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Abstract

We analyze the solar and the atmospheric neutrino problems in the context of
three flavour neutrino oscillations. We assume a mass hierarchy in the vacuum
mass eigenvalues ,u% > ,u% > ,u%, but make no approximation regarding the
magnitudes of the mixing angles. We find that there are small but continuous
bands in the parameter space where the constraints imposed by the current
measurements of "'Ga, >"Cl and Kamiokande experiments are satisfied at 1o
level. The allowed parameter space increases dramatically if the error bars
are enlarged to 1.60. The electron neutrino survival probability has different
energy dependence in different regions of the parameter space. Measurement
of the recoil electron energy spectrum in detectors that use v—e scattering may
distinguish between some of the allowed regions of parameter space. Finally
we use the results for the parameter space admitted by the solar neutrinos as
an input for the atmospheric neutrino problem and show that there exists a

substantial region of parameter space in which both problems can be solved.
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I. INTRODUCTION

The solar neutrino problem has been an interesting and intriguing phenomenon in neu-
trino physics for a long time. The different solar neutrino experiments observe differing
fractions of the neutrino flux predicted by the Standard Solar Model (SSM) [[I.@]. The
oldest of the solar neutrino experiments is the 3’Cl experiment at Homestake. Its energy
threshold is 0.814 MeV and it can detect the neutrinos from "Be (E, = 0.862 MeV) and B
(E, < 14.02 MeV) reactions. In the standard solar model (SSM) of Bahcall-Pinnsonneault
[B], the capture rate in the 3"Cl experiment is predicted to be 8.0 & 1.0 SNU. However, the

measured rate is only [f]
Rey = 2.55 £ 0.25 SNU. (1)

The water Cerenkov detector at Kamioka, with a threshold of 7.5 MeV, can detect only the

neutrinos from the upper end of ® B spectrum and the Kamioka result [{] is,

R am
Ykam = —" = 0.51 4 0.07, (2)

Rgam:ssm
which is the ratio of the observed neutrino flux to that predicted by the SSM. The gallium
experiments SAGE and GALLEX, with energy threshold of 0.233 MeV can detect the neu-
trinos coming from the dominant p — p reaction (E, < 0.42 MeV) as well as the neutrinos

from " Be and ®B reactions. Their measured rates are [[i,[]

Rsagp =69+ 11 +6 SNU

Roarrex = 79+£10£6 SNU
and the average is
Rea.avg = 74 £8 SNU (3)

as opposed to the SSM prediction of 131.5 SNU.
A rough model independent analysis of these results indicates that the low energy neutri-

nos from the p — p reaction suffer very little suppression whereas the higher energy neutrinos
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are suppressed to a large extent [§]. Recently it was pointed out that if neutrinos have no
properties beyond those in the standard electro-weak model (i.e. if they are massless), the
measurement of Kamiokande, together with that of 37Cl experiment, implies that the "Be
neutrinos must be suppressed by more than 90% [B,[J].

In addition there exists an anomaly in the ratio of observed muon neutrinos to electron
neutrinos in the earth’s atmosphere. These neutrinos are produced from the decay of 7+
and K* which are in turn produced by cosmic rays interacting with the atmosphere. The
ratio is roughly two as suggested by the Monte-Carlo calculations whereas both Kamioka
[[1] and IMB [[[J] report that the ratio is only about half of that predicted by the Monte-
Carlo calculations. The results for this ratio are also available from three other groups
using the tracking detectors, namely the NUSEX [[3], Frejus [[4] and SOUDAN-II [I7]
collaborations. The data from the NUSEX collaboration seems to be in agreement with no-
anomaly situation. Similar conclusion is obtained from Frejus data if all the contained events
are considered. However, if only fully contained results are taken into consideration, there is
a suppression. The SOUDAN-II results are consistent with the results obtained with water
Cerenkov detectors. It should be noted that the statistics in the tracking experiments is not
as high as the water Cerenkov experiments. Evidently any solution of the solar neutrino
puzzle must incorporate simultaneously a solution of the atmospheric neutrino problem [[L6].

A satisfactory solution to the solar neutrino problem should be able to explain not only
the total deficit that is observed but the differential suppression observed at low and high
energies. Solutions based on astrophysics or nuclear physics ascribe the deficit to smaller
solar core temparature or smaller cross sections for the nuclear reactions talking place in
the sun. Recent model independent analyses suggest that these solutions cannot describe
the results of 37Cl and Kamiokande simultaneously [B§]. Particle physics based solutions
attempt to account for the deficit by assuming that the neutrinos have interactions beyond
those of the standard electro-weak model. If the neutrinos possess small mass, an electron
neutrino can oscillate into a neutrino of another flavour [[7]. The amplitude of oscillation

is a function of the mass squared differences, the mixing angles between neutrino flavours



and the neutrino energy. If one of the mass square differences is of the order of the effective
mass squared arising from v, — e interaction, the matter effects can enhance the mixing to
its maximal value and the amplitude for v, oscillating into another flavour will be very large
[[§]. This is the so called MSW effect.

