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Haldane Exclusion Statistics and the 
Boltzmann Equation 
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We generalize the collision term in the one-dimensional Boltzmann-Nordheim 
transport equation for quasiparticles that obey the Haldane exclusion statistics. 
For the equilibrium situation, this leads to the "golden rule" factor for quantum 
transitions. As an application of this, we calculate the density response function 
of a one-dimensional electron gas in a periodic potential, assuming that the 
particle-hole excitations are quasiparticles obeying the new statistics. We also 
calculate the relaxation time of a nuclear spin in a metal using the modified 
golden rule. 
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1. I N T R O D U C T I O N  

Recently, Ha ldane  has p roposed  a new exclusion statistics for confined 
quasipart icles  that  interpolates between the Fermi  and Bose quan tum 
behaviors  and  gives rise to part ia l  blocking of  a singly occupied state, tl) 
There has been considerable theoretical  activity concerning the s tudy of  
statist ical  and  thermodynamic  propert ies  of  systems of  particles obeying 
the generalized exclusion statistics. Examples  of  quasipart icles obeying 
this new statistics include spinons in an antiferromagnetic  spin chain 
with inverse-square  exchange interaction,  (2) and two-dimensional  anyons  
restricted to the lowest Landau  level in a s trong magnet ic  field. (3-5) Other  
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examples are the Calogero-Sutherland model (6"7) in one dimension and 
particles interacting with a two-body short-range potential in two dimen- 
sions in the thermodynamic limit. (8) Haldane (9~ has analyzed a Heisenberg 
spin chain in one dimension with inverse-square coupling, and shown that 
under certain conditions the quasiparticle excitations obey a particularly 
simple form of the generalized statistics. Despite all these theoretical 
studies, it is not entirely clear under what conditions a physical or chemical 
system will experimentally manifest this generalized statistics. The best 
evidence so far comes from recent neutron inelastic scattering experi- 
ment c ~o) on the compound KCuF3, which is a one-dimensional Heisenberg 
antiferromagnet above 40 K. The observed inelastic scattering is best fitted 
by spinon excitations in a spin chain whose interactions fall off as the 
inverse square of the lattice distance.t~l) The dynamic spin correlation func- 
tion for such a system has been calculated by Haldane and Zirnbauer. t 12) 

The present paper addresses a question of current interest, namely 
how to calculate transport properties of particles obeying the generalized 
exclusion statistics. Specifically, how does the Boltzmann transport equa- 
tion get modified in such a situation? It may be recalled that the collision 
term in the Boltzmann equation was modified by Nordheim 1~3) to incor- 
porate the effect of quantum statistics. Account was taken of the Pauli 
blocking of the final state in binary collision events for particles obeying 
Fermi statistics. On the other hand, an enhancement factor was introduced 
(as in the Einstein coefficient of induced emission; see, e.g., ref. 14) in 
the final-state occupancy for Bose statistics. The suppression and enhance- 
ment factors ( 1 - f )  and (1 + f )  appropriate for fermions and bosons, 
respectively, are routinely used in many-body calculations. What are the 
corresponding factors for the systems of particles obeying the new 
statistics? We present the answer to this question. Future calculations of 
transport properties of such systems will find these results relevant. Besides 
generalizing the Boltzmann-Nordheim equation, we have also generalized 
the Fermi golden rule. 

The plan of this paper is as follows. In Section 2, we examine changes 
in the structure of the collision term in the Boltzmann equation due to the 
incorporation of the new statistics. This yields the "golden rule" factor for 
quantum transitions. As an application of this, we examine in Section 3 the 
response of a one-dimensional electron gas to an external periodic potential 
and calculate its density response function. Whereas the ground state of the 
electron gas is taken to be the conventional Fermi system, we assume that 
the particle-hole excitations are quasiparticles obeying the new statistics. 
The magnitude of the density response function is then shown to be 
appreciably enhanced, thereby lowering the Peierls transition temperature. 
In Section 4, we generalize the Fermi golden rule for quasiparticles obeying 
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the new statistics and apply it to the calculation of a relaxation time of a 
nuclear spin in a metal. Both applications are schematic, with a view to 
exploring qualitative changes from the standard results. 

