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Response of Unruh-DeWitt detector with time-dependent acceleration
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It is well known that a detector, coupled linearly to a quantum field and accelerating through
the inertial vacuum with a constant acceleration g, will behave as though it is immersed in a
radiation field with temperature T = (g/2π). We study a generalization of this result for detectors
moving with a time-dependent acceleration g(τ ) along a given direction. After defining the rate
of excitation of the detector appropriately, we evaluate this rate for time-dependent acceleration,
g(τ ), to linear order in the parameter η = ġ/g2. In this case, we have three length scales in the
problem: g−1, (ġ/g)−1 and ω−1 where ω is the energy difference between the two levels of the
detector at which the spectrum is probed. We show that: (a) When ω−1

≪ g−1
≪ (ġ/g)−1, the

rate of transition of the detector corresponds to a slowly varying temperature T (τ ) = g(τ )/2π, as
one would have expected. (b) However, when g−1

≪ ω−1
≪ (ġ/g)−1, we find that the spectrum

is modified even at the order O(η). This is counter-intuitive because, in this case, the relevant
frequency does not probe the rate of change of the acceleration since (ġ/g) ≪ ω and we certainly
do not have deviation from the thermal spectrum when ġ = 0. This result shows that there is a
subtle discontinuity in the behaviour of detectors with ġ = 0 and ġ/g2 being arbitrarily small. We
corroborate this result by evaluating the detector response for a particular trajectory which admits
an analytic expression for the poles of the Wightman function.

PACS numbers: 04.62.+v,04.60.-m

I. INTRODUCTION

One of the key results which emerge from the study
of quantum field theory in non-inertial coordinate sys-
tems (and curved spacetime though we will not consider
it in this paper) is that both the particle content of the
quantum states, as well as the pattern of vacuum fluctu-
ations, are not generally covariant. This can be explicitly
demonstrated by studying the response of detectors lin-
early coupled to the quantum field (usually called Unruh-
DeWitt detectors) in different states of motion ([1, 2]; see
[3] for a review). The probability that a detector trav-
eling along the trajectory X i

∗(τ) will get excited can be
expressed as an integral over the Wightman function of
the field in the form

P =

∫ ∞

−∞

dτ2

∫ ∞

−∞

dτ1 exp (−iωu) G+[X i
∗(τ2), X

j
∗(τ1)]

=

∫ ∞

−∞

dt

∫ ∞

−∞

du exp (−iωu) G+[u, t] (1)

where ω is the energy difference between the two levels
and the coordinates (u, t) are introduced through the def-
initions: u = τ2−τ1, 2t = τ2+τ1, and we have absorbed a
factor dependent upon the internal details of the detector
in the definition of P .
When the trajectory X i

∗(τ) is along the integral curve
of a time-like Killing vector field in flat spacetime (we will
call such trajectories ‘stationary’), the Wightman func-
tion G+[u, t] will only depend on the time difference u so

∗Electronic address: dawood@iucaa.ernet.in
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that G+[u, t] = G[u]. Then the second integral over t in
Eq. (1) will lead to a divergent result. This is handled
by the usual procedure of time dependent perturbation
theory which involves ignoring the integral over t and
interpreting the rest of the result as providing the rate
of transitions between the two levels. For the stationary
trajectories, this rate will be a constant.
It is also worth mentioning at this point that the rate

so defined is a real number. This is easily seen by noting
that, the imaginary part of the rate will be given by:

Im[Ṗ ] =
1

2i

∫ ∞

−∞

du

{

exp (−iωu) G+[u, t] (2)

− exp (iωu) (G+)∗[u, t]

}

We now note that the Hadamard function satisfies:
(G+)∗[P,Q] = G+[Q,P ] for any two points (P,Q), here
characterised by (τ1, τ2). Further, it follows from the def-
initions of u and t that interchanging the points amounts
to u → −u and t → t, so that (G+)∗[u, t] = G+[−u, t].

