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mediated downregulation of its Rep protein
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Abstract Geminiviruses pose serious threat to many economi-
cally important crops such as mungbean, tomato, cotton, etc.
To devise a specific antiviral strategy at the viral DNA replica-
tion level, a hammerhead ribozyme was directed against the
mRNA of the replication initiator protein (Rep). Rep is the most
important viral protein for the DNA replication of the Mung-
bean yellow mosaic India virus (MYMIV), a member of the
Geminiviridae family. The ribozyme showed �33% cleavage
activity on synthetic rep transcript within 1 h under in vitro con-
ditions, whereas the mutant ribozyme, designed to lack the cat-
alytic activity but target the same site, showed no cleavage.
The in vivo efficiency of ribozyme was evaluated in Saccharomy-
ces cerevisiae as it can act as a surrogate host for replication of
the MYMIV-DNA and lacks RNAi machinery. In the presence
of the ribozyme, growth of the yeast cells that are dependent on
geminiviral replication was inhibited by 30% and cellular gener-
ation time was increased by 2 h. The RT-PCR analysis showed a
maximum of about 50% reduction in the rep mRNA level in pres-
ence of the ribozyme compared to its noncatalytic mutant con-
trol. About 65% decrease in geminiviral DNA replication was
observed due to the downregulation of replication initiator pro-
tein by the ribozyme. These results raise the possibility of engi-
neering resistance to geminiviruses employing the ribozyme
approach.
� 2007 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Geminiviruses are a large diverse family of ssDNA viruses

that infect a broad variety of plants causing significant crop

losses worldwide [1]. They replicate through double stranded

DNA (dsDNA) intermediates in infected cells. Unlike RNA

viruses, which code their own replicases, geminiviruses contrib-

ute only a few factors for their replication and transcription,

and depend on DNA and RNA polymerases of their plant

hosts. MYMIV is a member of genus begomoviridae with

bipartite genome that is transmitted through whiteflies. The
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existing measures employed by farmers to eradicate geminivi-

ruses are indirect, like controlling the population of alternate

host or vectors such as whiteflies [2]. The whiteflies are unfor-

tunately developing resistance to commonly used chemicals

and the measures to control them are falling short. On the

other hand, the geminiviral genomes are prone to recombina-

tion and thus the new, virulent virus strains evolve.

Searches have been going on for alternative antiviral strate-

gies such as developing resistant cultivars either by classical

crossbreeding or genetic engineering. Classical breeding tech-

niques are laborious, time consuming and naturally resistant

varieties are also limited in abundance. Earlier, there were at-

tempts to endow plants with resistance against geminiviruses

by using mutant or wild-type viral ORFs, antisense RNAs

and RNA interference constructs, etc., as transgenes [3–6]. In

most of the cases resistance was not up to the mark or limited

to certain species [7,8]. The above strategies operate mostly

through the RNA silencing pathways and plant’s defense sys-

tem might be compromised in the long run. In this scenario, we

wanted to explore whether the ribozyme technology could be

used as an alternative approach. As the different species of

geminiviridae family share a common mode of rolling circle

replication (RCR) [9–12], targeting viral replication machinery

might be useful as a broad and durable control strategy in the

fight against geminiviruses. In view of this the mRNA of rep-

lication initiator protein (Rep), the most important protein in

viral DNA replication, has been chosen as the target for ribo-

zyme activity. The replication initiator protein (Rep) makes a

site specific nick in the plus strand of the replicative form at a

conserved nonanucleotide site (TAATATTflAC) that is pres-

ent in the loop region of a hairpin spanning the replication ori-

gin sequences [13,14]. This nicking determines the initiation of

RCR. The domain of nicking activity is located at the N-termi-

nal of Rep protein. Three different mutations in a region of rep

gene spanning nucleotides 128–152 inhibited DNA binding

in vitro and DNA replication in vivo, thereby demonstrating

the importance of this region and further supporting the close

relationship between DNA binding and cleavage [15,16].

Therefore, targeting rep mRNA at this region might interfere

with the expression of protein and in turn with viral replica-

tion. It may however be mentioned that though Rep initiates

DNA replication in all geminiviruses, the rep gene sequences

differ from one another. Hence finding a totally conserved re-

gion may be difficult.

