes to make both the positive and the negative eigenvalues
of A infinite in number achieves exactly what our extended enumeration did. One
can easily see that the “optimal matching” of the eigenvalues of 4 and B is achieved

|
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by the pairing in (27). If both A and B have infinitely many positive and negative
eigenvalues then extending the enumerations by adding zeroes does not affect the
sums involved. So, for the Hermitian case our Theorem 2 is included in this result
of Markus. The p =2 case of (27) is also proved in Friedland [12].

Kato [14] has proved a similar result in the more general situation when A and
B are any two bounded Hermitian operators whose difference is compact. Let o(A4)
denote the spectrum of a Hermitian operator A. An isolated point of (A) is always
an eigenvalue of 4; if it has finite multiplicity call it a discrete eigenvalue. Let 0,(A4)
be the collection of all such points. The complement of o,(A) in o(A) is called the
essential spectrum of A and is denoted as o, (A4). Eigenvalues of 4 that have infinite
multiplicity are in o, (A4) whether they are isolated points of g(4) or not. The set
0. (A4)is a closed subset of R and so its complement in R is a countable union of

open intervals I,. Kato defines an extended enumeration of discrete eigenvalues of A
to be a sequence {«;} with the following properties

(i) every discrete eigenvalue of A appears in this sequence as often as its multiplicity,

| (i) all other points of the sequence {g;}, belong to the set of boundary points of the

open intervals I, mentioned above.

We should add here an explanatory note. An extended enumeration {o;} according
to the above definition need not include all the boundary points of all the intervals
I, and those that are included may be counted as often as one wishes.

With this definition Kato proves that if 4 and B are Hermitian operators such
that A — B is compact then there exist extended enumerations {a;} and {# ;} of discrete
eigenvalues of 4 and B such that

[i l“j—ﬁjl”]l/p< |4 —Bll, for 1 <p=< 0. (28)
j=1 _

The result of Markus can be derived from this.
We should add that all the inequalities (26)—(28) are true for the larger class of
symmetric norms. ) :
Our Theorem 3 is proved using the above results for the Hermitian case. We will
need the following facts. Let

_ T* . ‘
T+ T* T-T (29)

T=T,+iT,= +i—

be the Cartesian decomposition of any operator T. Then.
I T2 = Te I3+ 1 T2 3 ’ (30)
1Tyl < I Tl I T2lleo < I Tl ‘ (31)

If T is normal then the eigenvalues of T, and T are the real and the ir-n'aginar.y parts
of the eigenvalues of T. We will use the Clarkson—McCarthy inequalities which say
that if T and S are in the Schatten class £, then

2T+ IS < I T+SIp+ I T=SlI;  for2<p<e - (32)
»-i(|TIZ+ IS < I T+SE+IT=Sl;  for 1<p<Z (33)
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See [9] or [19]. We will also use the elementary inequalities:

x +iylP <2727 (|x[P+|ylP)  for 2<p< oo, (34)
x+iyP<|x[P+ylP  for 1<p<2, (35)
valid for all real numbers of x and y.
Proof of Theorem 3. Let B= B, +iB, be the Cartesian decomposition of B. We shall
apply the inequality (27) to the Hermitian operators A4 and B,. Let us represent

extended enumerations of eigenvalues of 4 and B in the form of doubly infinite
sequences {a, ;} and {f, .} in which

ay =0y 220, a_ So_, < <0

Ref;>Ref,> 20, Ref_, <Ref_,<--<0.

In all summations the index j will run over positive and negative integers.
The case p =2 is specially simple. We have from (30) and (27)

|A=BI; =14~ B3+ B3

> le;~Re B> + 3 [Im B2
J J

=Z |aj_ﬂjl23
J

which is the desired inequality.
The case p = oo is equally simple. Use (31) instead of (30). For each j we have

lotj — BjI* = lo; — Re Bj]* + [ Im B,
<[4-B, % +1B,1%
<2|A—(B, +iB,)|?
=2]|A~BJ2.

For 2<p < o0 use (32) and (34) together with (27) to get
2170 Z|°‘j" B;lF < Z ot — ReB;P + ZIImﬁﬂp
J J J

<|A-B |7+ 1B,|?
<3#{l4A—B,+iB,|?+ |4~ B, —iB, |}
=3{IlA—B*|2+ |4~ B|?"}
=[4-BJ?,

which is the desired inequality.
For 1< p <2 use (33) and (35) together with (27) to get the result. "
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Sakai [18] has proved a rather special case of the above Theorem. He proves it
for p =2 assuming that A and B, are both positive operators. In the special case
when A is Hermitian and B skew-Hermitian stronger inequalities for all p-norms
have been obtained by Ando and Bhatia [1].

We end with some remarks about results which can be easily proved using the
same ideas.

Hoffman and Wielandt also proved an inequality complementary to (2). There
exists a permutation 7z such that

n 1/2
|lA—Bj,< [; |ot; — Br:(i)lz] .

Such complementary inequalities for (4) and (5) can also be obtained.

Let (4Y,..., A™) be an m-tuple of pairwise commuting compact normal operators
in 2. Then there exists an orthonormal basis ¢;, j= 1,2,..., such that each e; is a
simultaneous eigenvector for all 4%, 1<k<m. Let A¥e, = We, 1< k<m. The
points (A,...,4/) in the space cm j=1,2,..., can be called the joint eigenvalues
of the tuple (A(”j,...,A('")). The set of these points together with the point 0 in C”
coincides with the Taylor spectrum and the Harte spectrum in this case. See, e.g., [17].
In [4] and [11] it was shown that the Hoffman-Wielandt inequality (2) can be
extended to give or bound for the distance between the joint eigenvalues of two
commuting m-tuples of normal matrices. Following the same ideas our Theorems 1
and 2 can also be generalised to commuting m-tuples of normal Hilbert-Schmidt
operators. : :

A version of Theorem 3 when A and B are not compact but A —B is, can be
proved using Kato’s Theorem and the ideas of our proof. Note that A—B=A4—
B, —iB,. So both A — B, and B, are compact if 4 — B is. An extended enumeration
of discrete eigenvalues of B should now mean a sequence {f;} such that {Re B;} is
such an enumeration for B, in the sense of Kato. v

In [9] the Clarkson—-McCarthy inequalities are generalised to all unitarily invariant
norms. These can be used to obtain some results extending Theorem 3 to such norms.
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