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Unitary solutions of a class of stochastic equations (SDE) in Fock space with
time-dependent unbounded operator coefficients are constructed as a limit of a
random Trotter Kato product. Some special cases of quantum stochastic differential
equations are studied as an application. 47 1993 Academic Press, Inc.

1. INTRODUCTION

Some attempts have been made [1-4] to study the existence and
unitarity of solutions of quantum stochastic differential equations of the

form
dU=U[MdA"— M* dA +(iH—iM*M)dt]
U)=1,

(1.1)

where A, A" are the annihilation and creation processes in the boson
(symmetric) Fock space I'(L?*(R,)) and the coefficients M, H are either
bounded or closed or self-adjoint operators satisfying some further
conditions in some initial Hilbert space 4.

On the other hand, classical stochastic differential equations with
operator coefficients of the form

dU = U[ —iL dw(1) + (iH — 1L?) dt]
U(0) =1,

(1.2)

where w(¢) is the standard Brownian motion and L and H are generators
of contraction semigroups, have been discussed in the literature [S5, 6].
We are interested here in considering equations of the type (1.2) and
studying the unitarity of the solution in A® I'(L*(R, )). This is a special
case of Eq. (1.1) with M replaced by a self-adjoint operator L.
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In this section we start with some preliminaries of notation and basic
results about quantum stochastic integrals, the details of which can be
found in [2]. In Section 2, we prove an abstract theorem about unitary
solutions of a stochastic differential equation with time-dependent operator
coefficients, while Section 3 deals with the special case of equations like
(1.2). Section 4 considers briefly a simple application to one-dimensional
diffusion. As is common in quantum probability, we look upon this as an
algebra homomorphism between an initial subalgebra of #(/) and that of
Bh® M(L(R, ).

In Fock space I'(L*(R,)), the exponential vectors e(f), annihilation
operators a(g), and creation operators a'(g) are defined for f, ge L*(R )
as

TSPV S oo
VTRV

atgyetN)= (| &) f21 ) (et (13)
o/t el)
&

e(f)=10f®

a'(g)e(f)= s-lim (

We denote by & the linear manifold generated by exponential vectors. It
can easily be seen that & is dense in J(L*R,)) and «'(g) and a(g) are
adjoint to each other on &. The annihilation and creation processes are
defined as

A =alxr.n) and  A"()=a"(xp.n)

respectively, for 0 <r<oc. It is also easy to see that the Fock space is
isometrically isomorphic to the Wiener space L?(P) through the unitary
operator U: I'(L*(R, )) — L*(P) satisfying

(Ue(f))(w) = exp (j:fdw_ %f: 20 dt).

For details concerning the definitions of adapted, square integrable
processes and their integration with respect to the basic processes A(r) and
A'(t) we refer to [2]. But we need from [2, Proposition 27.1] the estimate

2

”(j F,(s) dA(s) + Fa(s) dA'(s) + Fy(s) ds) fe(u)
0

<240 5 [ F(5) felw))? dv,(5), (1.4)

0

i=1
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where the F,(s) are adapted square integrable processes, fe b, ue L3R, ),
and v, (¢) = [ (1 + [[u(s)II*) ds.

2. UNITARY SOLUTION OF AN ABSTRACT STOCHASTIC
DIFFERENTIAL EQUATION

We study the quantum stochastic differential equation
dv(t)=[—iL(t) dw(t)—LL(t)* di] V(1), Voy=1 (2.1)

on h® IN(L*(R,)), where # is a complex separable Hilbert space and w(¢)
is the standard Wiener process viewed as an operator process in the
symmetric Fock space I'(L*(R.)). We construct unitary solutions when
L(1) is a self-adjoint (but possibly unbounded) operator for each 12 0 on A,
under the following additional assumptions.

A2.1. (i) 32 < (,. D(L(1)?), such that @ is a core for every L(t)’
(j=1,2) and e'"* leaves & invariant for every positive ¢ and real «.
(i) C,(t,s)=(L{t)+ i)/ (L(s)+i)"'—1 are everywhere defined
bounded operators on # satisfying

IC, (s <Mt—s|  for j=1,2 and  1,5>0.

C,(t)=s-lim, (C,(¢t, s)/(1 —5)) exists uniformly with respect to r in
compact sets and {C,(t)},., forms a strongly continuous family of
bounded operators on A.

In this section we make the assumption A2.1 without repeating it any
further.

The method of solving (2.1) is very similar to what is done for the
deterministic case with time-dependent (unbounded) coefficients [7]. We
restrict to the case 0<r <1 without loss of generality. For each positive
integer k, consider the subdivision of [0, 1] into & equal parts of length 1/k
and write
j—1

Vs, s)=e — Wty —wi(s) L - 1)/k) if Tsssréi’ 1 <j<k,

and extend it by the propagation property
Vi, ry=V(t, s) Vs, r) if 0<r<s<egl. (2.2)

Before proving the strong convergence of V (1, s) as k — oo, we prove a
lemma. Set

Wit s)=(L(t)+ i) Vi(t, s)(L(s)+ )~ for j=1,2, O0<s<i<l.
(2.3)
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LEMMA 2.1. There exists constants N, independent of t, s,k and the
Brownian path w, such that

IWie s <N, for j=1,2.