Ribozymes are potential tools in the downregulation of gene

expression. They act as molecular scissors by catalytically

cleaving target RNAs, the molecular messages transmitted
ation of European Biochemical Societies.
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from the genes for production of proteins. Ribozyme can be

divided into conserved catalytic domain responsible for catal-

ysis and variable recognition domain responsible for the recog-

nition of target [17,18]. The main advantage with ribozyme is

that suitable changes in the recognition domain flanking the

conserved catalytic core can essentially target any RNA. In

the present study, we explored the trans-cleaving property of

the hammerhead ribozyme targeted to the mRNA of replica-

tion initiator protein (Rep) of MYMIV, a member of the

Geminiviridae family. This is the first report of the use of ribo-

zyme strategy against geminiviruses.
2. Materials and methods

2.1. Microbial strains, plasmids, growth and selection media
The E. coli strain DH5a, used in this study to clone ribozyme mutant

ribozyme, was obtained from Bethesda Research Laboratory, USA;
and the S. cerevisiae (W303a) for in vivo expression of ribozymes
was from EUROSCARF. The plasmids pSG1, pET28a, pGADC1,
etc. were commercially available and the plasmid YCpO�-2A was ob-
tained from ICGEB, New Delhi. Luria Bertini broth (LB) contained
bactopeptone, 1 g, NaCl, 1 g and Yeast Extract, 0.5 g per 100 ml of
broth. The YPD medium contained Yeast Extract, 1 g, peptone, and
glucose, 1 g each per 100 ml of broth. The 10· drop out medium (leu�,
his�, trp�, ade�, ura�) contained, LL-tyr, LL-isoleu, LL- lys (300 mg each),
LL-arg, LL-met (200 mg each), LL-phe, 500 mg, LL-val, 1.5 gm, LL-thre, 2 gm
per litre of broth. Ura, leu dropout medium contained Yeast nitrogen
base 0.67 g, 10· drop out medium 10 ml, 40% glucose, 5 ml, 200· each
of adenine, histidine and tryptophan 500 ll and 100· of uracil or leu-
cine as desired. 200· adenine/tryptophan/histidine contained 400 mg
per 100 ml solution. 100· leucine contained 1 g per 100 ml and 100·
uracil contained 400 mg per 100 ml.
Fig. 1. Domain analysis of the rep gene and ribozyme. (a) The various
structural and functional domains of rep are marked. The numbers
indicate the position of the encoded amino acids. ‘T’ stands for the
target site of the ribozyme. The symbols I, II, III indicate the conserved
motifs for RCR. The design and validity of ribozyme molecule by
secondary structure prediction are shown in (b) and (c). (b) Design of
ribozyme and mutant ribozyme against Helix-2 region (T) of rep. The
GUC triplet is shown in italics and arrow shows the cleavage site. The
bases in parentheses are those present in the mutant ribozyme. (c) The
secondary structure of full-length rep mRNA-ribozyme complex is
shown in the right side of the panel. The black quadrilateral with an
attached arrow represents the actual complex and is shown in the left
side as a blow-up. The arrows show the target site of cleavage.
2.2. Design of ribozyme and mutant ribozyme
The prime requirement for cleavage by a hammerhead ribozyme is

the presence of GUC triplet in the target RNA. Though hammer-
head ribozyme recognizes and cleaves 3 0 to NUX (where N is any
ribonucleotide and X is A, U or C), the efficiency of NUX is low
compared to GUC triplet [19]. Therefore, the target (Rep-mRNA)
was scanned for the presence of GUC triplet to choose potential
cleavage site and the search results yielded 16 GUC triplets in the
entire length of rep transcript. Of all the GUC triplets listed, number
4 GUC triplet was chosen to demonstrate the proof of principle of
ribozyme activity. Orozco and Hanley-Bowdoin created three differ-
ent mutations in this region of TGMV rep and observed that all
mutations inhibited DNA binding and cleavage in vitro and viral
replication in vivo [16]. Targeting this region is likely to offer resis-
tance against MYMIV and may establish the concept that ribozyme
technology can be used as a potential tool in the battle against gem-
iniviruses.

This region also contains GUC triplet, 3 0 of which is putatively more
cleavable by hammerhead ribozyme. Hence it has been chosen as a tar-
get site for ribozyme in our present study. The trans-cleaving hammer-
head ribozyme consists of conserved catalytic core flanked by the base
sequences, which are complementary to the target RNA sequences on
either side of cleavage site (nucleotide C). In the present design, the
complementary sequences spanned 13 and 12 nucleotides on the left
and right of cleavage site respectively (Fig. 1b). These complementary
sequences would direct ribozyme towards target and impart specificity
to ribozyme. They bind the substrate molecule to form stem I and stem
III of the hammerhead-substrate complex. A mutant ribozyme (dis-
abled ribozyme) was constructed to the same target site as an antisense
control in which double base pair mutations in the catalytic core of the
ribozyme were introduced keeping rest of the sequence unaltered. The
mutant ribozyme has similar antisense effect but lack catalytic cleavage
activity. The sense and antisense oligonucleotides coding for ribozyme
were chemically synthesized. The sequences are as follows.