2. G E N E R A L I Z E D  B O L T Z M A N N - N O R D H E I M  E Q U A T I O N  

We now derive the Boltzmann equation (specifically, the collision 
term) for particles obeying Haldane's statistics. For the derivation of the 
collision term, we make the usual assumptions of (i) the dominance of 
binary collisions, (ii) the hypothesis of molecular chaos ("stosszahlansatz"), 
and (iii) the slow variation of the distribution function f ( x , p ,  t) over 
distances and times of the order of characteristic interaction lengths and 
durations, respectively. Recall that f ( x , p ,  t )dxdp/(2n) is the number of 
particles in the phase-space volume element dx dp at time t. (We set h = 1 
throughout this paper.) We wish to derive an expression for the collision 
term C in the Boltzmann equation: 

of of . of $ + v ~ + ~ = c  (1) 

C is the rate of change of f caused by collisions. Collisions of the type 
p'p'~ ~pp~ tend to increase the population of particles having momen- 
tum p, while those of the type pp~--*p'p'~ tend to decrease it. Let 
w(p'p'~ ~ pp~)dp dp] be the transition probability per unit volume and per 
unit time that two particles having incoming momenta p' and p'~ are scat- 
tered with outgoing momenta in the ranges (p ,p+dp)  and (p~,p~ +dp]). 
Then according to the hypothesis of molecular chaos, for classical 
(Maxwell-Boltzmann, MB) particles the net increase in the number of 
particles in dx dp due to collisions occurring during dt is "5) 

f I f '  dp' .f'~ dp'~ �9 w(p'p'~ --*pp~) dp dp, dx dt 

- f dp . f ~ dp , . w( pp ] --* p' p'~ ) dp' dp'~ dx dt ] 

where f '=- f (x ,p ' ,  t), etc., and the integration is only over dp'dp'~dpl. 
Using the derailed-balance property w(p'p'~ ~pp~)=w(pp~ ~p'p'~) and 
inserting a factor 1/2 to take into account the fact that a final state with 
momenta (p',p'~) is indistinguishable from that with momenta (p'~, p'), we 
get 

dpl dp' dp'~ w(ppj ~p'p'~)(f'f'~ - f f l )  C= (2) 
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For particles obeying quantum statistics, however, the above deriva- 
tion needs to be modified because now the transition probability depends 
also on the occupancy of the final state. Thus, ( f ' f ' l - f f l )  in (2) should be 
replaced by f'f'l F(f) F ( f l ) - f f l  F(f') F(f'l), where F takes account of the 
effect of the quantum statistics on the accessibility of the final state. For 
example, in the case of Fermi-Dirac (FD) statistics, F ( f ) = ( 1 - f )  to 
incorporate Pauli blocking, and for Bose-Einstein (BE) statistics, 
F(f) = (1 + f )  to take care of Einstein enhancement. According to the 
H-theorem in statistical mechanics, the entropy production vanishes if and 
only if 

f'f'l F(f) F( f  l) = f f  l F(f') F(f'l ) (3) 

Solution of this equation provides the shape of the equilibrium distribution 
function f~q. Conversely, as we proceed to show, iffe q is known, (3) can be 
used to deduce the functional form F(f). Rewriting (3) in the form 

f f~ f '  f 'l 
F ( f ) ' F ( f l ) - F ( f ' )  F(f'l ) 

taking logarithms of both sides, and using the fact that energy E is the 
appropriate summational invariant in the collision, we get 

ln[f/F(f)] = - a ( E -  b) 

where a and b are constants to be identified with inverse temperature T and 
chemical potential p, respectively. Thus, we get finally 

F ( f ) = e x p [ a ( E - b ) ] f  =~(E)f, ~(E)=exp[(E-i.t)/T] 

where we have set the Boltzmann constant to unity. For the MB, FD, and 
BE statistics, the equilibrium distribution functions f a r e  ~-1, 1/(~ + 1 ), and 
1/(~-1),  respectively. Hence, the corresponding F's are 1, ( l - f ) ,  and 
(1 + f )  as expected. 

Now, for particles obeying the Haldane statistics, the equilibrium dis- 
tribution function, as shown by Wu, (5) is 

f(E) = l/log(E) + ~] (4) 

where ~(0~<0t~<l) is the statistical interpolation parameter ( a = 0  
corresponds to bosons and ~ = 1 to fermions) and co(E) satisfies 

og(E) ~ [1 +co (E) ] ' -~=exp [ (E - !u ) / T ]  (5) 
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It is straightforward to show that, in this case, 

F ( f ) - -  (1 -0~f) ~ [1 +(1 - a ) f ] ~ - ~  (6) 

In particular, for semions (0c-- 1/2) we get 

f =  1/(/+ (2) 1/2 
(7) 

FCf) = (1 - f /2)  '/2 ( 1 + f12) ~/2 

Thus, the Boltzmann equation (1) for particles obeying Haldane's statistics 
is given by 

Of Of o~ Of 

f dp~ dp' dp'~ w(pp~ --.p'p'~)[f'f'~F(f) F(fl) - f f~F(f ' )  F(f ' l)]  - 2  

where F is given by (6). 