Proof. Fix s, ¢, and k. Choose and fix a sample Brownian path w with
we C(R, ) and w(0)=0. From assumption A2.1(i) it follows that V (¢, 5)
maps & onto & so that the W are well defined on (L(s) +i)’Z, which is
dense in h by assumption. Let f e A, such that (L(s)+{)“fe 2. Then for
j=1,2, we have

Wilt, s) f=(L() + 1) V{1, sNL(s)+0) /' f

e ((32)e) (B (59
() )

(B2 (B (B

x (L(s)+i)~ f

k

<(1+¢,(H ) (24)

[k1]

W,{'l([, .S')= Z Vk(l, H)Cj (H’u_£> Vk(u’s)

ku=T[ks]+1

=<l +Cj<t, [—k[—]>) {Vielt,s)+ WEN L sy + Wit s)+ - )

where

and
[k 1 _
Wimtl e sy= Y Vk(t,u)Cj<u,u——) Wim(u, s),
ku=[ks]+1 k
for t<m< [kt] -1
Now, ||C,(u, u— 1/k}|| < M,/k, by assumption A2.1({ii). Hence

v TOIYS
WIS Y SIS M),
ku=[ks]+ 1
. o e z—s)2
i Y Hrw—s <m0 g
ku=(ks]+1 k

580-114:1-2
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and, by induction

(1—s5)"

/s nt
I, s < My

Substituting this estimate in (2.4), we get

s D) e ($ 3w
(1 (1 3,5 )

For k = max(M,, M,), we obtain

. XM
||W;(z,s)||<4<1+ 5 ;IJ!—)EN,. I

m=1
Observe that V (4, s) defined in (2.2) can also be written as

[k}
Vk(ta S)= H e*"[“‘(”\("'*’llﬁ‘klf’ wis v mik)] Limik) (25)

m=[ks]
for 0<s<r<1, where the arrow (<) indicates that the product is
computed keeping the factor with higher m-index on the left.

PROPOSITION 2.2. V(1 s)=s-lim,_ .. Vi (1, s) exists in h@ L} (R,))
uniformly in t, s for t,s in [0, 1].

Proof. On computing the difference V', — V, for k>n, one faces the
difficulty of having future dependent quantities, making it impossible to
apply Ito’s formula directly. To avoid this we partition the interval (s, 1)
and rewrite the difference with the convention, F(r)|’_ = F(h)— F(a),

Vielt,s)=V,(t )

[nr] ) ‘ tAim+1)n
— Z V ( ){e —i[w(min) — w(r))Lim/n) Vk(r, 3)} . (26)
= [ns] r=sv mn

Now observe that one can apply Ito’s formula for the terms inside the
braces and get

{efi[w(m,/n)f w{r)) L{mn) Vk(r s)}|l A{m+1)n
9

r=sv mn

—i[w{min) —w(r)] Lim/n) e~ ifw(r) — wi(s v [hkrl/k)L([kr]ik)

Lal

=e

tA(m+t)n

ka<sv

r=sv min
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tA(m+1)n
— ’.f ' e’ ifwmin)  wir)]L{min) {L <[kr]> _ L (T)}
s v mn k n

x V. (r, s)dw(r)

1 tA(m+1)n
e iwiminy— w(r)} Limin)

2

sV omin

(e (2 1 (B2Y o (%) (B2)) i
=if e e (e (s (50 )

X Vi (r, s) dw(r)

B % J_:: ("r'n: 1)in ef—i[wi'";‘"' — w(r)] L(min) {(L (%) + I)Z
S RREER T

A (m+1)n

—i[wlmin) — wir)1Ltmin) C 1’1 [kr]
e 1 N k

s v min

X {Cl ([_k_r_]’ ") + 1} (L(r)+ i) Vi(r, s)dw(r)

k
A (m+1)n
‘_1J> e Silwiminy — wi(r)] L(min) {C (_’_ﬁ [kr]>
2 s
2 s v omin n k

—2C, <m [kr])}{c2 ([kr], r> + 1} (L(r)+ )2 V,(r, s) dr
n k k

tA(m+1)n
- i[wimin) u(r)]L(mn)C <m [k"])

b
s v omin n k

x {Cl <££r_]_, r) + 1} W, (r, s)(L(s)+ i) dw(r)

=i

k
1 tA{m+ 1)n o . ) m [kr]
_ ifwlmin) wir)]Limin) _—
Ynn € (550
k
2, (’" [1;:]>}{C2<[kr],r>+l} W(r, s)(L(s) + i) dr.
n

(2.7)

Applying this expression on fe(u) with fe 2 and ue L*(R, ) and using (2.6)
and (1.4) one gets the estimates
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o (75 Ha ()