Matter-enhanced oscillations have been studied thoroughly in the scenario where only two
flavours, v, and v,, mix with each other [I9-£1]. The vacuum oscillation here is controlled
by the two parameters, the mass square difference dy; = m3 — m? and the mixing angle w.

Matter effect is taken into account by adding to the mass squared of v,, the term
A(r) = V2 Gp ne(r) x 2E, (4)

which is proportional to the electron number density in the Sun n.(r), where r is the radial
distance from the centre of the Sun. The maximum value of A occurs at the core and is
roughly 107°E eV?, where E is the neutrino energy in MeV. The mixing angle w,, in the

presence of matter is given by,

08 T — dg1 cos2w — A (5)
" \/(521 cos 2w — A)? + (921 sin 2w)?

The MSW resonance condition is,

A = 091 COS 2w. (6)

Note that, if the resonance condition is to be satisfied, A.pre > d21 cos 2w, which implies
that w,, > m/4 at core. At resonance it becomes 7/4 and approaches its vacuum value after
passing through the resonance.

The probability for an electron neutrino produced in the solar core to be detected as an
electron neutrino on earth, averaged over the time of emission and the time of absorption,

is given by
2 2 .9 .9
(P.e) = cos” w €S~ Wy, + sin” w sin® wy,, — 12 €os 2w €os 2wy, (7)

where w,, is to be evaluated at the point of production and x5 is the probability of a non-
adiabatic jump between the matter dependent mass eigenstates. If the variation of the solar

density in the resonance region is slow enough, the adiabatic condition
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521 sin2 2w

ot > 1 (8)

E|%%|ms Ccos 2w
is satisfied and the matter dependent mass eignestates evolve adiabatically and there are no
transitions between them. If (f) is not satisfied, then there will be non-adiabatic transitions
between the two matter dependent mass eigenstates in the resonance region and the proba-
bility of this jump has the general form exzp(—C/FE). The term C has dimensions of energy
and is some function of d9;, w and the derivative of the solar density. The expressions for
C for various density profiles are tabulated in Ref. 7). For linear density variation in the

resonance region, the jump probability is given by the Landau-Zener formula

T12 = €Xp [—g”Y] ‘ (9)

The predictions for the rates of various experiments are obtained by convoluting the SSM
neutrino fluxes with the expression for survival probability in ([]). A fit to the data from
" Ga, *'Cl and Kamiokande experiments yields solutions in two regions in the dy; — sin? 2w

plane, one with small vacuum mixing and one with large vacuum mixing;:

8o1 ~ 6.1 x 107%V? and sin? 2w ~ 0.0065,

821 ~ 9.4 x 107%V? and sin® 2w ~ 0.62. (10)

In case of the small mixing angle solution, the resonance occurs for neutrinos with energy
greater than 0.6 MeV. Therefore, the p — p neutrinos (whose maximum energy is 0.42 MeV)
are unaffected whereas the neutrinos with energy greater than 0.6 MeV are almost com-
pletely converted into v,. But the measurement of Kamiokande shows that the neutrinos
with energy greater than 7.5 MeV are suppressed by only a factor of 0.5. This can be ac-
commodated through the non-adiabatic jump 15 in ([]). If C ~ 10MeV, or equivalently
851 8in? 2w ~ 4 x 1078 eVz, then x5 is negligible for energies less than 5 MeV, but becomes
appreciable at higher energies and (P..) satisfies Kamiokande constraint. The energy depen-
dence of (P,.) in this case is precisely of the form that is required to satisfy the data from the

three solar neutrino experiments. In the case of the large angle solution, the non-adiabatic



effects are totally negligible and the (P..) is about 0.55 below 0.5 MeV and slowly falls
to about 0.35 around 5 MeV after which it it remains almost independent of the neutrino
energy.

In the case of two flavour oscillations, the area of the parameter space, which can satisfy
all the three constraints at 1o level, is very small. Especially, in the case of the small angle
solution, the requirement that the resonance should occur around 0.6 MeV uniquely fixes
the value of d9;. The requirement that the “Be neutrinos should be completely suppressed
and that the high energy B neutrinos should have a suppression of about 0.5 determines the
product da; sin? 2w almost exactly. Therefore, there is very little leeway in the allowed values
of §; and sin? 2w. An appreciable region of parameter space is allowed only at 95% C.L. ( or
2.4 o level). In addition, this simple picture is inadequate to simultaneously explain the solar
and atmospheric neutrino deficits since the mass squared differences required are in vastly
different regimes. To explain the atmospheric neutrino anomaly on the basis of two-flavour
vacuum oscillations, one requires a mass squared difference of the order of 10~ — 1073 eV2,
with a large mixing angle. This must be compared with the best fit to the data in the case
of solar neutrino problem given in eq.(10). Therefore one has to necessarily consider the
scenerio in which all the three neutrinos participate. This of course is also a more realistic
situation since the LEP experiments have already pinned down the number of light neutrino
generations to be three.