It is then easy to see that Im[Ṗ] = 0.
To avoid possible confusion, we must also point out

that our definition for the response function differs from
certain other definitions found in literature (often mo-
tivated by arguments of causality etc.). Essentially, the
difference lies in the choice of the “time” variable with re-
spect to which the rate is defined (which, in our case, is t).
Similarly, our choice of regularization scheme is also dif-
ferent from some other choices found in literature. Hence,
the result we shall obtain can not be directly compared
with other results based on a different choice of definition
for the rate or regularization scheme. We shall have more
to say on this in the last section.

http://arxiv.org/abs/0911.1017v2
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Since flat spacetime admits ten independent Killing
vector fields, one can construct several linear combina-
tions of these Killing vectors which will be time-like in
parts of the spacetime. The response of detectors on
these trajectories have been studied extensively in the
literature (see, e.g., Ref. [4–6]). In a generic situation,
the detector will respond to the pattern of vacuum fluc-
tuations which can coincide with the particle content of
the quantum field determined by Bogoluibov coefficients
in specific cases but not always. ( e.g., for a circular
trajectory, the particle detector “clicks” but the number
of particles calculated using the Bogoluibov coefficients
turns out to be zero. Many of these conceptual issues
have been discussed and clarified in the literature [6–8].)

The uniformly accelerated trajectory corresponds to
the integral curve of the Killing vector field corresponding
to the Lorentz boost along the direction of the accelera-
tion g. In this case [9] we obviously have G+[u, t] = G[u].
In this particular case, the pattern of vacuum fluctuations
match with the particle content of the quantum state
and the rate of excitation of the detector will correspond
to a thermal spectrum of particles with a temperature
T = g/2π. This is of particular importance because it
allows us to associate a temperature with the Rindler
horizon with obvious implications for black hole physics.

Unfortunately, a detector which is uniformly acceler-
ated from τ = −∞ to τ = +∞ is not physically real-
izable. The question arises as to what happens in the
case of more realistic detectors. One possible way of ad-
dressing this question is to keep the coupling to the field
switched on only for a finite interval of time (see, e.g,
Ref. [10]). But this introduces transients and one needs
to handle them with care. It also does not seem very nat-
ural to switch off the coupling in this manner. A more
obvious and physically interesting way of attacking the
problem would be to study the response of a detector
moving along a given direction with a time-dependent
acceleration g(τ) which is what we will do in this paper.

There are three further motivations for taking up this
study which are somewhat indirect.

First, we know that there is a direct correspondence
between the detector response in a uniformly acceler-
ated trajectory and the phenomena which takes place in
the Hartle-Hawking vacuum state around a black hole.
By extending this analogy, we would expect a sub-class
of time-dependent accelerations — especially those g(τ)
which vanish at early times and become constant at late
times — to correspond to the phenomena which takes
place in a collapsing black hole scenario in the Unruh
vacuum state. (For preliminary discussions along these
lines, see section 5.1 of Ref. [11].) This would be inter-
esting to study.

Second, there has been considerable amount of work in
recent years which attempts to interpret the field equa-
tions of gravity as a thermodynamic identity. This body
of work [12] uses the concept of local Rindler observers
that corresponds to trajectories which, in the local iner-
tial frames around any given event, will be a hyperbola.

While one expects such a local concept to be valid as a
first approximation, it is important to verify it explic-
itly (and indeed our results in this paper will justify this
notion and make it sharper).
Finally, this subject has thrown up fair number of sur-

prises and subtleties in the past and one cannot take it
for granted that intuitively obvious results will arise when
we rigorously analyse the case of, say, a slowly varying
acceleration! It requires explicit verification. Our naive
expectation will be that, for sufficiently slowly varying
acceleration (with (ġ/g2) ≪ 1) one would expect the de-
tection rate to correspond to a time dependent tempera-
ture T (τ) ∝ g(τ). At the same time, one will not expect
such a result to hold for all frequencies of the thermal
spectrum. There is, in fact, a good reason to expect some
modification due the presence of (local acceleration) hori-
zon. This sets a length scale g−1 in the problem, which
can be compared with the length scale probed by a par-
ticular mode, ω−1. Of course, we know that the spectrum
is Planckian for all values of g−1ω when g is constant; it is
therefore interesting to see whether a varying g makes any
difference. As we shall show, one does get low frequency
(g−1ω ≪ 1) modifications when ġ is non-vanishing even
when ġ/g ≪ ω, which is a surprising result.
In Sec. II, we describe the setup appropriate for calcu-

