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Zero-point length from string fluctuations
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Abstract. One of the leading candidates for quantum gravity, viz. string theory, has

the following features incorporated in it. (i) The full spacetime is higher dimensional,

with (possibly) compact extra-dimensions; (ii) There is a natural minimal length

below which the concept of continuum spacetime needs to be modified by some deeper

concept. On the other hand, the existence of a minimal length (zero-point length) in

four-dimensional spacetime, with obvious implications as UV regulator, has been often

conjectured as a natural aftermath of any correct quantum theory of gravity. We show

that one can incorporate the apparently unrelated pieces of information — zero-point

length, extra-dimensions, string T -duality — in a consistent framework. This is done

in terms of a modified Kaluza-Klein theory that interpolates between ( high-energy )

string theory and ( low-energy ) quantum field theory. In this model, the zero-point

length in four dimensions is a “virtual memory” of the length scale of compact extra-

dimensions. Such a scale turns out to be determined by T -duality inherited from the

underlying fundamental string theory. From a low energy perspective short distance

infinities are cut off by a minimal length which is proportional to the square root of

the string slope, i.e.
√

α′. Thus, we bridge the gap between the string theory domain

and the low energy arena of point-particle quantum field theory.
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There are several pieces of evidence that suggests that the three constants of Physics

c, h̄ and G are likely to be replaced in a more fundamental theory by three other constants

c, h̄ and l20, where l0 is a length scale and l20 has the dimensions of area. It has been

conjectured for a long time that a fundamental, zero-point, length of spacetime will

arise from the quantum gravity and — in the naive models, l20 ≈ Gh̄/c3. [This idea has

a long history: see for example, [1], [2],[3],[4] etc.; for a review and more references, see

[5] ]. The loop quantum gravity (which works with four dimensions) has the same idea

arising as a minimal area [6] in terms of l20. The existence of such a minimal area has

immediate implications for the entropy of black holes and a holographic interpretation

of gravity [see, e.g., [7]]. It might even be possible see the effects of such a minimal

length in cosmological observations [for the earliest attempt, see [8]; for a recent one see

[9]].

This theoretical conjecture was taken forward in [10] in which an unexpected

connection between zero point length and a path integral duality was discovered. It

was shown that if the path integral amplitude exp [ i l ( x, y ) ] used for the definition

of the propagator is modified so that it is invariant under the duality transformation

l (x , y ) → l20/l ( x , y ), then: (i) the propagator becomes UV finite, and (ii) l0 represents

a residual, or zero-point length. This idea was followed up in [11] which showed that

concrete computations can be performed in quantum field theory leading to UV finite

results. Given the fact that string theory is a leading candidate for quantum gravity

(which also has a notion of T-duality) it is natural to ask whether these ideas can be

combined in a more formal manner.

In attempting this, we must remember that string theory introduces a fundamental

length scale as well as — a less evident, but not less important — a second length scale

in the form of a compactification scale. This is because, in most models, the extra-

dimensions of string target spacetime must be compact in order to be un-observable

at the present day available energies. In this letter we propose a single consistent

framework for connecting the apparently unrelated pieces of information, i.e. zero-point

length, extra-dimensions, string T -duality.

We do this by introducing a low-energy 4D vacuum which keeps the memory of

compact extra-dimensions only through topologically non-trivial fluctuations. These

virtual processes are sensitive both to the presence of extra-dimensions and to the

string excitation spectrum. This leads to a zero-point length is proportional to the

compactification scale. Furthermore, such a scale respects the T -duality inherited from

the underlying fundamental string theory. As the spectrum of closed strings cannot

distinguish between a compactification radius R and a radius α′/R no physical meaning

can be attributed to length scale lower than
√

α′. We conclude that l0 ∝
√

α′. From a

low energy perspective short distance infinities are cut off by a minimal length, which

is proportional to the square root of the string slope defined as
√

α′. Thus, we bridge

the gap between the ultra-relativistic, ten-dimensional, string domain and the four-

dimensional low energy arena of point-particle quantum field theory.

The starting point of our technical analysis is the string Lagrangian in the light-
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cone gauge [12] ( for the sake of simplicity, we shall consider only the case of a bosonic

string )

L =
πρ

2

(

−2ẋ+
0 ẋ−

0 + ẋi
0ẋ0 i

)

+
ρ

2

∫ π

0
dσ
[

−2η̇+η̇− + η̇i η̇
i + 2η′+η′− − η′

i η
′ i
]

(1)

where, xµ
0 denotes the center of mass coordinate and ηµ the relative coordinate;

ρ = 1/2πα′ is the string tension; the index i labels d − 1 “transverse” space-like

directions, for the sake of simplicity we shall consider the simplest case where only

one of the transverse dimension is a circle of radius R. Given the Lagrangian, we can

write the transition amplitude from an initial to a final configuration for the whole

system as a path integral

〈f |i〉 ≡
∫ x0,f

x0,i

[Dx0]
∫ ηf

ηi

[Dη] exp

[

i
∫ T

0
dτ L ( ẋ0 , x0 ; η̇ , η )