Three flavour oscillations were considered previously R325. However, the uncertainties
in the Gallium experiments have come down significantly in recent times and the parameter
region allowed by the current data will be much smaller. Recently Joshipura and Krastev
[BE] have attempted a complete solution of the solar and atmospheric neutrino problems in
the three generation frame work. They present a combined analysis of these two problems
in the framework of the MSW effect and indeed show that there exists a parameter space in
which both sets of data can be reconciled. Kim and Lee [27] analyse these two problems and
present a solution based on maximally mixed( in vacuum) three generations of neutrinos.

This later analysis is however a rather fine tuned solution since the parameter space allowed



is rather tiny.

In this paper, we analyze the solar neutrino problem by considering the oscillations
between the three neutrino flavours. The analysis is done with no particular model of neu-
trino masses and mixings assumed. The analysis is similar in spirit to that of Joshipura and
Krastev [2@]. We carry their analysis further and not only map out the full parameter space,
but also discuss the average survival probability and recoil electron spectrum. In addition
we also discuss a non-standard solution where no resonance occurs but nevertheless there
is a parameter space in which all the three experiments discussed earlier can be reconciled.
We also do not make any assumption about the evolution being adiabatic and take into
account non-adiabatic effects. These effects may be ignored, however, in parts of allowed
parameter space. In the three generation case the neutrino oscillations are determined by
two mass differences and three mixing angles neglecting the CP-violating phase. One of
the mixing angles is irrelevant for solar neutrino problem 3,24 while being relevant to the
atmospheric neutrino problem and one of the mass differences is constrained by the atmo-
spheric neutrino deficit. Therefore the solar neutrino oscillations in the three flavour case
are dependent on three parameters. Because of the additional parameter, a larger region of
the parameter space is allowed by the solar neutrino data compared to the two generation
scenario. In section 2, we present the theoretical frame work for our analysis of the solar
neutrino problem and in section 3, we present the numerical results for the solar neutrino
problem in conjunction with the atmospheric neutrino problem. The last section consists of

a brief summary and discussion.

II. THREE NEUTRINO OSCILLATIONS IN MATTER- A PERTURBATIVE

ANALYSIS

In this section we discuss the mixing between three flavours of neutrinos and obtain
the probability for a v, produced in the sun to be detected as a v, on earth. The three

flavour eigenstates are related to the three mass eigenstates in vacuum through a unitary



transformation,

Ve vy

o v
VN =U I/g ) (11>
Vr Vs

where the superscript v on r.h.s. stands for vacuum. The 3 x 3 unitary matrix U” can be
parametrized by three Euler angles (w, ¢,1) and a phase. The form of the unitary matrix

can therefore be written in general as,

U’ = Uphase X U23(¢) X U13(¢) X UlZ(W)a

where U;;(0;;) is the mixing matrix between ith and jth mass eigenstates with the mixing
angle 0;;. It has been shown that the expression for electron neutrino survival probability,
integrated over the time of emission and of absorption, is independent of the phase and the
third Euler angle ¢» RJR4]. They can be set to zero without loss of generality and we have

the following form for U"

U'=] —s, ¢ 0|, (12)
—S¢Cw —S¢pSw Cy

where s, = sin ¢ and ¢, = cos ¢ etc. The angles w and ¢ can take values between 0 and /2.
Note that one of the flavours decouples if either w or ¢ is zero and we have a two flavour
scenario. As mentioned earlier the approach here is similar to that of Joshipura and Krastev
[BG] who, however, assume that the mixing angle between second and third generation, 1, is
small and hence can be neglected. We wish to emphasise that this is not an assumption and
infact i) can be arbitrary and the result for survival probability of the electron neutrino is
independent of this PJP4]. In fact the solution of the atmospheric neutrino deficit requires
1) to be rather large. Together, solutions of the atmospheric neutrino deficit and the solar
neutrino problem determine the mixing matrix UY completely apart from the CP-violating

phase.



The masses of the vacuum eigenstates are taken to be puy, po and p3. In the mass
eigenbasis, the (mass)? matrix is diagonal,
pi 00
Mi=1| 0 u2 0

0 O,u?,)
00 0
=uiI+ |06y 0 |, (13)
00 by

where 0y = p3 — p? and d3; = p2 — p3. Without loss of generality, we can take dy; and 03
to be greater than zero. Neutrino oscillation amplitudes are independent of the first term

so we drop it from further calculation. In the flavour basis the (mass)? matrix has the form

M} =U"MU"

= 031 M31 + 091 Moy, (14)
where
si, 0 S4Co
Mzp=|1 0 0 0
SeCo 0 ci

2 o2 2
Cd)Sw CpSwCuw  —CpSepS,

Moy = | cys,c, 2 —545uC0 | - (15)