lating the response function. In Sec. III, we evaluate the
Unruh-DeWitt detector response for time-dependent ac-
celeration, g(τ), to linear order in the parameter η =
ġ/g2. We find that, to this order, the spectrum can
indeed be approximated in the UV region (ω ≫ g)
by Planck spectrum with time-dependent temperature,
T = g(τ)/2π. However, the spectrum is modified even at

O(η) for ω ≪ g. In Sec. IV, we corroborate this result
by evaluating the detector response for a particular tra-
jectory which admits an analytic expression for the poles
(under a particular approximation). Finally, we conclude
with few relevant comments. We use the metric signature
(−,+,+,+).

II. DETECTOR RESPONSE: BACKGROUND

The trajectory of an observer moving with a time-
dependent acceleration, g(τ), with τ being the proper
time, is given by

T∗(τ) =

∫ τ

dα coshχ(α)

X∗(τ) =

∫ τ

dα sinhχ(α) (3)

where

dχ(τ)

dτ
= g(τ) ; χ(τ) =

∫ τ

0

dα g(α) (4)

and (X0, X1) = (T,X) are inertial coordinates. (We
have chosen χ(0) = 0 to obtain the integral form.) The
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local coordinates of the observer, (τ, x), can be con-
structed easily; these are given by (see, for e.g, Equation
(73) of Ref. [11])

T (τ) =

∫ τ

dα [1 + g(α)x] coshχ(α)

X(τ) =

∫ τ

dα [1 + g(α)x] sinhχ(α) (5)

In the local coordinates, the observer is always located at
x = 0. We shall assume τ2 > τ1 without loss of generality.
The probability of transition for the detector is given

by Eq. (1) which is valid for any trajectory. In general, for
an arbitrary g(τ), there is no time translational symme-
try and G+ will depend on both u and t. Following the
procedure adapted for stationary trajectories, we shall
again define the transition rate by ignoring the integral
over t. But now this rate will be time-dependent, due
to the t−dependence of G+, which, of course, is to be
expected. So, we shall define the transition rate to be

Ṗ =

∫ ∞

−∞

du exp (−iωu) G+(u, t) (6)

The Wightman function is given by

G+(1, 2) =
1

4π2

1

ℓ2

ℓ2(1, 2) = − [T∗(τ2)− T∗(τ1)]
2
+ [X∗(τ2)−X∗(τ1)]

2

(7)

with an iǫ prescription which is implicit in the difference
of the time coordinates. Substituting Eqs. (3), the ex-
pression for ℓ2 can be written in the following convenient
form;

ℓ2 = −I+ I− (8)

where

I± =

∫ τ2

τ1

dα exp±χ(α) (9)

We see that the detector response is essentially deter-
mined by the poles of ℓ2. For the constant acceleration
case, the poles of I+ and I− coincide, so that we have an
infinity of second order poles, the residues at which gives
the well known thermal response function. Our task,
therefore, reduces to identifying the poles of I± and eval-
uating the integral in Eq. (9). We shall now turn to this
task.

