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Abstract. In this paper we describe the use of a new artificial neural network, called the difference boosting
neural network (DBNN), for automated classification problems in astronomical data analysis. We illustrate the
capabilities of the network by applying it to star galaxy classification using recently released, deep imaging data.
We have compared our results with classification made by the widely used Source Extractor (SExtractor) package.
We show that while the performance of the DBNN in star-galaxy classification is comparable to that of SExtractor,
it has the advantage of significantly higher speed and flexibility during training as well as classification.
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1. Introduction

Automated classification using neural networks has re-
cently found several applications in astronomy. These
range from classification of stellar (e. g. Singh et al. 1998)
and galactic (Folkes et al. 1996) spectra, differentiating be-
tween stars and galaxies from imaging data (e. g. Odewahn
et al. 1992), to detecting defects on CCDs (Rogers & Riess
1994).

Two powerful neural network paradigms (and their
variants) have been popular in the astronomical com-
munity for addressing -classification problems. These
are the Back-propagation algorithm (see McClelland &
Rumelhart 1982) and the Self-Organizing Map (SOM,;
Kohonen 1982). The basic difference between the two is
that SOM can organize itself into clusters unsupervised,
meaning that no prior definition of the correct output
for an input vector is needed. On the other hand, back-
propagation requires a carefully selected training set for
successful convergence. Both approaches have their own
advantages and disadvantages depending upon the appli-
cation. When an input is presented, SOM tries to associate
it with a model vector that has features that best match
with those of the input vector. If no such model vector is
found, SOM assigns a new label to the object and consid-
ers it as the model vector of a new class of objects. SOM is
therefore good in situations where the user does not know
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the possible classes of objects a priori. However, SOM has
the disadvantage that it often classifies objects into dif-
ferent groups when in fact they belong to a single group.
In the astronomical context, this often happens due to
time-dependent variations in features associated with the
data, e.g. variations in seeing conditions. Nevertheless, a
number of variants of SOM have appeared with different
adaptation rules, distance measures and structures of the
map interconnections (Kohonen 1995).

Back-propagation, on the other hand, is most suitable
in situations where one knows a priori the possible classes
that an object can belong to, and wants to classify ob-
jects with a minimum error in the classification. From a
computational perspective, back-propagation is a kind of
function fitting process in which the parameters, generally
known as the connection weights, are modified so that the
network is able to map the system in terms of a nested
sum of products of its node functions, which are generally
sigmoid functions. The back-propagation network requires
a training set, a test set and often a validation data set. In
the training process the connection weights are updated
in proportion to the negative gradient of the error surface.
The network passes through the same set of data several
times, lowering the overall error in each pass. Since in
many astronomical classification problems the human ob-
server is able to classify sources into their possible classes
directly, and only requires the machine to behave as a
faster classifier, back-propagation and its variants have
been widely used for classification of astronomical images
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and spectra. Another advantage of the back-propagation
network over SOM is that the user has full control over
the relevant parameters to be used for the classification,
and can therefore prevent the system from being misled
by irrelevant features in the training data. Raw data is
preprocessed to extract the significant parameters which
then become the input for the neural network.
Automated and accurate classification of objects into
stars and galaxies from optical (and near infrared) imaging
data is an issue of considerable interest. Artificial neural
network based approaches to the star galaxy classification
problem include SOM (Miller & Coe 1996), decision tree
induction (Weir et al. 1995) and back propagation, which
is the basis for SExtractor, a widely used tool for star-
galaxy separation (Bertin & Arnouts 1996). One of the
drawbacks of classification tools such as SExtractor that
employ back propagation is that it is difficult to modify
them for specific needs. With the advent of a number of
visible and near-infrared sky surveys, with varying sensi-
tivities and observing conditions, it is often desirable for
the user to be able to specify the optimum parameters
for classification after experimenting with several possi-
bilities. Trying new parameters on a general purpose tool
like SExtractor is computationally very time consuming.
The objective of this paper is to present a tool that can
do the training at a faster rate, so that the network can be
rapidly tested with different sets of classification param-
eters to discover the optimum parameter set. The short
training time makes the network very flexible and its po-
tential astronomical applications are much wider than the
star-galaxy classification problem discussed here.