2

w

2 2
—CpSpSy —SpSwCw  SpS

As in the two flavour case, matter effects can be included by adding A(r), defined in ([),

to the e — e element of M2. The matter corrected (mass)? matrix in the flavour basis is
M2 = 631 M3; + 01 Moy + AM 4, (16)

where



100
Mi=1000]- (17)
000

To calculate the evolution of a neutrino in matter we have to find the matter corrected
eigenstates by diagonalizing M?. For arbitrary values of d3; and 8y, it is cumbersome to
find the eigenvalues and eigenvectors of M? algebraically. However, the eigenvalue problem
can be solved using perturbation theory, if the mass differences have the following hierarchy
031 > 091. This assumption is plausible in light of the observed atmospheric muon neutrino
deficit. Recently Kamiokande analyzed their atmospheric neutrino data, assuming that the
deficit is caused by the oscillation of a v, into another flavour. Their analysis assumes
mixing between only two flavours (v, < v, or v, < v.). For both cases their best fit yields
a mass square difference of the order of 1072 eV? [[[I]. In our analysis we take d3; to be
1072 eV?. Thus we have d3; much larger than A,,.. and hence the oscillations involving
the third generation are not influenced very much by the matter effects. In order for the
matter effects to be significant (as necessitated by the solar neutrino problem), the other
mass difference in the problem, d91, should be such that the resonance condition is satisfied
for some values of parameters. This means da; ~ A,q.. Thus we work in an approximation
where 021, Anar < 031.

In this approximation, to the zeroth order, both the matter term and the term pro-
portional to dy; can be neglected in eq. (I§). Then an = 031 M3;, whose eigenvalues and

eigenvectors are

Co
;1 0 |-
—54
0
011,
0
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03131 0 |- (18)
Co
Treating AM 4 + J21 My as perturbation to the dominant term in M2 and carrying out

degenerate perturbation theory, we get the matter dependent eigenvalues and eigenvectors,

Cd)m Cwm

my; —Swm )
- Sd)m Cwm
C¢m swm

m2 ’ Cw 9

m

- S¢m Swm

S¢m

m3 | o |- (19)

Cohm,
The above eigenvectors are the columns of the unitary matrix U™ which relates the flavour

eigenstates to matter dependent mass eigenstates v/" through the relation

Ve 124

o m
v, | = U 1/5“ . (20)
vy 74

The matter dependent mixing angles can be expressed in terms of the vacuum parameters

and A as
521 sin 2w
tan 2w, = , 21
an s 01 cO8 2w — A cos? ¢ (21)
. . A 2 A .92
sin ¢,, = sin¢ |1 + — cos (4 i COS ¢y, = COS @ {1 — —sin (4 (22)
531 531

The matter dependent eigenvalues m? are given by
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m3 = Acos® ¢ cos® wy, + Gy sin® (w — wy,)
m3 = Acos® ¢sin® w,, + da; cos® (W — wy,)

mg = 531 + A SiIl2 ¢ ~ 531. (23)
Wy, can undergo a resonance if the values of 51, ¢ and w are such that the resonance condition
A(r) cos? ¢ = 891 cos 2w (24)

is satisfied for some r. Note that this condition is very similar to the resonance condition in
the two flavour case (eq. f). The new feature here, which occurs due to the mixing among
the three neutrino flavours, is the presence of the second mixing angle ¢ in the resonance
condition. This dependence on ¢ leads to a larger region of allowed parameter space in the
three flavour oscillation scenario as will be shown in the next section. Since o1, A(r) and
cos® ¢ are all positive, a resonance can occur only if cos 2w is also positive, or if w < 7/4.

In the three flavour case, the electron neutrino survival probability is given by

3 2 2
(Poe) = > |USP |Ug| |2 1o (25)

,7=1

2
‘(Vﬂ 1/]m>‘ is the probability that the jth matter dependent eigenstate evolves into ith

vacuum eigenstate. As in the two flavour case, if the adiabatic approximation holds, then
v m 2
[y o] = 6y (26)
We introduce the jump probabilities
v my |2 . -
xij:‘@i |Vj>‘ fori # j (27)

to take into account the non-adiabatic transitions, if the adiabatic condition doesn’t hold.
Because 037 > A4z, 021, the third eigenvalue, both in vacuum and in matter, is much
larger than the other two eigenvalues. Non-adiabatic effects are significant only if the eigen-
values of two states come close together [2§]. Therefore the jump probabilities involving the
third state, x13 and x,3 are expected to be negligibly small. Thus we have the expression

for electron neutrino survival probability to be
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(P..) = cos® ¢ cos® o, (cos2 w cos? wiy, + sin® w sin? wm) + sin? ¢ sin® ¢,

— 19 COSZ B COS% Py, COS 2w COS 2w, (28)

For x15 we use the formula,

exp|— ] — exp[— 2L
Tig = [ 2 ] WE/F2SIHQW]7 (29)
1= eXp[_2sin2w]
where 7 is defined in equation (§) and
F=1—tan’w (30)

for an exponentially varying solar density [RJ]. We use this form for the jump probability

since it is valid both for large and small mixing angles. In the extreme non-adiabatic limit

713 — cos?w and when vF >> 1, we have the usual Landau-Zener jump probability given
v F

by 12 — exp[—"%~] as expected. Infact for much of the allowed parameter space, this form

can be used without any appreciable change in the results obtained.