The sense strand of ribozyme 5 0 GAT CCA TCC GCA TCT GTT
TCG TCC TCA CGG ACT CAT CGA GAG AAC TCC ATG 3 0

(51-mer).
The antisense strand of ribozyme 5 0 CAT GGA GTT CTC TCG
ATG AGT CCG TGA GGA CGA AAC AGA TGC GGA TG 3 0

(47-mer).
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The sense strand of mutant ribozyme 5 0 GAT CCA TCC GCA TCT
GTT CCG TCC TCA CGG ACT CAT TGA GAG AAC TCC ATG
3 0 (51-mer).

The antisense strand of mutant ribozyme 5 0 CAT GGA GTT CTC
TCA ATG AGT CCG TGA GGA CGG AAC AGA TGC GGA TG
3 0 (47-mer).

One of the strands is engineered with BamHI overhang to facilitate
directional cloning. The accessibility of hammerhead ribozyme to this
region was examined using computer predicted secondary structure of
rep mRNA-ribozyme complex by the software MFOLD version 2.3
[20] (http://www.bioinfo.rpi.edu/ ~ zukerm/seqanal/). It clearly showed
that the ribozyme could not only access the target site but also formed
its characteristic hammerhead structure upon binding to its substrate
(Fig. 1c).

2.3. Construction of ribozyme, mutant ribozyme expression vectors
The chemically synthesized oligonucleotides were annealed and li-

gated to the double digested (SmaI and BamHI) pSGI vector down-
stream of T7 promoter (Fig. 2a) to facilitate in vitro transcription
using T7 RNA polymerase (Promega, USA). The plasmids were desig-
nated as pSGIRz and pSGImRZ respectively for ribozyme and mutant
ribozyme. For expressing ribozyme and mutant ribozyme in vivo in
yeast, the respective annealed oligonucleotides were cloned under the
control of Gal4 promoter in between SmaI and BglII sites of pGAD
vector, and the resulting plasmids were designated as pGADRz and
pGADmRz (Fig. 2b) respectively. For in vitro transcription, rep gene
cloned in between the BamHI and HindIII sites of pET28a was used
(Fig. 2c).

2.4. In vitro transcription and cleavage of rep transcript by ribozyme
The plasmids pSGIRz and pSGImRz were linearised with BamHI to

carry out run off transcription. Linearisation with BamHI prevent
transcription of the extra vector sequences that are 3 0 to ribozyme-
end. The plasmid pET28a-Rep was linearised with ClaI to produce
520 nt in vitro transcript (Fig. 2c). The in vitro transcription reaction
was carried out using 1 lg of linearised DNA template, Riboprobe
in vitro transcription kit (Promega), [a32P] UTP (Specific activity
3000 Ci/mmol), following manufacturer’s instructions. Following tran-
Fig. 2. Construction of ribozyme (Rz)/mutant ribozyme (mRz) and rep expres
downstream of the T7 promoter. The black horizontal arrow represents the
mRz in pGAD under the control of Gal4 promoter and the in vivo transcribe
of in vitro transcribed rep RNA from the Cla I digested fragment of pET28
scription, RQI RNase free DNase (1 U/lg of DNA template) was
added and incubated at 37 �C for 15 min. The transcripts were purified
by phenol:chloroform extraction and ethanol precipitation. The ribo-
zyme, mutant ribozyme, and the target rep RNA were quantified spec-
trophotometrically by measuring absorbance at 260 nm. The rep RNA
was quantified by trichloroacetic acid (TCA) precipitation of the radi-
olabeled transcript on glass fiber filters in presence of carrier tRNA fol-
lowed by washing and counting in a liquid scintillation b counter
(LKB, Wallac, 1219 Reckbeta). The target and ribozyme (or mutant)
were mixed and cleavage reaction was carried out in a buffer contain-
ing 50 mM Tris–HCl, pH 7.5 in a volume of 10 ll. The reaction mix-
ture was briefly heated at 94 �C and cleavage was initiated by adding
MgCl2 (10 mM, final concentration) at 37 �C for 1 h, referred to as
standard cleavage conditions. The reaction was stopped at different
time intervals by adding stop buffer (formamide, 95%, xylene cyanol
and bromophenol blue, 0.05% each and EDTA, 20 mM). The samples
were heated for 2 min at 75 �C and loaded on 6% denaturing PAGE to
separate the target from the products. The gel was vacuum dried, ex-
posed to X-ray film (BIOMAX� MS, Kodak, USA) and the autora-
diographic bands were quantified by Alpha Imager software (Bio-
Rad). The percentage cleavage was calculated using formula
(P1 + P2)/(P1 + P2 + S) · 100%, where S, P1 and P2 denote band
intensities of substrate (520 nt rep transcript), product 1 (309 nt) and
product 2 (211 nt), respectively.
2.5. Determination of kinetic parameters
Kinetic parameters of the ribozyme were determined by using vary-