2. The Difference Boosting Neural Network
(DBNN)

DBNN is based on a powerful and intuitive procedure orig-
inally developed and used by mathematicians (Laplace
1812) for sensible classification of objects. Named after
its inventor Bayes (1763), Bayes’ theorem, according to
Laplace, is the mathematical expression of common sense.
Bayes’ theorem computes the conditional probability for
the occurrence of an event, given that another event which
could lead to this event has occurred (for an introduction
to Bayes’ theorem see Loredo 1990). In complex problems,
computation of the Bayesian probability becomes a labo-
rious process. However, a variant of the Bayesian classi-
fier known as the naive Bayesian classifier (Elkan 1997) is
able to compute the Bayesian probability with reasonable
accuracy under the assumption that, given the class, the
attribute vectors (arrays of parameter values) are indepen-
dent. However, in practice this independence assumption
is frequently invalid and the performance of the network
degrades when there are correlated attribute vectors.
The Difference Boosting Algorithm (DBNN) (Philip &
Joseph 2001) is a computationally less intensive Bayesian
classifier algorithm than its peers, and is closely related
to the naive Bayesian classifier. DBNN, however, does not
strictly follow the independence of attributes as a basic
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Table 1. Truth table of the XOR gate.

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0

criterion and allows some correlation between the at-
tributes. It does this by associating a threshold window
with each of the attribute values of the sample. The
threshold window demands that all the attribute values
be in the range specified by the training set for each class
of the sample. When any of the attribute values is outside
the range specified by the threshold function, the confi-
dence in the classification is penalized by a certain factor.

A popular example manifesting the correlation be-
tween input parameters is the XOR gate. A typical XOR
gate has two digital inputs and one digital output. A dig-
ital state has only two possible values represented as high
or low state. The XOR gate behaves such that its out-
put is a high only when the two inputs are dissimilar, as
shown in Table 1. Although the conditions appear to be
simple, this is a case where the conditional independence
is violated. For example, from the knowledge of the value
of only one of the inputs, it is not possible to have any
preferred knowledge about the class of the object. The ac-
tual class can be assigned only when both the inputs are
known together. Since only the value of one of the inputs
is used by the naive Bayesian classifier at a time, it is not
able to produce a confidence level better than 50% (both
alternatives equally likely) on such data. However, since
DBNN takes into account the values of the other param-
eters by the use of the window function, it is able to give
an accurate representation of the output states. We then
say that the network has learned the XOR problem.

Some other advantages of the DBNN algorithm are its
explicit dependence on probability estimates, its ability
to give an estimate of the confidence value of a prediction
and greater training speed. For the particular application
to star galaxy classification, the DBNN gives good results
with fewer input parameters than SExtractor. Philip &
Joseph (2001), compared results from DBNN with the
results obtained by Schiffmann et al. (1994) on sixteen
other network models. While Schiffmann et al. (1994) re-
port an average training time of ~12 hours on the dataset
they used, DBNN on the same dataset took only about
10 min for training. While their best result from the eigh-
teen models produced an accuracy of 98.48% on indepen-
dent test data, DBNN gave an accuracy of 98.60%.

One of the motivations for the DBNN classifier is that
the human brain looks for differences rather than de-
tails when it is faced with situations that require distinc-
tion between almost identical objects. While the standard
Bayesian method is very elaborate and takes every possi-
bility into consideration, and the naive Bayesian ignores



N. S. Philip et al.: Difference boosting neural network

all possible correlations between attribute values, DBNN
is an attempt to have the best of both worlds by high-
lighting only the differences.