III. RESULTS

In this section we discuss the results of the numerical analysis first for the solar neutrino
problem and using that we map out the region in the parameter space which contains the

solution to the atmospheric neutrino problem.

A. solar neutrinos

We analyze the expression for (P,.) in (B§) and find the ranges of ds1, w and ¢ allowed
by the three solar neutrino experiments. Since d3; > A, We see from the expression for
®m in () that the angle ¢ is almost unaffected by the matter effects. However, w,, can be
significantly different from w and can undergo resonance if the resonance condition in (24)
is satisfied. Since this resonance condition depends on ¢, in addition to do; and w, a larger

region of parameter space satisfies the three constraints from the experiments.
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To search for the regions allowed in the three parameter space ds1, w and ¢, we define

the suppression factors observed by the three types of experiments

You = Gaws (563 40 067,
Raa.ssm
Ry
Yo = — = 0.318 + 0.051,
Reissm
RKam
Yicam = —Kam 0 51 40,07, (31)
RKam;SSM

where the first number refers to the average of the data given by two experiments- namely
GALLEX and SAGE. The predicted SSM rates for various experiments were taken from
Bahcall-Pinsonneault SSM calculations [f]. The uncertainties in y; are the sum of the ex-
perimental uncertainty in the numerator and the theoretical uncertainty in the denominator,
added in quadrature.

The predictions for y; for the three flavour oscillation scenario are obtained by convoluting
the SSM fluxes and the detector cross sections with (P,.) from (P§). The expression we use
is

_ Sw JEn dB®(B)(E) < P > (E)

min

Yk [erer dE® (E)o(E) ’

min

(32)

where the sum over K refers to the neutrino fluxes from various sources contributing to the
process. We also include the contributions from the CNO cycle apart from the dominant
contributions from the p-p cycle. In the case of Kamioka, only the ®B flux contributes and
one must also take into account the neutral current contribution arising from the muon
neutrinos interacting with the detector material. The parameter ranges are then calculated
by putting vetos on y at 1o and 1.60 levels. The energy dependent fluxes were taken from
Ref. [B] and the cross sections were taken from Ref. [29.

Figure 1 shows the allowed values of w and ¢ with dy varying between 10~¢ eV? and
10~* eV?. Note that the allowed values of dy; are also determined by the same veto con-
ditions. In the two generation case it is a standard practice to plot d; against sin®(2w)

since that is the combination that enters the survival probability. In the three generation
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case all possible circular functions of the mixing angles are possible. Hence we depart from
the standard practice in this paper and plot the angles themselves. The points refer to the
allowed values after the vetos corresponding to all three experiments are imposed. The dark
squares show the values allowed by 1o uncertainties given in (BI)) whereas the hollow squares
show the values allowed when the uncertainty is increased to 1.60. Fig.2 shows the allowed
regions in the ¢-dy; plane, with w varying between 0 and 7/2 but obeying the same set of
vetos. In Figs. 1 and 2 if we restrict ourselves to the ¢ = 0 lines (the y-axes) we get the
known [}] two-flavour solutions for w and dy;. The large extended regions of the parameter
space brought in through the additional degree of freedom ¢ in the three-flavour scenerio
are shown clearly in Figs.1 and 2. For completeness we also plot in Fig. 3 the allowed
range in the w — o1 plane. Here again the three-flavour scenerio provides an enlargement of
the allowed parameter space over that of the two-flavour solution (small regions around the
isolated dark patch in the left and around the end of the dark arm on the right).

The various regions of the allowed parameter space may be classified as follows:
1. small 951, small w, small ¢,

2. large 091, large w, small ¢,

3. small 091, small w, large ¢,

4. large 691, small w, large ¢,

5. large 091, large w, large ¢,

where the small or large Jy; means either 6o, < 107%eV?2 or dy; > 107°eV?2. The first
two regions corresponding to small ¢ in the above classification belong to an approximate
two generation situation since the angle ¢ is small. The one corresponding to small w is the
usual non-adiabatic solution, whereas the one corresponding to large w is the usual adiabatic
solution. The rest invoke the genuine three generation oscillation mechanism. In the two

flavour scenario, the small angle solution (corresponding to w small as in case 1 above)
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gives the best fit [JJ]. There the parameter space allowed at 1o level is very small because
the resonance condition and the non-adiabatic jump factor fix d5; and w almost uniquely.
These values of parameters indicate that the neutrinos from the p — p cycle suffer very little
suppression and those from ”Be suffer almost complete suppression as will be illustrated
soon in the analysis of the survival probability.