III. DETECTOR RESPONSE FOR ġ/g2 ≪ 1

As one can easily see, it is impossible to determine the
structure of the poles for a general g(α). Hence, we shall
attack this problem in two steps. First, in this section,
we will consider a slowly varying acceleration and obtain

the detector response. In the next section, we shall work
out the response for a specific form of g(τ).
Consider a general g(τ), which varies slowly compared

to its value g0 at τ = 0 which can be chosen to be an
arbitrary instant of proper time. We shall now expand
g(τ) in a Taylor series retaining the lowest order terms:

g(τ) = g0 + ġ0τ +O(g̈0τ
2)

χ(τ) = g0τ +
1

2
ġ0τ

2 + O(g̈0τ
3)

≈ g0τ

[

1 +
1

2

(

ġ0
g0

)

τ

]

(10)

Therefore, we have

exp±χ(τ) = exp (±g0τ)

[

1±
1

2
η0(g0τ)

2 +O(η20)

]

(11)

where we have defined η0 = ġ0/g
2
0 , and we shall do subse-

quent calculations keeping terms up to O(η0). A trajec-
tory is, of course, not completely specified by η0. For our
result to remain valid, the contribution of higher deriva-
tives of acceleration must be ignorable compared to ġ.
Although a restriction, this condition will almost always
be fulfilled in physically relevant cases, when there is only
one small parameter in the problem. If not we will get the
same result when all the corresponding higher derivatives
of the acceleration are small.
We now proceed to analyze the pole structure of ℓ2

to determine the detector response. Evaluation of I±
involves trivial integrations; we obtain,

I± =
1

g0

[(

1±
1

2
η0

d2

dα2

)

Q± (ξ1, ξ2;α)

]

α=1

(12)

where we have defined

Q± (ξ1, ξ2;α) =

∫ ξ2

ξ1

dξ exp±αξ (13)

with ξ1(2) = g0τ1(2). Therefore, we obtain,

1

I+I−
≈

g20
Q+Q−

[

1 +
η0
2

1

Q+Q−

(

Q+Q
′′
− −Q−Q

′′
+

)

]

(14)

where ≈ sign implies that we have ignored O(η20) terms,
as we should for consistency. (The prime stands for d/dα,
with α being set to unity in the end.)
The zeroth order term is just the constant accelera-

tion Rindler contribution. We shall now analyze the pole
structure of the second term. This term can be further
simplified using expressions forQ±. Specifically, the term
in the round brackets in Eq. (14) can be written, as

Q+Q
′′
− −Q−Q

′′
+ = 2A Q− − 2B Q+ (15)

where

A = [ξ exp+ξ]ξ2ξ1 −
1

2

[

ξ2 exp+ξ
]ξ2

ξ1

B = [ξ exp−ξ]ξ2ξ1 +
1

2

[

ξ2 exp−ξ
]ξ2

ξ1
(16)
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with the obvious notation:

[· · · ]ξ2ξ1 = [· · · ](ξ2)− [· · · ](ξ1). (17)

It can be shown that A and B are both finite at the
poles. The second term in Eq. (14) therefore has cubic
order poles determined by zeros of Q±. Substituting the
above expressions into Eq. (14), we obtain

1

I+I−
≈

g20
Q+Q−

+ η0
g20

Q+Q−

[

A

Q+
−

B

Q−

]

(18)

The first term is the standard Rindler contribution, and
it is well known that this term gives a second order pole
at uk = −iβ0k with k > 0, and β0 = 2π/g0. From
here onwards, we shall denote derivatives with respect to
u by an overdot. We note that Q̇+Q̇−/g

2
0 = 1 at the

poles, which is the standard result for Rindler and can
be easily verified by explicit computation (usually, one
uses the well known infinite image sum representation of
(sinhx)−2 to obtain the same result). The pole structure
is now determined by

Q+Q−Q± = Q̇+Q̇−Q̇± (u− uk)
3
+O

(

(u− uk)
4
)

(19)

where the u derivatives are to be evaluated at uk. To
compute the residues, we need to evaluate second deriva-
tives with respect to u of the functions A exp−iωu and
B exp−iωu, at u = uk. This is straightforward and we
relegate the details to Appendix A. The calculations
are enormously simplified by noting that, as t → −t,
B → A, so that we need to consider only terms odd in t
in Eq. (18); the remaining terms (which would otherwise
be tedious to evaluate), cancel.
The transition rate of the detector is given by Eq. (6)