3. Working of the DBNN

The working of the DBNN may be divided into three units.
The first unit computes Bayes’ probability and the thresh-
old function for each of the training examples. The sec-
ond unit consists of a gradient descent boosting algorithm
that enhances the differences in each of the examples in
an attempt to minimize the number of incorrectly classi-
fied cases. At this stage, boosting is applied to the con-
nection weights for each of the probability components
P(U,, | Cy) of the attribute U, belonging to an example
from the class Cf. Initially all the connection weights are
set to unity. For the correctly classified object, the total
probability P(U | Ck), computed as the product of com-
ponent probabilities will be a maximum for Cj, the class
of the object given in the training set. For the wrongly
classified examples, for each of the component probability
values, the associated weights are incremented by a factor
0W,, which is proportional to the difference in the total
probability of membership of the example in the stated
class and that in the wrongly classified class. The exact
value is computed as

5Wm:a<1—&)
P

in a sequence of iterations through the training set. Here
Py is the computed total probability for the actual class of
the object and P} that of the wrongly classified class. The
parameter « is a learning constant functionally similar to
the learning constant in the back-propagation algorithm.
It thus defines the rate at which the algorithm updates its
weight parameter. The third unit computes the discrimi-
nant function (Bishop 1999) P(Cy | U) as:

PGy | 1) = [1,, PUm 0 Cl)Wo
T S T P(Un N Cp) W

Here P(U,,NC}) stands for P(U,,NCy)/P(Cy) which from
the axioms of set theory is equivalent to P(Uy, | Ck).

In the implementation of the network, the actual clas-
sification is done by selecting the class corresponding to a
maximum value for the discriminant function. Since this
value is directly related to the probability function, its
value is also an estimate of the confidence with which the
network is able to do the classification. A low value in-
dicates that the classification is not reliable. Although a
network based on back-propagation also gives some proba-
bility estimates on the confidence it has on a classification
scheme, these are not explicitly dependent on the proba-
bilities of the distribution. Thus while such networks are
vulnerable to divergent training vectors that are invariably
present in training samples, DBNN is able to assign low
probability estimates to such vectors. This is especially
significant in astronomical data analysis where one has to
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deal with variations in the data due to atmospheric condi-
tions and instrumental limitations. Another significance of
the approach is the simplicity in the computation. DBNN
can be retrained with ease to adapt to the variations in
the observations enabling one to generate more accurate
catalogs.

In the following section, we describe the use of the
DBNN technique to differentiate between stars and galax-
ies in broadband imaging data. We chose to illustrate the
capabilities of the DBNN by addressing the star-galaxy
classification problem for the following reasons:

1. A widely used benchmark implementation of the back
propagation algorithm is already available for tackling
this problem in SExtractor.

2. High quality imaging data has recently become avail-
able from ongoing optical surveys. The number of
sources detected by such surveys is large enough for
us to construct moderately large training and test sets
from uniformly high quality data. The data we use here
is publicly accessible and our results can therefore be
verified and extended by other researchers.

3. Construction of a reasonably accurate training set is
possible from visual examination, given our experience
with optical imaging data.

4. Separating stars and galaxies

The star—galaxy classification problem addresses the task
of labeling objects in an image either as stars or as
galaxies based on some parameters extracted from them.
Classification of astronomical objects at the limits of a sur-
vey is a rather difficult task, and traditionally has been
carried out by human experts with intuitive skills and
great experience. This approach is no longer feasible, be-
cause of the staggering quantities of data being produced
by large surveys, and the need to bring objectivity into
the classification, so that results from different groups can
be compared. It is thus necessary to have machines that
can perform the task with the efficiency of a human expert
(but at much greater speed) and with robustness in the
classification, over variations in observing conditions.
Processing the vast quantities of data produced by
new and ongoing surveys and generating accurate cata-
logs of the objects detected in these surveys is a formidable
task, and reliable and fast classifiers are much in demand.
Following the work by Odewahn et al. (1992), there has
been a growing interest in this area in the past decade.
SExtractor (Bertin & Arnouts 1996) is a popular, pub-
licly available general purpose tool for this application.
SExtractor accepts a FITS image of a region of the sky
as input and provides a catalog of the detected objects as
output. It has a built—in back propagation neural network
which was trained once for all by the authors of SExtractor
using about 10° simulated images of stars and galaxies,
generated under different conditions of pixel-scale, seeing
and detection limits. In SExtractor an object is classified
quantitatively by a stellarity index ranging from zero to
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unity, with index zero representing a galaxy and unity
representing a star. The stellarity index is also a crude
measure of the confidence that SExtractor has in the clas-
sification. A stellarity index of 0.0 or 1.0 indicates that
SExtractor confidently classifies these objects as galaxy
and star respectively while a stellarity index of 0.5 in-
dicates that SExtractor is unable to classify the object.
The input to the neural network used by SExtractor con-
sists of nine parameters for each object, extracted from
the image after processing it through a series of thresh-
olding, deblending and photometric routines. Of the nine
input parameters, the first eight are isophotal areas and
the ninth one is the peak intensity for each object. In ad-
dition to these nine parameters, a control parameter, the
seeing full width at half maximum (FWHM) of the image,
is used to standardize the image parameters against the in-
trinsic fuzziness of the image due to the seeing conditions.
In practice, some fine tuning of this control parameter is
required for obtaining realistic output from the network,
due to the wide range of observing conditions encountered
in the data. A scheme for carrying out such tuning is de-
scribed in the SExtractor manual.