ing concentrations of the labeled target rep RNA in the presence of
constant amount of ribozyme as reported [21]. Hammerhead ribo-
zymes obey simple Michaelis–Menton type kinetics [17]. Hence, kinetic
parameters Km and kcat of ribozyme were determined following
Michaelis–Menton kinetics. A fixed amount of unlabeled ribozyme
(5 fmol) was allowed to react with varying concentrations of the la-
beled rep transcript under standard cleavage conditions at 37 �C.
Hanes–Wolff’s plot of substrate concentration over velocity versus
substrate concentration [22] was used to determine values for Michae-
lis–Menten constant (Km) and reaction rate at saturating substrate
concentration (kcat).
sion vectors. (a) Cloning of ribozyme/mutant ribozyme was carried out
in vitro transcribed ribozyme or mutant ribozyme. (b) Cloning of Rz/
d Rz/mRz. T shows the transcription termination sequence. (c) Scheme
a-Rep plasmid.

http://www.bioinfo.rpi.edu/~zukerm/seqanal/
http://www.bioinfo.rpi.edu/~zukerm/seqanal/
http://www.bioinfo.rpi.edu/~zukerm/seqanal/
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2.6. Yeast transformation
The transformation of S. cerevisiae cells (W303a) with the plasmids

was carried out using lithium acetate, single-stranded DNA, and poly-
ethylene glycol [23]. The Ura auxotroph cells harbouring the plasmid
YCpO�-2A [27] (containing the Ura3 marker) was transformed with
plasmids (pGAD or pGADRz or pGADmRz) containing Leucine
marker, and the colonies were scored on synthetic defined (SD) Ura�

Leu� plates. The extent of replication of plasmid YCpO�-2A was con-
trolled by the abundance of Rep protein in the yeast cells. The origin
activity of plasmid YCpO�-2A for each input plasmid was measured in
terms of colony forming units (CFUs) in the Ura, Leu dropout plates
when the equal moles of input DNA was applied in each transforma-
tion experiment.

2.7. Growth curve
Single colony of S. cerevisiae harbouring the desired plasmids was

inoculated in 5 ml of respective drop out media and allowed to grow
at 30 �C at 200 rpm. From the above primary cultures, cells were inoc-
ulated in 100 ml of respective drop out media and adjusted to the same
O.D at 0 h. The growth was monitored at 3 h intervals for 24 h. Spe-
cific growth rate and doubling time were calculated from the growth
curves using the formula logN/N0 = kt/2.303, where N is number of
cells at defined time point t, N0 is the initial number of cells and k is
specific growth rate.

2.8. Reverse transcriptase- PCR (RT-PCR) analysis
First strand cDNA synthesis was carried out using 5 lg of total

RNA prepared from S. cerevisiae harbouring various plasmids using
ready to go T-primed first strand kit (Invitrogen). The tube containing
the reaction mix (reaction buffer, dNTPs, Moloney Murine Leukemia
Virus (M-MuLV) reverse transcriptase and an oligo (dT) primer) was
kept at 42 �C for 10 min, RNA was denatured by heating at 65 �C for
5 min. The first strand reaction mix was reconstituted with the dena-
tured RNA sample and placed at 42 �C for 60 min. The first cDNA
thus prepared was directly used for PCR. rep gene specific primers
(AL1 CS forward, AL1 Reverse) were used to amplify 530 bp fragment
of rep gene. The amplified products were resolved by 1% agarose gel-
electrophoresis. As an internal control, the Rad54 housekeeping gene
was also amplified using specific primers.
3. Results

In order to check the effectiveness of our strategy, it is desir-

able to test its ability to cleave the target initially under in vitro

conditions before extending the study to in vivo conditions.

Therefore, the following in vitro experiments were carried

out to obtain data on the basic kinetic parameters of the ribo-

zyme.

3.1. In vitro cleavage of rep transcript by ribozyme

The various domains of Rep protein including the ribozyme

target site (T) have been shown in Fig. 1a. The putative linear

and secondary structure of the Rep-ribozyme complex is

shown in Fig. 1b and c respectively. The schematics of the con-

structs used for generating the rep and the ribozyme mRNAs

in vitro are given in Fig. 2.