Ṗ =

∫ ∞

−∞

du exp (−iωu) G+(u, t)

= −
1

4π2

∫ ∞

−∞

du
exp (−iωu)

I+I−
(20)

Substituting the residues at the poles, calculated in Ap-
pendix A, we obtain

Ṗ =
1

2π

∞
∑

k=1

ω exp−β0ωk

+ (η0t)ω
2

[

1−

(

π

β0ω

)2
]

∞
∑

k=1

k exp−β0ωk (21)

which is correct to O(η0). Hence, we see that the resul-
tant spectrum will not be thermal at all frequencies even
to order O(η0), due to the second term in the square
brackets, which becomes significant at low frequencies.
[A similar result was arrived at recently in [14] in a dif-
ferent physical context.]

In the UV region (i.e., β0ω ≫ 1), we get

Ṗ =
1

2π

∞
∑

k=1

ω exp−β0ωk

+ (η0t)ω
2

∞
∑

k=1

k exp−β0ωk (22)

Noting that δβ = −2πη0t, this can be written as

Ṗ =
1

2π

[

1 + δβ
∂

∂β

]

β=β0

∞
∑

k=1

ω exp−βωk

=
1

2π

[

1 + δβ
∂

∂β

]

β=β0

(

ω

expβω − 1

)

(23)

Therefore, to O(η0), we have

Ṗ =
1

2π

ω

exp [β(t)ω]− 1
≈

1

2π
ω exp−[β(t)ω] (24)

where β(t) = 2π/g(t). This result is intuitively under-
standable; at sufficiently high frequencies, we just recover
the usual result with g replaced by g(τ) when the accel-
eration varies with time.
However, note that it is valid only in the UV region;

our result also shows that the spectrum will be modified
for β0ω ≪ 1. In fact, the second sum in Eq. (21) is easily
evaluated, and we obtain

Ṗ = IP [g0] + ηtω2

[

1−
(π

s

)2
]

exp[s]

[exp[s]− 1]
2 (25)

where, for convenience, we have defined s = β0ω,
and IP [g0] represents Planck spectrum at temperature
g0/(2π). As stated above, for s ≫ 1, the second term
in square brackets can be neglected and the remaining
terms combine to give Ṗ ≈ IP [g(t)].
We want to analyze the s ≪ 1 case a bit further, to

highlight a counter-intuitive fact. In this limit, we obtain,

Ṗ ≈ IP [g0]− ηtω2
(π

s

)2
[

1

s2
−

1

12
+O(s2)

]

≈ IP [g0]− ηtω2
( π

s2

)2

(26)

In the same limit, IP [g0] ≈ ω/(2πs) = C (say), so that
we can rewrite the above expression as

Ṗ ≈ C

[

1− (2π3)
η

s2
ωt

s

]

= C
[

1− (2π3)ba2ωt
]

(27)

where b and a are the dimensionless quantities,

a = 1/s = g0/2πω; b = ġ0/(g0ω) (28)

Evidently, there are two possibilities, depending on
whether b is greater than or less than one. When

s ≪ η ≪ 1, or

1 ≪ b ≪ a (29)
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we see that the frequency is probing the change in accel-
eration because ω−1 ≫ (ġ/g)−1. So we certainly expect
the spectrum to be distorted and this is what happens
and the result is understandable. However, when

η ≪ s ≪ 1, or

b ≪ 1 ≪ a (30)

we see that ġ/g ≪ ω and so these frequencies are not
probing the change in acceleration at all. Therfore, one
would have expected to recover the results of constant
acceleration in which case there are no distortions from
the thermal spectrum at any frequency. But we see that,
in this case, we can still have ba2 ≪ 1 and produce a
distortion of thermal spectrum at low frequencies.
Before proceeding further, we must highlight an impor-

tant assumption that has gone into the derivation. For
calculating the residues, we have first expanded the inte-
grand and then evaluated the residues. The true expres-
sion is, of course, to be obtained by first doing the contour
integral and then expanding in η. We have assumed that
the two steps, Taylor expansion and integration, com-
mute. Our result will be invalidated for functions g(τ)
which fail to satisfy this criterion. Moreover, we have also
assumed that the u integration goes all the way from −∞
to +∞, while doing a Taylor series in t. It is important
to understand better whether such an approximation is
valid, and, if not, what difference will it make to the re-
sult. In particular, the low frequency modification we
obtain may be an artifact of such a truncation, and this
caveat must always be kept in mind.