]

(2)

where x0,i and x0,f represent initial and final position of the string center of mass, while

ηi ≡ η( 0, σ) and ηf ≡ η( T, σ) are initial and final configuration of the fluctuating

part of the string. In the low energy limit, described the quantum field theory, we will

be interested in the propagator for a particle-like object which will be described by

the center of mass of the string. So, what we are really interested in, is the effective

propagator for the string center of mass propagating in vacuum in which all possible

string fluctuations take place. To account for virtual transitions among string states

we need to sum over closed paths in the η configurations space, i.e., with the boundary

condition ηi = ηf . This leads to the following expression

Z ( T ) ≡
∮

[Dη] exp

[

i
∫ T

0
dτ L ( η̇ , η )

]

(3)

where L(η̇, η) represents the second term on the right hand side of equation (1). Note

that Z does not describe a physical gas of strings [13], but a a mathematical quantity

encoding the feature that all kind of virtual transitions take place in the string physical

vacuum.

In order to compute Z we first have to remove unphysical modes. This can be done

by choosing the light-cone gauge, which is a frame where all the oscillations along +

direction are turned-off, i.e. η+ = 0 , η̇+ = 0 , η′+ = 0 Thus, in the light-cone gauge the

partition functional reads

Z ( T ) =
∮

[ D~η ] exp

[

i
ρ

2

∫ T

0

∫ π

0
dτ dσ

(

~̇η
2 − ~η ′ 2

)

]

(4)

where only transverse physical oscillations are summed over. In analogy to the Coulomb

gauge in electrodynamics, the light-cone gauge allows to remove both “timelike” η+ and

“longitudinal” η− components of the η-field.

Using the Fourier expansion for the transverse coordinates we can write Z ( T )

in the form of a partition functional for two infinite families of transverse harmonic

oscillators

Z (T ) =
∮ ∞
∏

n=1

[D~xn ]
∞
∏

n=1

[

D~̃xn

]

exp
[

i
ρπ

4

∫ T

0
dτ

∞
∑

n=1

[(~̇x
2

n − 4n2~x 2
n) + (

˙̃
~x

2

n − 4n2~̃x
2

n)]
]

(5)
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Thus, the string partition function turns out to be an infinite product of harmonic

oscillator path integrals computed over families of closed paths.

Zho ( T ) =
∞
∑

N,Ñ=0

exp

[

−i T

(

N + Ñ − d − 1

12

)]

(6)

But, whenever one ( or more ) dimension is compact, strings can wrap around it an

arbitrary number of times. Accordingly, we have to take into account the contribution

from the different winding modes. For the sake of simplicity, let us consider again the

case of a single compact dimension. Then, we find

Zho ( T , R ) =
∞
∑

N,Ñ,w=0

exp

[

−i T

(

N + Ñ − d − 1

12
+ w2 R2

α′

)]

(7)

By including winding modes in Eq. (7) we encode a topological feature which makes the

string substantially different from a pure “gas” of pointlike oscillators.

We can now put all the results together and give a more definite meaning to the

center of mass kernel in the vacuum which is filled up with both Kaluza-Klein type

fluctuations and the new kind of virtual processes brought in by the string excitation

modes:

K (x0,f − x0,i ; T ) =
∞
∑

N,Ñ,w=0

exp

[

−iT

(

N + Ñ − d − 1

12
+ w2 R2

α′

) ]

×

∫ x0(T )=x0,f

x0(0)=x0,i

[Dx0 ] exp

[

i
∫ T

0
dτ L ( ẋ0 , x0 )

]

(8)

This path integral can be computed by weighting each path by its canonical action in

phase-space :

S =
∫ T

0
dτ

[

P+ẋ++ P−ẋ−+ Pj ẋ
j + Pdẋ

d − 1

2πρ

(

2P+P− + PjP
j + P 2

d

)

]

(9)

Trajectories along the compact dimensions must satisfy periodic boundary conditions,

i.e. xd (T ) = xd ( 0 ) + n l0 where l0 = 2π R. Integration over center of mass degrees of

freedom gives (see [14], [15] for details):

Kreg ( xf − xi ; T ) =
(

1

4iπα′T

)

d−1

2
∞
∑

N=0,w,n=1

exp

[

−(xf − xi)
2 + n2l20]

4iα′T

]

×

exp

[

−iT

(

2N + nw − d − 1

12
+

w2R2

α′

)]

(10)

where, we have taken into account the level matching condition Ñ − N = nw and

dropped out the zero-modes n = 0 and w = 0. The rationale behind this subtraction

is discussed in detail in [14], [15] and will not be repeated here. Further comments

about this technical step can be found at the end of this paper. From (10) it is possible
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to obtain the Green function by integration over the unmeasurable lapse of time T as

follows:

G (xf − xi) ≡ (2π)
d−1

2

∫

∞

0
dT e−i2α′m2

0
T Kreg (xf − xi; )

=
(

1

2iα′

)

d−1

2
∞
∑

N=0,w,n=1

∫

∞

0
dT T−

d−1

2 exp

[

−(xf − xi)
2 + n2l20

4iα′T

]