Among other packages proposed recently for star-
galaxy classification in wide field images is NExtractor
(NExt) by Andreon et al. (2000). NExt claims to be the
first of its kind that uses a neural network both for extract-
ing the principal components in the feature space, as well
as for classification. The performance of the network was
evaluated over twenty five parameters that were expected
to be characteristic to the class label of the objects, and it
was found that six of these parameters, namely, the har-
monic and Kron radius, two gradients of the PSF, the sec-
ond total moment and a ratio that involves the measures
of intensity and area of the observed object were sufficient
to produce optimum classification. A comparison of NExt
performance with that of SExtractor by Andreon et al.
(2000) showed that NExt has a classification accuracy that
is as good as or better than SExtractor. The NExt code is
not publicly available at the present time (Andreon, per-
sonal communication) and a comparison with DBNN is
not possible.

4.1. Constructing the training set

The first requirement for the construction of any good
classifier is a complete training set. Completeness here
means that the training set consists of examples with all
possible variations in the target space and that the fea-
ture vectors derived from them are distinct in the feature
space of their class labels. In the context of star—galaxy
classification, this means that the training set should con-
tain examples of the various morphologies and flux levels,
of both stars and galaxies, spanning the entire range of
parameters of the objects that are to be later classified.
We decided to construct our training set from an
R band image from the publicly available NOAO Deep
Wide Field Survey (NDWFS). This survey will eventu-
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Table 2. Summary of the NDWEFS field used for constructing
training and test sets.

Field Name NDWFSJ1426p3456
Filter R

R.A. at field center (J2000) 14:26:01.41

Dec. at field center (J2000) +34:56:31.67

Field size 36.960’ x 38.367
Total Exposure time (hours) 1.2
Seeing FW HM (arcsec) 1.16

Table 3. Values of important SExtractor parameters used in
construction of the training and test sets.

Parameter Value
DETECT_MINAREA 64
DETECT_THRESH 3
ANALYSIS.THRESH 1.0
FILTER N
DEBLEND_NTHRESH 32
DEBLEND_MINCONT 0.01
CLEAN N
SATUR_LEVEL 49999.0
MAG_ZEROPOINT 30.698
GAIN 46.2
PIXEL_SCALE 0.258
SEEING_FWHM 1.161
BACKPHOTO_TYPE LOCAL
THRESH_TYPE RELATIVE

ally cover 18 square degrees of sky. The first data from
the survey obtained using the MOSAIC-I CCD camera on
the KPNO 4 m Mayall telescope were released in January
2001. We chose to use data from this survey because of its
high dynamic range, large area coverage and high sensi-
tivity that allowed us to maintain uniformity between the
moderately large training set and numerous test sets. The
training set was carefully constructed from a subimage
of the R band image NDWFSJ1426p3456 which has the
best seeing conditions among the data currently released.
Details of the image are listed in Table 2.