IV. DETECTOR RESPONSE FOR A SPECIFIC
TRAJECTORY

We shall now study the response function correspond-
ing to a particular detector trajectory determined by

g(τ) =
g0

1 + ǫg0|τ |
(31)

where ǫ is a small, dimensionless parameter. The re-
sponse can now be evaluated in a straightforward man-
ner. We expect a splitting of the quadratic poles at O(ǫ)
from their constant acceleration values, so that we es-
sentially have a couple of first order poles separated in-
finitesimally. For the above g(τ), we have

χ(τ) = (1/ǫ) ln (1 + ǫg0|τ |)sgn(τ). (32)

Because of the dependence on |τ |, we need to consider
the cases (i) 0 < τ1 < τ2, (ii) τ1 < τ2 < 0 and (iii)
τ1 < 0, τ2 > 0 separately while evaluating I± (we take
τ2 > τ1 without loss of generality). While the first two
cases admit analytic expressions for the poles, the same is
not true of (iii). We shall evaluate the response function
for the first two cases, and comment on the possible effect
of (iii) later on.

The integrals involved in I± are trivial; for clarity,
we refer to values of I± for case (ii) as IN± , and those
for case (i) simply as I±. Then, it is easy to see that
IN± (τ1, τ2) = I∓(−τ2,−τ1). So, we can obtain IN± from
I± simply by changing t to −t (see definitions of u and t
above), or, what is the same thing, by replacing t with |t|
in the expression for case (i). With this understanding,
we simply write t rather than |t| in the expressions below.
We also define ξ1(2) = 1 + ǫg0τ1(2) and η = ξ2/ξ1. Then,

I± = (ξ1/g0)(ǫ± 1)−1
[

η ξ
±(1/ǫ)
2 − ξ

±(1/ǫ)
1

]

. (33)

The poles (i.e., the zeros of I±) are determined by: (1±
ǫ−1) ln η = 2πik. Now rewrite ξ1 and ξ2 in terms of u
and t, to obtain

u±
k =

2i

g0

(

ǫ−1 + g0t
)

tan

(

χ±
k

2

)

(34)

where χ±
k = 2πk/(1 ± ǫ−1). As a check, note that

this reduces to the standard constant acceleration val-
ues, ±2iπk/g0 for ǫ = 0.
Rest of the calculation involves standard residue cal-

culus, and is quite lengthy. Since the poles are now
split at O(ǫ), we need to evaluate the quantities R+ =
I ′+(u

+
k )I−(u

+
k ) and R− = I ′−(u

−
k )I+(u

−
k ) for calculating

the residues. The quantity R±×g0/(1+ ǫg0t) is given by

1 + exp
[

±i
χ±

k

ǫ

]

− exp
[

iχ±
k

(

1∓ 1
ǫ

)]

− exp[iχ±
k ]

(−ǫ± 1)
(

1 + exp[iχ±
k

)

]

(35)

It is now a straightforward exercise to use Eqs. (34) and
(35) and evaluate the response function. This turns out
to be

Ṗ =
1

2π

∞
∑

k=1

(

ω − ǫ2πω2tk +O(ǫ2)
)

exp

(

−
2π

g0
ωk

)

(36)