In the three flavour scenario, the resonance condition (eq. P4) and the survival probability
(eq. BY) are dependent on the second angle ¢ also. The suppression of the p — p neutrinos
depends on the value of ¢ and if this suppression is significant, then the complete suppression
for " Be neutrinos can be relaxed. This is one of the important differences between the three
flavour and the two flavour oscillations.

Figure 4 shows the energy dependence of (P,.) for some representative values of w, ¢ ,
and dz1. The curve labelled (a) corresponds to ¢ = 2°. As there is very little mixing between
the first and the third generation of neutrinos, this is infact an almost two generation case.
In agreement with the two generation analysis, there is almost no supression of the p — p
neutrinos and the 7 Be neutrinos are almost completely suppressed. The survival probability
at high energies relevant to Kamioka is almost a linear function with an average around
0.5 as one would expect. Also here the values of w and dy; are small (they are almost
equal to the values obtained in the two flavour case) and the non-adiabatic effects become
important beyond 2 MeV. Keeping w small if we increase ¢ in the allowed region there
is a perceptible reduction in the probability in the p — p energy range and an increase in
the survival probability of the “Be neutrinos (curves (b) and (c)). When &y is increased,
however, there is a qualitative change in the survival probability profile. In this range both
w and ¢ are allowed to be large. Here also there is a qualitative change when w is small or
large. For large w the survival probability is a smooth function resembling the adiabatic case
of the two generation analysis (curves (d) and (f)) whereas for small w it is almost a step
function (curve (e)) which is like the classic adiabatic case discussed by Bethe in the two
generation case [[J. One common feature of the large do; case is that the p — p neutrinos

undergo substantial suppression varying between 0.6 -0.5. The resonance also occurs at a
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much higher energy than in the small dy; case. Curve (f) has w, ¢ and dy; all large and
in some sense it can be called ‘most representative’ of the three flavour oscillation scenario
because both the mixing angles in this case are large. In all the above cases, except (e),
the average survival probability above 7 MeV is in the neighbourhood of 0.4 which is what
is required by the Kamioka data and there is no dramatic change from one to the other.
This is not so at low energies where the curves differ dramatically. In this sense Kamioka
experiment cannot distinguish between different theoretical scenarios of masses and mixings.

One way of experimentally measuring the energy dependence of (P..) is to look at the
recoil electron spectrum in those detectors that use v, — e scattering. In Fig.5 we have
shown the recoil electron spectrum for the six cases plotted in Fig. 4. Except case (f), they
cannot be distinguished beyond 10 MeV, whereas there are substantial differences at low
energies. While this energy range is not completely accessible in Kamioka, it is interesting
to note that it may be possible to see this difference in the experimental recoil electron
spectrum in the SNO [BQ] and Borexino [BI] detectors. Note that in computing the recoil
electron spectrum, we have used the spectrum of ®B neutrinos as input. This is because
the threshold in experiments which can measure the recoil electron spectrum (like SNO
and Kamioka) is more than a few MeVs where only this flux matters. The only exception is
Borexino where the threshold is much lower and there are other contributions below 1.5MeV.
In particular the 7 Be neutrino source, which is a line spectrum at 0.862 MeV, will show up as
a sharp bump in the recoil spectrum where the height of the bump depends on the survival
probability. A complete absense of the bump would point to the set parameters as in case
(a) of Fig.4.

Finally we consider a non-standard mixing which leads a substantial region in the pa-
rameter space. We consider a situation where the electron neutrino is coupled more strongly
to the heavier mass eigenstate 5. Obviously this implies that the mixing angle between the
first two mass eigenstates w, is greater than m/4. In the standard analysis the mixing has
to be less than 7/4 so that the resonance condition is satisfied as can be seen from eq.(P4).

This is true in the two as well as in the three generation case since the LHS of the resonance
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condition is positive for arbitrary ¢ whereas the sign in RHS depends on the magnitude of w.
There are no strong theoretical reasons not to consider this situation. Because w,, at core is
very close to m/2, wy, is then constrained to be w < w,, < 7/2. Infact for do; < 107 7eV?, w,,
is approximately /2. Since ¢ hardly varies with density the effective survival probability

may be approximately written as,
(P,.) = cos* ¢sin®w + sin® ¢ — 215 cos® ¢| cos 2w, (33)

where we have retained the jump probability x15. While it may appear some what unusual
to keep the jump probability when there is no resonance, a plot of the eigenvalues clearly
shows that the difference between the first two eigenvalues is not very different from that
of the standard case close to vacuum and one cannot completely discard the existence of
non-adiabatic jumps between mass eigenstates. However, most of the derivations of the
jump probability assume the existence of resonance and the profile of the density variation
close to resonance. Since we do not have a handle on this, we assume that the jump
probability is simply given by z15 = exp(—C/FE) and treat C as a free parameter of the
theory. The survival probability is then energy dependent as would be required by the
solution to the solar neutrino puzzle. The resulting parameter space is shown in Fig.6 for
w, ¢. The parameter C varies from 0.4 to 6.3 in the allowed region. If we assume any one of
the expressions for the jump probability discussed earlier, then we will have to discard small
values of C (C' < 4) since then the jump probability becomes very large and unacceptable.
However in the allowed region, the points corresponding to small C are very few and there
is no substantial change from the plot shown in Fig.6. We also show some typical variation
of the survival probability (P..) for some typical values of w, ¢ and C in Fig.7. The curve
(a) corresponds to small C where non-adiabatic effects are important while the curve (b)
corresponds to large C which is an almost adiabatic case. We wish to stress that this is an
adhoc solution but we have analysed this situation because there are no strong theoretical
reasons to ignore this possibility.