We used SExtractor as a preprocessor for selec-
tion of objects for the training set and for obtain-
ing photometric parameters for classification. The val-
ues of some critical configuration parameters supplied
to SExtractor for construction of the object catalog
are listed in Table 3. Saturated stars were excluded
from the training set by setting the SATUR_LEVEL
parameter. SEEING_FWHM was measured from the
point spread function (PSF) of the brightest unsatu-
rated stars in the image. The DETECT_MINAREA pa-
rameter was set so that every selected object had a di-
ameter of at least 1.8 times the FWHM of the PSF.
DETECT_THRESH was set conservatively to 3 times
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Table 4. Details of the regions used in constructing the train-
ing and test data sets. Stars and galaxies from NDWF10 were
used in training the network, while the other two data sets
were used to test the performance of the network after train-
ing. Each region was 2001 x 2001 pixels in size.

Data Label RA (J2000) Dec (J2000) Stars Galaxies Total

NDWF10 14:26:28.76 34:59:19.94 83 319 402
NDWF5 14:27:11.23 34:50:50.92 65 239 304
NDWF14 14:26:28.18 35:07:55.69 89 319 408

the standard deviation of the background which was es-
timated locally for each source. ANALYSIS_ THRESH
was set to a lower value to allow for more reliable es-
timation of the classification parameters we used. No
cleaning or filtering of extracted sources was done.
DEBLEND_NTHRESH and DEBLEND_MINCONT were
set by trial and error using the guidelines in the SExtractor
documentation. The following parameters were obtained
from descriptions of the NDWFS data products in the
NOAO archives — PIXEL_SCALE, MAG_ZEROPOINT
and GAIN. SExtractor computes several internal error
flags for each object and reports these as the catalog pa-
rameter FLAGS. Objects with a FLAGS parameter >4
were deleted from the training set. This ensured that satu-
rated objects, objects close to the image boundary, objects
with incomplete aperture or isophotal data and objects
where a memory overflow occurred during deblending or
extraction were not used.

The training set was constructed from objects satisfy-
ing the above criteria from a 2001 x 2001 pixel region of
the image described in Table 2. The image region we used
was selected at random. The objects were largely in the
Kron-Cousins magnitude range 20-26. Objects brighter
than this limit are mostly saturated stars which were not
used. Each object in the training set was visually classified
as a star or galaxy by two of the authors working sepa-
rately, after examining the radial intensity profile, surface
map and intensity contours. Less than 2% of the sources
were differently classified by the two authors. These dis-
crepancies were resolved by a combined examination by
both authors. It was not possible to visually classify 35
of the objects, and these were deleted from the training
set. All the deleted objects are fainter than magnitude
26. Some details about the training set, named NDWF10,
are given in Table 4. Visual classification of many of the
brighter stars was aided by the perceptibly non-circular
PSF of the image. After visual classification was complete,
SExtractor classification for all sources in the training set
was obtained. An object-by-object comparision of the vi-
sual and SExtractor classification showed that the latter
was successful in 97.76% of the cases in reproducing the
results of the visual classification (see Table 4). The num-
ber of stars in the training set is considerably smaller than
the number of galaxies because of the high galactic lati-
tude of the field and the faint magnitudes of objects in the
training set.
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4.2. Obtaining optimum parameters for classification

Once a training set is available, the next task is to se-
lect the parameters that the network will use for classi-
fication. We tested all available parameters extracted by
SExtractor for their suitability as classification parame-
ters. We also derived some new parameters from the basic
parameters obtained from SExtractor. For the classifica-
tion we sought parameters which were (a) not strongly
dependent on the properties of the instrument/telescope
and on observing conditions; (b) would not depend on
photometric calibration of the data, which is not always
available; and (c) resulted in the clearest separation be-
tween stars and galaxies. To meet the last requirement, we
plotted each parameter against the FWHM of the inten-
sity profile and identified the parameters which provided
the best separation. After extensive experimentation with
our training set data, we found that three parameters were
most suitable. These are:

1. Elongation measure: this is the logarithm of the ratio
of second order moments along the major and minor
axis of the lowest isophote of the object. For a star,
the ratio should be near unity. For our training set,
this ratio is different from unity because of the slightly
elliptical PSF.

2. The standardized FWHM measure: this is the loga-
rithm of the ratio of the FWHM of the object (ob-
tained from a Gaussian fit to the intensity profile) to
the FWHM of the point spread function for the image.