×

exp

[

−iT

(

2α′m2
0 + 2N + nw − d − 1

12
+

w2R2

α′

)]

(11)

where the mass m0 can be zero or non vanishing and has been introduced to account

for low energy effects, e.g. spontaneous symmetry breaking. In order to evaluate the

short distance behavior of the Green function (11) it is useful to Fourier transform it

G (p) =
∞
∑

N=0 , w ,n=1

nl0
√

p2 + M2
N,w,n

K1

(

nl0
√

p2 + M2
N,w,n

)

(12)

The mass term M2
N,w,n is defined as

M2
N,w,n ≡ 1

α′

(

2N + nw − d − 1

2
+

w2R2

α′
+ 2α′m2

0

)

(13)

At high energy( momentum ) the asymptotic behavior of the propagator (12) is

essentially determined by the lowest energy level n = w = 1

G (p) ≈ l0
√

p2 + M2
0,1,1

K1

(

l0
√

p2 + M2
0,1,1

)

≈
√

l0

( p2 )3/4
exp

(

−l0
√

p2

)

(14)

As closed strings cannot probe compactification scales lower than
√

α′, then we can

replace l0 in (14) with 2π
√

α′. Thus, it becomes manifest as UV divergences are

exponentially suppressed at string energy scale. Generalization to an hyper-torus

with more than one compact dimensions is straightforward. The standard Minkowski

vacuum, with its pathological short-distance behavior, can be recovered in the limit

l0 → 0. It is worth observing that in our formulation the limit l0 → 0 is equivalent to

the infinite tension limit, i.e. α′ → 0, where strings shrink to structureless points and

the point-particle picture of matter is recovered.

Let us take stock of the result from a wider perspective. String theory uses (4+D)

dimensions of which D are compact. The path integral in eq. (2) represents the

transition amplitude in the full theory. On the other hand, the low energy quantum

field theory uses only 4 dimensions and the theory is described by a propagator G(x, y).

To get G(x, y) from the full theory, it is appropriate to identify the center of mass of the

string as representing the particle of the quantum field theory. But then the propagator

will be affected by the virtual fluctuations in the string vacuum. In particular, when

(x−y)2 is smaller than the size of the compact dimensions, these fluctuations will lead to

corrections to the propagator. These vacuum fluctuations can be divided into two sets:

the topologically trivial zero modes which do not probe the internal dimensions (the



Zero-point length from string fluctuations 6

n = 0 modes) and the topologically nontrivial ones (n 6= 0). We have shown that when

the latter ones are retained, the following results are obtained: (a) The propagator picks

up corrections which essentially involves replacing (x− y)2 by (x− y)2 + l20 introducing

a zero point length. (b) This is identical in form to the results obtained earlier in

[10] and shows that the T-duality does lead to the path integral duality.(c) It provides a

prescription for incorporating the “stringy” effects in the standard quantum field theory

and the theory is now UV-finite [11].

Once we select the histories which are closed along the extra-dimensions for

evaluating the path integral, the full path integral factorizes into the product of

the four dimensional path integral for the propagator times the vacuum partition

functional accounting for virtual fluctuations along extra-dimensions. Our result arises

from dropping the zero-modes, which describe topologically trivial fluctuations; i.e.,

fluctuations described by paths which can be continuously shrunk to a point. With

hindsight, it is clear how zero-modes bring ultraviolet divergences in, as they are “blind”

to the extra-dimensions and can probe arbitrary short distance. The need of a “by

hand” subtraction of the zero-mode follows from the choice of the simplest toroidal

compactification. Hopefully, in a more sophisticated compactification scheme, or when

we understand the structure of some guiding principle behind the theory, the zero-

mode will be absent from the spectrum from the very beginning. This could be an

effective criterion for selecting the appropriate kind of compact dimension(s) among

many possible topologies.

Thus, zero-point length in four dimensional spacetime can be seen as the virtual

memory of the presence of compact extra-dimensions which can occur even much below

the threshold energy needed to produce real Kaluza-Klein particles. Within the Kaluza-

Klein quantum field theory picture, the actual value of l0 remains undetermined. In the

more general framework provided by string theory, T -duality selects the unique self-

dual value for the compactification scale, and, accordingly determines l0 = 2π
√

α′. One

could, therefore, expect to see deviations from the theoretical predictions of standard

quantum field theory due to the presence of the modified Feynman propagator (12) at

an intermediate energy regime much below the string scale. In this respect, the most

optimistic scenario is offered by the TeV scale unification models, where the string

scale is lowered down to a few TeV [16], [17]. Such a “low-energy” unification can

be realized provided the extra-dimensions are compactified to a “large” radius of some

fraction of millimeter. In this case l0 ≈ 10−17cm. and its presence would be detectable in

the high-energy scattering experiments [18] planned for the next generation of particle

accelerators.

One of the authors, (E.S.), thanks T. Padmanabhan for triggering his interest to

find out a link between zero-point length and string theory [14]; the same author would

also like to thank S. Shankaranarayanan for useful discussions.
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