No further calculations are required, since it easy to see
that, with δg = −ǫg20t+O(ǫ2), the two terms above com-
bine to give a Planck spectrum with temperature g(t)/2π.
Let us now turn to the contribution of poles which we

have not accounted for. In the above calculation, we left
out the contribution to the integral of the u-range where
τ1, τ2 have opposite signs. Unfortunately, this case does
not admit analytic expressions for the poles. But, from
the result in Sec. III, we expect that this contribution
will be irrelevant at high frequencies. Apart from this, it
is not possible to make any comments about this contri-
bution. As already mentioned in the Introduction, this is
typical of most of the calculations that attempt a rigorous
evaluation [in particular, [13] discusses characteristics of
detector response in curved spacetime] although the ex-
plicit result we have obtained is very close to what one
would have expected for a slowly changing acceleration.
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V. CONCLUSIONS

The result brings out another interesting fact associ-
ated with the combined effect of presence of the horizon
and varying acceleration and we shall discuss this briefly.
We see that, for modes with ω−1 ≪ g−1, the result es-

sentially involves replacing the acceleration by its instan-
taneous value so that T (τ) = g(τ)/2π but the thermal
spectrum gets distorted for ω−1 ≫ g−1. At first sight,
one would have thought that this is to be expected. We
know that for an accelerated trajectory, g−1 gives the
approximate location of the local horizon. (The exact lo-
cation of the horizon will change with τ , see Appendix B).
On the other hand, a mode with frequency ω will probe
a length scale ∼ ω−1. Such a mode will be within the
region ‘outside the horizon’ if ω−1 ≪ g−1, or βω ≫ 1 but
will probe the horizon scale and beyond if ω−1 ≫ g−1.
So one may think that it is natural for the spectrum to
be distorted in the latter case.
There is, however, a subtlety here. Our problem actu-

ally has three length scales not just two: ω−1, g−1, and
quite crucially, (ġ/g)−1. It would have been no surprise,
if the spectral distortion arose for ω−1 ≫ (ġ/g)−1; these
are the frequencies which see the change in the accel-
eration and there will be some distortion. But this is
not what we found! Instead we find that in a typical
situation with g−1 ≪ (ġ/g)−1, with very slowly varying
acceleration, the spectral distortions occur already when
g−1 ≪ ω−1 ≪ (ġ/g)−1. So whether ġ 6= 0 or whether
ġ = 0 makes a difference to the spectrum even when the
relevant frequency is not probing the time variation of
the acceleration. Obviously, this effect does not exist in
the case of ġ = 0; so we need to conclude that one cannot
take the limit continuously for all frequencies. We believe
this arises due to the changing distance to the horizon
but only further investigations will nail down the precise
reason.
It is known that viewed from the inertial frame the

final state of the field is an one-particle state so that
the ‘detection’ is actually accompanied by an emission.
It has been suggested [see [7]] that it is better to think
of the detector as radiating a Minkowski particle, rather
than “detecting” anything. From this point of view, it
would be interesting to see whether the response func-
tion we have obtained has some simple interpretation,
particularly the ġ term.
Finally, as promised in the Introduction, we briefly dis-

cuss the issue of comparing our results with other results
in literature. In doing so, one must realize that our ex-
pressions for the rate as well as the regularization are dif-
ferent from the ones used in the literature. Our choices
are based on the simple fact that it is closest to what one
does in the standard, constant acceleration case. A dif-
ferent choice of variables for defining the rate (and even
a different regularization scheme) can alter the results
since the pole structure will change. In this context, we
would particularly like to mention the analysis presented
in [13, 15] Our choice of regularization (with an iǫ pre-

scription on u) is actually similar to the one employed
in [15] (see their Eq. (21)). However, the difference lies
in the definition of the response rate itself. In particu-
lar, the relevant function which gives transition rate at
time t, for e.g., in Refs. [13] and [15], is G(t, t − u). It
is not difficult to see that this would have a completely
different functional dependence on t and u as compared
to our case, since the definition of t is manifestly differ-
ent. So, effectively one is integrating completely different
functions of u in the two cases; the results can not, there-
fore, be directly compared as such. Additional physical
criteria are needed to choose one definition over another
(for e.g., in [13] and [15], the motivation is causality. In
our case, the coordinates t and u corresponding to the
two points on the trajectory actually correspond to the
so called “radar coordinates” which are natural set of lo-
cal coordinates assigned to nearby points connected to
(τ1, τ2) by light beams. By their very construction, these
coordinates are non-local, and the transition rate must
be interpreted keeping this in mind. However, further
work is needed to make a precise connection.)
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Appendix A: Evaluation of residues of Eq. (20)