3. The gradient parameter (slope): this is the logarithm
of the ratio of the central peak count to the FWHM
of the object, normalized to the FWHM of the point
spread function for the image.

We trained the DBNN using the values for these parame-
ters for the visually classified set of stars and galaxies as
the training set. In Fig. 1 we show plots of the three fi-
nal DBNN parameters against each other, with stars and
galaxies marked differently. It is clear that excellent sepa-
ration between stars and galaxies is obtained.

4.3. Testing the network performance

We tested the network on 2 sub-regions (2001 x 2001
pixels each) of the NDWFSJ1426p3456 field. The cen-
tral coordinates of the two test set images are listed in
Table 4. Using a different region of the same field for test-
ing ensures that erroneous classification due to variations
in data quality is not an issue. As in the case of the train-
ing set, these sub-regions were also selected at random.
The object catalogs for the test sets were constructed us-
ing the same SExtractor configuration as for the training
set. DBNN marked some objects as boundary examples,
meaning that their confidence level was not more than
10% above the plain guess estimate (50%) regarding the
class of the object.

In test set 1 (NDWF5), 32 out of 336 objects were
deleted as they could not be classified visually. Of the
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Fig. 1. The figures show clusters formed by stars and galaxies in the feature space. Galaxies are shown as dots and stars as

stars.

remaining 314 objects, DBNN found 15 as marginal but
classified 10 of these correctly. Two objects were misclas-
sified. In test set 2 (NDWF14), 14 out of 422 objects were
deleted for which visual classification was not possible. Of
the remaining, DBNN marked 17 objects as marginal but
classified 12 of these correctly. One object was misclas-
sified. The results for the two test sets are summarized
in Table 5. The classification accuracy is marginally bet-
ter than that of SExtractor. The marginal superiority of
DBNN, in the test set data, is not significant if some al-
lowance is made for subjectivity in the construction of the
test set. However, the fact that DBNN can obtain high
classification accuracy with only 3 parameters as com-
pared to 10 (9+ 1 control) parameters used by SExtractor
is of some importance.

4.4. Effects of image degradation

An important consideration is to check the performance
of DBNN (and SExtractor) on low signal to noise images.

Table 5. Comparison of classification accuracy of the DBNN
and SExtractor on the NDWFS data. There is no entry under
DBNN for NDWF10, since this data set was used in training
the DBNN network.

Data Label Classification Accuracy Classification Accuracy

SExtractor DBNN
NDWF10 97.76%
NDWF5  96.05% 97.70%
NDWF14 96.32% 98.52%

In such images even visual classification becomes difficult.
In order to examine the effects of noise on the classifi-
cation, we have therefore chosen to degrade the training
image NDWF10 by adding progressively higher levels of
noise, rather than use additional low S/N data. We have
used the IRAF task mknoise to increase the noise level
of our training set. The level of noise was controlled by
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Table 6. Number of objects selected in the degraded images. The first line gives values for the undegraded data. The 4 degraded
images are in decreasing order of S/N ratio. The criteria for object selection were the same as those for the undegraded training

set image NDWF'10.

Image Background Objects with  Number of objects
mg > 25 Selected

NDWF10 (undegraded image)  879.0 313 402

NDWF104X5 175.8 313 402

NDWF103X5 351.6 2 49

NDWF102X5 527.4 1 37

NDWF10X5 703.2 0 30

Table 7. Classification accuracy of SExtractor and DBNN as the NDWFS image is gradually degraded. Objects that failed
with a confidence level greater than 60% are marked as real failures. Number of objects with R magnitude greater than 25 in

each set are shown in square brackets.