A time course of the cleavage reaction of rep RNA (10 fmol)

with ribozyme (5 fmol) showed that ribozyme was able to

cleave as early as 5 min of incubation (lane 3 in Fig. 3a).

The cleavage efficiency increased with increasing incubation

time till about 90 min. The percentage cleavage at different

time points has been plotted in Fig. 3b. About 33% of the tar-

get RNA was cleaved after 60 min post incubation.

It is worth noting that the lanes 1–6 and lanes 7–10 of

Fig. 3a have been spliced from the autoradiographs of two dif-

ferent gels. The splicing was necessary to get rid of the unnec-

essary portions of each of the gels that were electrophoresed
and autoradiographed under same conditions. This splicing

did not vitiate the interpretation or analysis of the data as

the ribozyme activity was expressed not in absolute units but

in terms of ‘percentage of cleavage’ only.
3.2. Determination of kinetic parameters

A fixed amount of unlabeled ribozyme (5 fmol) was allowed

to react with varying concentrations of the labeled rep tran-

script under standard cleavage conditions at 37 �C (Fig. 3c).

Since hammerhead ribozyme follows Michelis–Menten ki-

netcs, the kinetic parameters were calculated from Hanes–

Wolff’s plot (Fig. 3d). Km and kcat values for ribozyme were

found to be 49.51 nM and 0.21 min�1, respectively. On the ba-

sis of these data, the catalytic efficiency, i.e., the turn over

number (kcat/Km) of 4.3 · 106 M�1 min�1 was obtained. The

Km and kcat values so observed for the designed ribozyme

are comparable to those of other ribozymes reported in litera-

ture [22,24–26] and relevant data are presented in Table 1.
3.3. Effect of pH and Mg2+ concentrations

It is known that the cleavage by hammerhead ribozyme is

dependent upon divalent cations, the most common of which

is Mg+2, the cleavage activity was therefore studied at Mg+2

concentrations viz., 0–50 mM. The background cleavage was

obtained in the absence of Mg2+ ions (lane 1 in Fig. 3e), which

might result from Mg2+ carry over from in vitro transcription

reaction. The efficiency of cleavage increased with increasing

Mg+2 ion concentration from 0.5 mM to 50 mM. The cleavage

efficiency of ribozyme also increased with increasing pH from 6

to 8.5 (Fig. 3f). This information was necessary to get an idea

of the cleavage activity under normal physiological conditions

of a eukaryotic cell.
3.4. In vivo efficiency of ribozyme in S. cerevisiae

The above in vitro results prompted us to examine the po-

tential of ribozyme activity under physiological conditions.

The S. cerevisiae was chosen as a model eukaryotic system

to demonstrate in vivo ribozyme efficiency in inhibiting MY-

MIV DNA replication. Although, MYMIV is a plant patho-

gen, it has been shown that the MYMIV DNA- A is able to

replicate in S. cerevisiae when cloned as a tandem dimer

(YCpO�-2A) in an ARS deficient plasmid YCpO� [27]. In

other words, the DNA-A component conferred replication

activity on this recombinant ARS deficient plasmid. The repli-

cation of the plasmid, recombinant with the viral DNA, was

totally dependent on the viral cis-elements and the factors en-

coded by DNA-A. For example, the replication was severely

down regulated if the viral origin of RCR was mutated, or if

the initiator protein of RCR i.e., Rep was mutated (Y103F)

[27].

3.4.1. Effect of ribozyme on the colony forming (CFU)

ability of S. cerevisiae harbouring the YCpO�-2A. The effi-

ciency of ribozyme was evaluated in terms of the decreased

ability of the yeast cells to form CFU following transformation

with the ribozyme construct. In presence of the ribozyme,

downregulation of the Rep expression and consequent damp-

ening of the origin function of the plasmid YCpO�-2A is ex-

pected. The loss in origin activity would be reflected in the

diminution of CFU of the yeast cells expressing the ribozyme.