In this appendix, we outline the evaluation of residues
at the cubic order poles of Eq. (20). We would only stress
certain steps which are crucial to minimize the algebra
in the otherwise elementary calculation.
To begin with, define two new variables, a = g0u/2

and b = g0t, so that, ξ1 = b− a and ξ2 = b+ a. We then
have

A = 2 e+b cosha

[

a(1− b) + tanh a

(

+b−
1

2
b2 −

1

2
a2
)]

B = 2 e−b cosha

[

a(1 + b) + tanh a

(

−b−
1

2
b2 −

1

2
a2
)]

(A1)

It is evident that B(a, b) = A(a,−b), as mentioned in

the text. We essentially require [see Eq. (18)] A/Q̇+ and

B/Q̇−. From their definition (13), we have

Q̇± = g0 e±b cosha (A2)

Note that Q̇+Q̇−/g
2
0 = 1 at the poles, which, as was em-

phasized in the text, is the standard result for Rindler.

So, we have
[

A/Q̇+

]

(a, b) =
[

B/Q̇−

]

(a,−b). Therefore,
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the contribution of the O(η0) term in Eq. (18) to Ṗ be-
comes
(

−
1

4π2

)

×

(

−2πi

2!

)

η0

Q̇+(uk)

[

d2

du2
(A exp−iωu)

]

u=uk

(A3)

plus a similar term for B, and a sum over all relevant k’s
(such that uk’s lie on the negative imaginary axis, with
the contour closed in the lower-half complex u-plane). All
that remains is to pick out the terms in A which are odd
in b, calculate the second derivatives which are required,
evaluate at uk, and then multiply by 2 for the contribu-
tion of the B part. These are all straightforward, though
lengthy, steps. The object of interest is [see Eqs. A1, A2
and A3],

f = e−bA = 2(cosha) [b (tanh a− a)]+ (terms even in b),
(A4)

and, at the poles, we obtain,

ḟ = 0, f̈ = −2akȧ
2
kb coshak and f = −2akb coshak.

(A5)
Putting everything together, we finally obtain Eq. (21).
[Note that the second term in the square brackets in
Eq. (21), which becomes significant in IR, arises from

the f̈ term above.]

Appendix B: Local horizon for a trajectory with
time dependent acceleration

In the local coordinates based on a trajectory with
time-dependent acceleration [see Eq. (5)], the metric be-

comes (see for e.g, Ref. [11])

ds2 = − [1 + g(τ)x]2 dτ2 + dx2 + dY 2 + dZ2 (B1)

The equation for a null surface can be written as
Φ(τ, x) = x − f(τ) = 0. The function f(τ) is deter-
mined by the condition ∂aΦ∂

aΦ = 0. Doing this leads
to a differential equation for f(τ); it’s solution yields the
following expression for the horizon location

xH(τ) = p exp−ξ(τ)

∫ τ

dy exp ξ(y) (B2)

where

ξ(τ) = ∓

∫ τ

g(x)dx (B3)

For g(τ) ≈ g0 + ġ0τ , we have

xH(τ) = −g−1
0

[

1− η(±1 + g0τ) +O(η2)
]

(B4)

We can also invert this to write, to the same order of
accuracy,

g(τ) ≃ −x−1
H [1∓ η] (B5)

The temperature T (τ) = g(τ)/2π, associated with the
detector response at O(η) and in the UV limit, can be
cast in an interesting form by further noting that, v =
ẋH = η +O(η2):

T (τ) ≃
g(τ)

2π
≃ −

1

2πxH

1

1± v
(B6)
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