Image Marginal Objects | Marginally Passed | Marginally Failed | Real failures
DBNN | SEx DBNN | SEx DBNN | SEx DBNN | SEx
NDWF10 31 34 21 [17] | 31 [28§] 10 [§] 3 3] 0 6 [3]
NDWF104X5 | 31 34 21 [17] | 31 [28§] 10 [8] 3 3] 0 6 [3]
NDWF103X5 3 10] 3 10] 1[0] 0 0 1[0]
NDWF102X5 | 5 2 [0] 2 [0] 3 10] 0 0 1[0]
NDWF10X5 1 1 0 1 1[0] 0 1[0] 0

using progressively higher values for background counts.
The original image has a background of 879 counts. Four
additional images were created having a background count
of 20%, 40%, 60% and 80% of the original background.
mknoise was used to add Poisson noise to each of these
4 images, and they represent progressively higher levels
of background noise and lower S/N ratio as compared to
the original image. Note that the noise being added by
us here is in addition to the noise introduced during the
acquisition of the NDWF'S data (which is already present
in the original undegraded image). Sources are extracted
from the degraded images with the same SExtractor pa-
rameters used for the original training set. The number of
sources found in the degraded images are listed in 6. As
expected, the noisier the image, the lower was the number
of objects selected. The DBNN was not retrained; sources
in the degraded images were classified using the DBNN
trained with the original training set.

We have listed in Table 7 the performance of
SExtractor and DBNN on the degraded images. We find
that DBNN performance is slighter poorer than that of
SExtractor on the fainter sources. This may be due to the
fact that SExtractor uses the magnitudes at 8 different
isophotes as input parameters while DBNN looks for gra-
dients. For fainter objects, gradients are smaller, making
DBNN fail for a few faint objects. A factor in favour of
DBNN is that it was trained with possibly contaminated
training data (due to limitations of the humans who con-
structed the training and test sets) and can be retrained,
while for SEx, the training data was pristine (simulated)
and frequent retraining is not practical.

The second observation from the table is that, at
brighter magnitudes, DBNN produces more accurate clas-
sification on marginal objects compared to SEx. Also on
objects that produce high confidence levels, results from
DBNN are marginally better than those of SExtractor. It
is important to keep in mind that the the confidence levels
reported by a neural network do not indicate the difficulty
in visual classification by humans. The confidence levels
are parameter dependent and merely quantify the appro-
priateness of a set of parameters. The actual measures of
efficiency of a classifier are (1) the total number of ob-
jects it can classify with good confidence; a good classifier
should have a minimum number of marginal objects at all
magnitudes and (2) it should produce minimum errors at
high confidence levels. The table shows that DBNN does
at least as well as SExtractor in overall efficiency of clas-
sification on both these counts.

5. Discussion and summary

The results from the test data sets above indicate that
the DBNN classifier works as well as the widely used
SExtractor software. All instances of DBNN failure cor-
respond to objects that do not have a counterpart in the
training set or objects that are difficult (but not impos-
sible) to classify visually. In both test sets, there is no
instance where an obvious misclassification has occurred.

As mentioned before, in addition to the consistency,
the increase in speed of the training process is very sig-
nificant here. Our training procedure for DBNN on the
402 objects in the training dataset took 0.23 s on an
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Intel Pentium III processor running at a clock speed of
700 MHz. Such short training times are invaluable when
one has to optimally deal with large datasets that are col-
lected and processed over a significantly wide span of time,
demanding repeated retraining of the classifier to account
for variations in observing conditions and use of newer
and better parameters for classification. Data from large
surveys fall into this category. Also, unlike the back propa-
gation neural network (BPNN), since DBNN is based on
Bayesian probability estimates, it is immune to diverse
training vectors that often appear in the training set due
to noise in the observation. This means that the perfor-
mance of the network is likely to be significantly better
than the BPNN beyond the completeness limit.

In this paper we have illustrated the power of the tech-
nique by applying it to the star galaxy classification prob-
lem. The technique can easily be applied to all classifica-
tion problems that currently employ BPNN. For example,
by using the large number of photometric and spectro-
scopic parameters measured (for millions of objects) by
surveys such as the the Sloan Digital Sky Survey, it will
be possible to apply the DBNN technique to identify inter-
esting samples for study in the vast, largely unexplored pa-
rameter space. We are in the process of enhancing DBNN
to solve problems that involve regression.

The source code, documentation and the training and
test set images described in this paper may be downloaded
from the URL: http://www.iucaa.ernet.in/~nspp/
dbnn.html
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