The experiments were carried out with the S. cerevisiae cells

harbouring YCpO�-2A, which were transformed separately



Fig. 3. In vitro cleavage reactions. (a) Autoradiogram showing kinetics of cleavage of rep RNA by ribozyme. Lane 1, rep transcript; the reaction time
in lanes 2–10 is 1, 5, 10, 20, 30, 40, 50, 60 and 90 min, respectively. Arrows show the intact and the cleaved rep transcripts. (b) Percentage cleavage of
rep by ribozyme at different time intervals. Percentage cleavage was calculated using the formula (P1 + P2)/(P1 + P2+S) · 100% where S, P1 and P2
denote band intensities of substrate (520 nt rep transcript), product 1 (309 nt) and product 2 (211 nt) as shown in (a). (c) Autoradiograph showing
cleavage of varying concentrations of rep transcript with fixed concentration of ribozyme. Lane 1, 10 fmol of rep transcript (control), lanes 2–7 are 5,
10, 20, 40, 80, and 100 fmol, respectively of rep mRNA and 5 fmol of ribozyme. (d) Hanes–Wolff’s plot of cleavage of rep transcript by ribozyme. (e)
Autoradiogram showing cleavage of rep by ribozyme at varying MgCl2 concentrations. Lanes 1–8, cleavage at 0, 0.5, 1, 2, 5, 10, 20 and 50 mM Mg+2

concentrations, respectively. (f). Autoradiogram showing cleavage of rep by ribozyme at varying pH of reaction buffer. Lane1, rep transcript at pH
7.5 (control); lanes 2–7, cleavage at 6.0, 6.5, 7, 7.5, 8 and 8.5 pH respectively.
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Table 1
Comparison of kinetic parameters of rep ribozyme with other ribozymes reported in literature

Ribozyme targeted to Km (M) kcat (min�1) kcat/Km (·107 M�1) Reference

HEV 5.5 · 10�13 1.2 · 10�5 2.1 [24]
Di-Rz for HEV 2.5 · 10�13 4.76 · 10�5 19
HPV-6b/11E1 14.7 · 10�9 0.14 0.9 [25]
HBV 26.31 · 10�9 0.18 0.6 [26]
Connective tissue growth factor mRNA 1.56 · 10�6 2.97 0.19 [22]
Connective tissue growth factor mRNA 7.8 · 10�6 5.7 0.073 [22]
rep of MYMIV 49.51 · 10�9 0.216 0.043 Present study

2680 U. Chilakamarthi et al. / FEBS Letters 581 (2007) 2675–2683
with the plasmids pGAD or pGADRz or pGADmRz. The

transforming plasmids were equalized in molar concentrations

and the CFUs of the transformed cells were counted in the Ura

and Leu dropout plates. The pGAD plasmid served as an

empty vector control while the plasmid pGADmRz supplied
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Table 2
Effect of ribozyme on the growth of Saccharomyces cerevisiae driven
by geminiviral Rep

Specific growth rate (h�1) (k) Generation time (t)

pGAD 0.1549 ± 0.017 4 h 47 min
pGADmRz 0.1524 ± 0.02 4 h 54 min
pGADRZ 0.1061 ± 0.018 6 h 53 min
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plotted in the form of a bar graph (Fig. 4a). These results indi-

cated the reduction of 30% and 3.4% in CFU due to the activ-

ities of ribozyme and mutant ribozyme, respectively.

3.4.2. Effect of ribozyme on growth of S. cerevisiae. A

growth curve analysis was carried out to observe the effect of

ribozyme on the growth of S. cerevisiae. The growth was mon-

itored at 3 h intervals for 24 h by measuring absorbance (A) at

600 nm and the growth curve is shown in Fig. 4b. The specific

growth rate and generation time of S. cerevisiae cells harbour-

ing the above mentioned plasmids (calculated from the growth

curves as described in Section 2) are presented in Table 2. In

presence of ribozyme, the generation time of yeast cells in-

creased due to the drastic decrease in specific growth rate (Ta-

ble 2). The presence of mutant ribozyme showed no significant

difference in the values compared to control.

3.4.3. Reduction of rep mRNA in S. cerevisiae. To examine

whether the reduction in CFU and the increase in generation

time were due to ribozyme-mediated rep RNA cleavage, the

levels of rep mRNA in the yeast cells were quantitated. The

RT-PCR analysis was carried out to determine the rep mRNA

level in S. cerevisiae cells harbouring the pGADRz or

pGADmRz plasmids along with YCpO�-2A. The S. cerevisiae

cells were grown in the Leu�Ura� broth overnight. Subse-

quently, the cultures were inoculated in YPD (complete med-

ium) such that the initial A600 nm in each case was identical.

The cultures were pelleted at A600 nm values 0.4, 0.6 and 1. To-

tal RNA was isolated and the cDNA library was prepared.