To conclude this section, we note that the solution to the solar neutrino puzzle fixes
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the parameter space defined by w,¢ and do; . While we have actually chosen the fourth

2 we might as well have set the limit ds; > 1073eV? without

parameter d3; to be 1072eV
affecting our results. One therefore requires more inputs to fix the range of d3; and the angle
¢ (mixing angle between second and the third generation neutrinos) which is arbitrary as

far as the solar neutrino puzzle is concerned. The new input is provided by the analysis of

the atmospheric neutrino problem which we consider next.

B. Atmospheric Neutrinos

In order to fix the mixing matrix completely we still need to fix the range of ¢, which
is the mixing angle between the second and third generation neutrinos, as this is arbitrary
in the solar neutrino analysis. To have a consistent solution for both solar neutrino and
the atmospheric neutrino problems, we need to show that there exists a range of v in the
allowed range of parameters occuring in the solar neutrino problem. To ensure this we first

define the ratio

(34)

which measures the ratio of the observed muon neutrino flux to the electron neutrino flux
to that expected from Monte-Carlo calculations of neutrino production in the atmosphere.
The most recent measurement of this ratio by the Kamiokande collaboration [[1] yields
R = 0.57100% £ 0.07 in the multi-GeV range. The depletion is further confirmed by the
observation of the zenith-angle dependence. The result for sub-GeV range atmospheric
neutrinos is R = 0.60705¢ which is consistent with the multi-GeV range data. We may
therefore assume that the suppression is approximately energy independent from sub-GeV to
multi-GeV range of energies. Assuming that this depletion is due to the vacuum oscillations

amongst the neutrino flavours, this ratio may be written as,

_ Byt Py

- 35
P +1D,’ (35)
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where r = ¢,/ ¢y, = 0.45 is the ratio of the flux of electron neutrinos to that of muon neu-
trinos at the production point. Note that r is simply the inverse of the flux ratio expected
on the basis of the Monte-Carlo calculations (see eq.(B4)). We now assume that the survival
probabilities (P.., P,,) and the oscillation probability (P,.) are given by the full three gen-
eration mixing matrix defined by the angles ¢,w, and the two mass squared differences

091, 031. The vacuum oscillation probability between two flavours is then given by,

ds
Py = U} UX + U3 Us + UZ Uk + 2UnUpUj Ujs cos(2.53—=+) (36)

E
do. do
+2U¢1U¢3Uj1Uj3 COS(QE)?)%) + 2Ui3Ui2Uj3Uj2 COS(2.53%),

where i and j are the flavour indices, E is the energy given in units of MeV, ¢;; is the mass
differences in eV? and d is the distance of traversal given in meters. These probabilities
explicitly depend on the distance d travelled by the neutrinos from the point of production
to the point of detection and is approximately about 13,000 kms for the upward moving
neutrinos. This distance is much less than the oscillation length between the first two
generations( since dy; is small). Therefore the cosine factor involving dy; can be safely set
equal to unity. As mentioned before, Kamioka has also observed that the level of suppression
for the atmospheric muon neutrinos is approximately the same both for sub-GeV and the
multi-GeV neutrinos. This can be ensured if the energy dependent factors involving d3; and
032 are such that the cosine functions can be replaced by the corresponding averages. This
is possible if and only if many oscillation lengths are contained in the distance travelled
by neutrinos to the detector. This then sets the limits on the mass squared difference
031 > 1073eV2. The large d3; regions (d3; > 1071eV?) are excluded at 90 percent C.L by the
analysis of the multi-GeV neutrino data [[]]. While we have used the central value 10~2¢V/?
in our solar neutrino analysis, the results for both solar and atmospheric neutrinos remain
unchanged if the value is further increased and marginal changes occur for values close to
1073eV? because of the approximations we made in the solar neutrino analysis.

Therefore the only range to be fixed is for the mixing angle 1. This we do by requiring

the theoretical value of R calculated from eq.(B) is within 1o and 1.6 of the experimental
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value. The resulting range for v is shown in Fig.8, whereas usual the full squares show the
1o veto and the open squares show 1.60 veto.