3. D E N S I T Y  R E S P O N S E  F U N C T I O N  

In calculating the density response function x(Q) of the one-dimen- 
sional electron gas, we follow the treatment given by Kagoshima et aL c~6) 
For a periodic potential V(r) = Y~Q VQe iQr, the charge distribution of the 
electrons in a length L is distorted by 6p(r)= ( l / L ) Z o  Po eiQr, and x(Q) is 
just the linear response function, obtained from 

p Q = -- VQX(Q) 

by calculating 6p(r) perturbatively. Consider an electron in the initial 
state k, absorbing a phonon of wave number Q ( - Q ) ,  reaching the final 
state k + Q (k - Q). Then, using FD statistics, we obtain the usual expres- 
sion for pQ(16) 

vQ ~ A(1 --fk- Q)] 
) + - - - - -  ( 8 )  

L Ek--Ek+Q Ek--Ek_Q J 

where we have,neglected the phonon energy hcoQ in comparison to the elec- 
tron energy Ek = h2k2/2m, and N is the number of electrons in length L. 
The dummy variable k in the second term may be replaced by (k + Q), 
resulting in the cancellation of the bilinear terms in f s ,  and yielding 

x ( Q ) = I ~  fk+Q--fk (9) 
E k  - -  Ek + 0 
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At temperature T =  0, we have fk = 1 and f~+Q= 0. In one dimension, 
this results in a logarithmic singularity for transitions from k = _ kF to 
k = T- kF with Q = -T- 2kv. This is a manifestation of the well-known Peierls 
instability. At nonzero temperature T=f l  -~, the singularity is replaced by 
a finite result, as may be verified by a straightforward calculation: 

~, , D(EF ) f~ep/2 tanh x dx (10) 
x(Q=Z~CF)= 2 - N - o  

where D(EF) is the density of states at the Fermi level and the energy 
integration is carried out only in the range [ E - E F [  <~es ~ EF. We repeat 
this calculation for X by replacing the factors f (  I - f )  in (8) by the new fac- 
tors f F ( f )  derived in Section 2. There is of course, no a priori justification 
for assuming that these excitations obey the new statistics. Nevertheless, if 
they did, what would be the experimental signals in a one-dimensional 
system? The enhancement of x(Q) near Q=2kv  has a direct bearing on 
the estimation of the Peierls metal-insulator transition temperature,'as well 
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Fig. 1. Dashed and solid lines represent integrals occurring in (10) and (12), respectively, as 
a function of e~fl/2, showing an enhancement of the density response function X( Q = 2kv) at 
various temperatures as one goes from fermionic to semionic statistics. 
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as on the Kohn anomaly. It may therefore be a worthwhile exercise to 
reexamine x(Q) with the modified golden rule. 

It is simplest to illustrate the calculation with semions (0~ = 1/2), where 
the equilibrium distribution is explicitly known [see (7)]. The expression 
in the square brackets in (8) is then replaced by 

l 2 1/2 [ f k ( l _ ~ f k + q )  , 2 ,/2 + f k ( 1 - a f k - q )  ] (11) 
[ Ek -- Ek + Q Ek -- Ek _ Q J 

Note that on changing the dummy variable k---, k + Q in the second term 
in (11), there is no cancellation of the bilinear terms in f as earlier. 
However, at T = 0 ,  the quasiparticle excitations near the Fermi surface 
have fk = 2, fk§  Q = 0, and hence there is an overall enhancement ofx(Q) by 
a factor of 2, again with a logarithmic singularity at Q = 2kv. At nonzero 
temperature, the semionic distribution function f given by (7) may be used 
to evaluate x(Q), and one obtains after straightforward algebra 

x(Q = 2kF) = D(EF) 2 r ],~p/2 dx 2(e 2-, e - 2 x )  

2N ~o x (l +4e-ax)  1/2 (1 +4e4X) 1/2 
(12) 

which should be compared with (10). The integrals in (10) and (12) are 
plotted as a function of eBfl/2 in Fig. 1, and again show an enhancement 
of x(Q), but by a factor somewhat greater than 2. Although there is an 
enhancement in the response function in our simple model, because its tem- 
perature dependence does not change, it may not be possible to detect this 
effect experimentally. 