From the cDNA pool, 530 bp fragment of rep gene was ampli-

fied using rep-specific primers. The 1 kb fragment of Rad54
Fig. 5. Effect of ribozyme on rep mRNA levels and on accumulation of gem
levels when RNA was isolated at different growth stages (A600 = 0.4, 0.6 an
along with pGADRz or pGADmRz. RT-PCR was carried out for 25 cycles
observed for 530 bp rep fragment at all growth stages. The RAD54 amplifi
bands). (d) Level of YCpO�-2A plasmid DNA in S. cerevisiae harbouring
Southern hybridization. The rep DNA was used as probe to detect YCpO�-
pGAD (800 bp fragment of SphI and EcoRI digest of pGAD) to detect the
loading controls).
gene was also amplified for internal loading control. The

PCR-amplifications were carried out for 25 cycles (Fig. 5)

and the intensity of the amplified bands was determined using

Alpha Imager. A maximum of about 50% reduction in the

expression of rep mRNA was observed in the case of cells

transformed with pGADRz (lower band, Fig. 5c) compared

to those transformed with pGADmRz (lower band, Fig. 5c).

On the other hand, no difference in the Rad54 mRNA (non-

target mRNA) levels was observed in both types of cells.

The suppression of rep RNA expression suggested that ribo-

zyme was expressed well, could access and cleave its target.

Diminution of rep mRNA levels in presence of ribozyme com-

pared to its antisense control clearly indicated the strength of

the wild-type catalytic activity.

3.4.4. Reduction in the accumulation of YCpO�-2A plas-

mid. As mentioned earlier, replication of YCpO�-2A was due

to the Rep protein, coded by the same plasmid. In the presence

of ribozyme, downregulation of rep RNA was observed

(Fig. 5) and this, in turn, should adversely affect YCpO�-2A

replication. To test this, Southern hybridization was carried

out to determine the level of YCpO�-2A DNA. The S. crevi-

siae cells harbouring YCpO�-2A and pGADRz or pGADmRz

were grown overnight in Leu�Ura� selection media. The cul-

tures were inoculated in YPD (complete medium) and were ad-

justed to the same value of A600 nm. As the growth of each

culture differs in the selection medium, we have taken complete

medium to get the same number of cells and identical growth

conditions for comparing replication of YCpO�-2A plasmid

DNA in the two cases. This would nullify the effect, if any,

of the loss of plasmid due to lack of selection. The cultures

were pelleted when A600 nm reached �1. Total DNA was iso-

lated and subjected to hybridization using rep DNA as the

probe to detect YCpO�-2A DNA (upper bands in Fig. 5d).

It was also probed with pGAD probe as an internal control

to ascertain equal loading in both the wells (lower bands in

Fig. 5d). The intensity of bands was quantified using phos-

phorimager. About 65% reduction of YCpO�-2A DNA was

observed due to ribozyme, pGADRz (upper band, Fig. 5d)
iniviral DNA. (a–c) RT-PCR results showing rep mRNA expression
d 1, shown in panels a–c, respectively) of yeast harboring YCpO�-2A
in each case. In the presence of ribozyme, decrease in signal could be
cation (1 kb) is shown as internal loading control in all cases (upper
ribozyme and mutant ribozyme. Total DNA of 10 lg was used for

2A (upper band). The same blot was reprobed with Gal4 fragment of
levels of pGADRz and pGADmRz plasmids (lower bands, served as
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compared to its antisense control, pGADmRz (upper band,

Fig. 5d). However, the levels of control plasmid (pGADRz

or pGADmRz) remained same in both the cases (lower bands

in Fig. 5d). These results clearly demonstrate the adverse effect

of ribozyme on the replication of YCpO�-2A.
4. Discussion

Hammerhead ribozymes have enormous potential as antivi-

ral agents. We have designed anti rep ribozyme to target gem-

iniviruses. The ribozyme designed to a region at 140 nt of rep

showed about �33% cleavage under in vitro conditions. Ham-

merhead ribozyme required divalent metal ions such as Mg+2

that participate in the mechanism of the cleavage reaction.

Though considerable cleavage was obtained under in vitro con-

ditions, it has been reported in literature that sometime ribo-

zymes would fail to act in vivo because of low availability of

Mg+2 ions in cellular environment. The fact that the ribozyme

was effective at physiological Mg+2 (lane 4 in Fig. 3e) suggested

its usefulness under in vivo conditions. Appreciable amount of

cleavage was observed at all pH values including physiological

pH (lane 5 in Fig. 3f) indicating its potential for in vivo appli-

cations. The kinetic parameters of ribozyme were calculated.