A few comments are in order here: As in the two generation analysis of the atmospheric
neutrino problem, we find that the preferred values of 1) is large and around 7 /4. This can be
checked easily by looking at the conversion probability P,. in the allowed range of parameters
for the atmospheric neutrino problem. It turns out that this conversion probability is always
less than twenty percent. Thus the solution to the atmospheric neutrino problem is mainly
driven by the v, —v, oscillations whereas the solution to the solar neutrino problem is mainly
driven by v, — v, oscillations at least for small values of ¢. However there are large domains
of the parameter space where one requires the full three generation analysis presented here,

to have a consistent solution to both the problems.

IV. SUMMARY AND DISCUSSION

We have examined in detail the possible solutions to the solar neutrino and atmospheric
neutrino puzzles in the realistic three generation framework. There are in general three
mixing angles, one phase from the mixing matrix and two mass squared differences which
define the full parameter space. In the case of solar neutrinos the survival probability for
the electron neutrino, even after taking into account the matter effects, is independent of
the phase and one of the mixing angles. We also fix one of the mass squared differences
by appealing to the atmospheric neutrino problem. Thus our parameter space in the so-
lar neutrino analysis consists of two angles and one mass squared difference. In our case
these are chosen to be w which gives the mixing between first and second generations , ¢
which is the mixing between first and third generations and d,; which is the mass squared
difference between the first two generations. The mass difference d3; is fixed to be around
1072eV? to explain the atmospheric neutrino problem. We have mapped out the parameter
space(¢,w, do1) by invoking the vetos arising from the data given by the three solar neu-

trino experiments. Next we have used these allowed ranges of parameters from the solar
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neutrino analysis as input in the atmospheric neutrino analysis to fix the angle ¥ and find
that there exists a substantial range in this parameter which allows a solution to the atmo-
spheric neutrino puzzle. The numerical calculations necessarily depend on the bin size for
the parameters. We have ensured that the bin size we have chosen is such that a further
reduction will not change the overall profile of the allowed region. However it is conceivable
that the rough edges that one still sees in parts of the allowed region will be smoothed out
by a further reduction of the bin size.

In conclusion, we have shown that there exists a consistent solution to the solar and
atmospheric neutrino deficit puzzles within the framework of standard MSW mechanism
based on the set of all available measurements of the solar neutrino fluxes. The full anal-
ysis involves five parameters which we have mapped out by accommodating the solar and
atmospheric neutrino fluxes seen by the present set of experiments. While the allowed re-
gion in the parameter space is still large, these can be constrained further by measuring the
distributions of recoil electron energies in solar neutrino detectors that use v — e scattering.
Although the threshold energy at the Kamioka detector is rather too high for this purpose,
the SNO and Borexino detectors may be effective in narrowing the parameter space. Fi-
nally we would like to remark that the analysis of solar and atmospheric neutrino problems
presented here is exploratory in nature. This is so since with time the errors are bound to
change which inturn will affect the vetos imposed by us at 1o and 1.60 levels. Nevertheless
we believe there is already sufficient indication that a robust solution of both problems is
possible within the framework provided by the mechanism of neutrino oscillations with three
generations.
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FIGURES

FIG. 1. Allowed regions in ¢ —w plane (with 1076 eV?2 < dy; < 107 eV?) at 1o (dark squares)

and at 1.60 (hollow squares).

FIG. 2. Allowed regions in ¢ — log(da;/eV?) plane (with 0 < w < 7/2) at 1o (dark squares)

and at 1.60 (hollow squares).

FIG. 3. Allowed regions in w — log(d2;/eV?) plane (with 0 < ¢ < 7/2) at 1o (dark squares)

and at 1.60 (hollow squares).

FIG. 4. Survival probability (P..) vs E, for typical values of ¢, w and do; in the al-
lowed region. The parameters chosen are: (a) dy;1 = 4.0 x 1076w = 2.5° ¢ = 2.0° (b)
So1 = 5.0 x 1078w = 2.0°¢ = 16.5% (c) 61 = 7.0 x 1075w = 1.75°,¢ = 37.5° (d)
So1 = 2.5 x 107%,w = 35.0%¢ = 3.0°% (e) do1 = 7.0 x 107°,w = 2.0°¢ = 30.0° (f)

891 = 1.0 x 107%,w = 24.5°, ¢ = 24.0°; §o; is given in terms of eV?2.

FIG. 5. Recoil electron spectrum for different representative points of the allowed parameter
region. The parameters for the differenct curves labelled (a)-(f) are the same as in Fig.4. The inset

shows a comparison of all zix cases with the SSM spectrum(dashed line).

FIG. 6. Allowed regions in ¢ —w plane (with0.4 < C' < 6.4 (dark squares) and at 1.60 (hollow

squares) for the non-standard solutions.

FIG. 7. Typical survival probability profile in the non-standard case. The curve la-
belled (a) corresponds to C' = 0.4,w = 55%,¢ = 2° and the curve labelled (b) corresponds to

C =6,w=289%¢ =38

FIG. 8. The allowed range of values for the mixing angle 1 in the ¥ — ¢ plane when the ¢ and

w are restricted to the range allowed by the solar neutrino problem(see Fig.1).
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