4. GENERALIZED FERMI  GOLDEN RULE A N D  
RELAXATION T IME 

We now consider generalization of the well-known Fermi golden rule, 
for particles obeying the fractional exclusion statistics. Consider a two- 
particle scattering process k + p - - , k '  +p'  in one dimension. Let the two 
particles be distinct. We have in mind processes like the electron-nuclear 
interactions in metals. According to the Fermi golden rule, the transition 
probability per unit time for such a process is given by 

wi-.r  = 2 n  ](il Hint If> I'-r 

where Hin t is the interaction Hamiltonian and the delta function ensures 
energy conservation between the initial and the final states. Typically in 
electron-nuclear interactions (as in magnetic relaxation in solids) one can 
neglect the nuclear recoil to a very good approximation and therefore one 

822/82/5-6-29 
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can replace ~(Ei--Ef) by ~(Ek--Ek,), k and k' being the initial and final 
momenta of the scattered electron. We work in this limit to keep the 
calculation simple and also because this is the relevant limit for many 
physical applications. The total transition probability per unit time at non- 
zero temperature is then given by ~'7) 

W,_s= 2= ~ dlc dk' I< il Hint If> I'- g(Ek -Ek,) p(k) p(k')f(E~) F(Ek, ) 

where p(k) denotes the density of states in the momentum space, f (E) is as 
in (4), and F(E) is what was denoted by F(f)  earlier; see (6). Performing 
one of the two integrati6ns by using the delta function, we obtain 

W~- f=2n ldE l< i l  Hint If>l'- [P(E)]af(E)F(E) (13) 

In order to evaluate the integral in (13), we note that 

f(E) F(E) = [ f ( E ) ]  2 e (e-er)/r (14) 

where EF is the Fermi energy. Notice that in the low-temperature limit we 
have 

f (  E) = 1let, E <~ Ev 

and zero otherwise. Thus at low enough temperatures, the system for an 
arbitrary ~ (except very close to the bosonic end) does exhibit a Fermi sur- 
face. We will be using this fact later in the calculation. Now for reasons 
that will become clear shortly, we wish to obtain an expression for the 
derivative df/dE. Using (4) and (5), we get 

d f  = _ [ f ( E ) ] 2  do) _ [ f ( E ) ] 2  co(1 + co) 
dE d E =  T(~+ co) (15) 

Substituting [ f ( E ) ]  2 from (15) into (14), we get 

f(E) F(E)= df T(a+co_____~)e(e_eFi/r (16) 
dE co( l +co) 

We now consider the low-temperature (T~Ev)  limit of the process 
under consideration. In this limit, f(E),~O(Ev--E)/~, and hence 
df/dE ~ - O(E v -- E)/ct. Substituting this in (16), we find 

T[~+co(E)] 
f (E) F(E) ~ 6 ( E v -  E) (17) 

~co(E)[ 1 +co(E)] 
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Substituting (17) in (13) and performing the energy integration, we get 
the generalized Fermi golden rule: 

T[~ + og(Ev) ] 
Wi~f=2n I(il n i , t  I f ) l  2 [P(EF)] 2 ~co(Ev)[ 1 + co(Ev)] 

In the special case when 0c= 1 (fermions), we have, from (5), o~(Ev)= 1, 
and we get 

W~_.,f=2n I(il n i , t  I f ) l  2 [P(Ev)]  2 T 

We can therefore, in general, write 

+ og(Ev) 
W ~ . f -  W~_fo~og(Ev)[ 1 + co(Ev)] 

We may now apply this result to specific cases. A straightforward 
application is to the calculation of the relaxation time of a nuclear spin in 
a metal. The relaxation time for arbitrary ~ is then given by (~7) 

1 (~) = 1 (fermions) o~ + co(Ev) 
r r otco(Ev)[l +cO(EF)] 

Thus the change due to fractional statistics is  simply given by a multi- 
plicative factor which depends on ~. In particular, at 0t--1/2, this multi- 
plicative factor can be explicitly calculated, and we get 

1 ( , )  = x/~ 1 (fermions) 
27 "( 

Notice that in deriving the generalized Fermi golden rule we have 
made a number of simplifying assumptions. Real systems are likely to be 
more complicated. Nevertheless, the above derivation probably indicates 
the correct direction in which the transition rates move when fractional- 
exclusion-statistics particles are involved. 

In summary, we have generalized the Boltzmann-Nordheim equation 
and the Fermi golden rule for quasiparticles obeying the Haldane exclusion 
statistics. As two simplified applications of these results, we have calculated 
the density response function and the relaxation time of a one-dimensional 
gas obeying the new statistics. Although the applications presented here are 
simple and exploratory, we believe that they are the first attempts in this 
area to make a connection of theory to the consideration of observable 
effects. Moreover, this could be attempted only because the transport equa- 
tion was nontrivially modified. 
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