The Km values denote the affinity of ribozyme to its substrate

while the kcat values mostly reflect on the cleavage rate and mul-

tiple turnovers. Small flanking arm length of ribozyme gener-

ally facilitates multiple turnover events as its dissociation

from the product can occur easily. However, it is difficult to

compare the kinetic efficiencies of different ribozymes as the

substrate molecules and their complexities change in each case.

Ribozymes directed to HEV had very high affinity and high

turnover number among all the ribozymes presented in Table

1, in spite of low kcat values. The most efficient wild type ribo-

zymes display kcat/Km values of 108 M�1 min�1 [about the or-

der of the apparent hybridization rate constant for two

oligonucleotides [28]]. It has been suggested that within the

intracellular environment, the hybridization step may be rate

limiting for trans-acting ribozymes [27]. Kinetic and mutagen-

esis experiments have indicated that for both natural and engi-

neered ribozymes, product release may be rate limiting at

substrate saturation condition [29,30]. This limitation could

be due to the increased length of the complementary sequence

of RNA to which the ribozyme hybridizes.

The ribozyme reported here exhibited Km in nM range,

which was quite satisfactory, though not very low like the

HEV ribozyme. The kcat values were also comparable with

the ribozymes targeted to HPV-6b/11E1 and HBV, but less

than those directed to connective tissue growth factor RNA

(Table 1). The decrease in hybridizing arm length might in-

crease the kcat value. In our design, the right hand flanking

arms consists of 12 nucleotides forming helix I and the left

arm spans 13 nucleotides of the helix III in hammerhead-sub-

strate complex. These 25 bases of complementary sequence al-

low more efficient loading of ribozyme at the target site, but

impede dissociation of ribozyme from the products, thus

decreasing the number of turnover events. However, in our de-

sign, long complementary sequences are necessary as part of

target site is involved in base pairing in the secondary structure

of rep mRNA as predicted by the MFOLD program. These

long complementary sequences unfold the secondary structure

of target and help ribozyme to bind to the target site, which is
otherwise inaccessible. The in vitro results confirmed the acces-

sibility of target site to ribozyme and sequence specificity of

cleavage.

Earlier, attempts were made to use ribozyme technology

against plant viruses. Liu et al. [31] used hammerhead ribo-

zyme against plant virus Plum poxvirus. It was expressed epi-

somally in N. clevelandii by infection with recombinant

Potatovirus X (PVX). They used 400 nt antisense RNA as

antisense control. The protective effect was stronger in the case

of ribozyme than the ordinary antisense RNA at one week

after inoculation. However, eventually all plants tested accu-

mulated comparable titers of PPV. The authors speculated that

spatial separation of target and ribozyme might be the possible

reason for the failure of ribozyme in this case. It was shown by

De Feyter et al. [32] that the chromosomal expression of a cat-

alytic antisense RNA directed against TMV resulted in protec-

tion, but that the catalytic domain of the hammerhead

ribozyme was actually not required for this effect, resembling

the phenomenon of RNA mediated protection and co-suppres-

sion. Keeping such facts in mind, the ribozyme efficiency was

studied first in S. cerevisiae, wherein the RNA interference

machinery is absent. Moreover, the S. cerevisiae system offers

easy and rapid eukaryotic assay platform to monitor the effi-

ciency of ribozyme compared to plants as raising transgenic

plant and observing the phenotypes at the F1 and F2 genera-

tions is laborious as well as time consuming. Based on the po-

sitive results, the study could be further extended to more

difficult system, such as plants. The data revealed that the ribo-

zyme-mediated downregulation of rep RNA affected replica-

tion of the plasmid bearing the MYMIV DNA replication

origin sequences. Consequently, the growth of S. cerevisiae

in selection medium was affected as revealed by the decrease

in formation of CFU and increase in generation time. This

downregulation is a clear indicator of the ribozyme activity

in vivo. The amount of in vitro cleavage (�33%) matched well

with the amount of reduction (�50%) of rep mRNA within

yeast. Plant level experiments with transient expression of ribo-

zyme has been carried out. The wild type ribozyme inactivated

the rep transcript (data not shown). Such observations call for

exploring the ribozymes that are more potent than the ones re-

ported here and also raise the hope that the ribozymes, when

present in plants, might act as a tool for geminivirus resistance.

In conclusion, it may be mentioned that though Rep protein

initiates DNA replication in all geminiviruses, the rep gene se-

quences differ from one another. As already mentioned, find-

ing totally conserved region is also difficult. Nevertheless, the

present study demonstrates for the first time the effectiveness

of using hammerhead ribozyme in the inactivation of a vital

function of geminivirus. A better target may be the coat pro-

tein ‘CP’ of begomoviruses from the point of view of the con-

servation of target sites.
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