HLVilt, s) =V, (1, 5)] fe(u)ll

[nt] A (m+1)in
<Ku) Y { dv (1)

s v om/n

m=[ns]

IL(s)+ ) f1?

o[l () e ()]

{
X {CQ (—[—m, r) + 1} Wi, s)]

x Wir, 5)

tAim+ N)in

X dv,(r)

k

where K(u) is a constant depending only on u. By assumption A2.1i),

1 1 M, .
M,SM,»( )=7’ since k>n.

m [kr] m  [kr]
LI ) <[54 VR
Hence,
Vi1, $) =V, (1, 5)] fe(u)l
K, . 2 . 2y1/2
<KD a sy i 1 UL+ 7 100
[ne} 1/2
X m;‘m {vu (r A ———m: 1) -y, (s v %)} .
But
[ne] 1/2
> {v" (t A M) G (s Y rﬁ)} / <n'?v, (1) — v (s)]"?
m=[ns) n n

by the Cauchy-Schwartz inequality, so that

IV ilt, )~ V(2 5)] fe(u)l
K (u)

N

thereby proving the strong convergence of V(¢, s) fe(u). Convergence is
uniform in s and ¢ as |(L(s)+ i) f1*+ (L(s)+ i) f]|* are uniformly
bounded with respect to s. |

<

[vu(1) = vu($)TULS) + D) LI + L)+ D)2 F12)72 0 (28)
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The set { fe(u)| fe2, ue LA(R,)} is total in h®@ I'(L* (R, )). Also for
every k, the unitary operator family V, (¢, s) is strongly continuous with
respect to ¢ and s. So it follows that F(¢, s) is an isometry and is strongly
continuous with respect to both ¢ and s in the compact interval [0, 1].

Moreover, the V(1 s) are adapted processes satisfying the propagator
property

V(t,sy=V(t,r) Vir,s) for 0<s<r<t<1 and V(s s)=1I

In order to show that V(s s) satisfies a quantum stochastic differential
equation, we need an elementary technical lemma.

LEMMA 2.3. Let X be a Hilbert space and let A, A:[0,1] > B(X")
be uniformly bounded for ke N. Assume furthermore that f:[0,1] > A
is continuous and s-lim, _ . A, (u)=A(u) uniformly in u. Then
s-limy _, ., A, (u) f(u)= A(u) f(u) uniformly in u.

Proof. By the uniform continuity of f, for a given £ >0 we can choose
n such that if x, ye [0, 1] and |x — y| < 1/n, then

1L/ (x) =) <f§,

where B is a uniform bound of the family {A,(u), A(4)}. Now choose &,
such that, for k >k,

H(Ak(u)—A(u))f(i/n)n<§, for 0<i<n and for all u.

We then have, for k >k,

Il k() f ) — Alu) flu)] = “(Ak(u)—A(u)) (f(u)_f<[nu]>>u

n

+“(Ak(u)—A(”))f( )”
s ()] +5

<2B- % + % <e, uniformly in«. |}

L]
n

< (Ag(u) — A(u)) ’

PROPOSITION 2.4. The V(t,s) defined in Proposition 2.2 maps & into
D(L(1)*) and satisfies on Z the stochastic differential equation

d V(t, s)=[—iL(t)dw(t)— SL(t)* dt] V(1 s) for 0<s<r<1
with V(s, s)=1
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Proof. First observe that

LRI (A0 Gl S DA
L i=[ks]+1 “\k Nk k “\k’ k

and, using the definition of strong Riemann integral,
' . i i i 1
[roncmrenaspim 3 {(e0)o () (o)t

Given a vector fin h® I'(L*(R, )) and ¢ >0, choose k() such that

\
5.

B G5 )
(ef)ofd) )l

forall k> k(). (2.9)

Now for any ue[s, t],

WL S~ | V) G Vi s) dr f

<

S m

V,(t, u) (C,(u, u—%) k) Vilw, s} f— V(1 u) Ci(u) V(u, s)f“

SVt w) = V(e u)) Ci(u) Viw, s) £

+ ” Vit u) <C_,-<u, u—%) k— C,(u)) V(u, s)f“

+ “ Vi(t, u) C_,(u, u—%) k(Vi(u,s)— V(u, s))fH.

Here, observe that in the first term s-lim, _ _ (V,.(¢, u})— V(t,u))=0
uniformly in « and C;(x) V{(u, s) f is uniformly continuous in . In the
second term V,(1, u) is uniformly bounded, s-lim, ., . (C,(u, u—1/k)k —
C;(u))=0 strongly, uniformly in u, and V{u, s) f is uniformly continuous
in u. Finally, in the last term V, (¢, u) C,(u, u— 1/k)k is uniformly bounded
and s-lim, _, (V,(u, s)— V(u, s)) =0 strongly, uniformly in ». Hence using
Lemma 2.3 we can choose k() such that each of the three terms above are
smaller than ¢/4, uniformly in u, for &k > k(). Hence from (2.9),

N Wi s) S [ Vit r) Cr) Ve, s) dr f

kel 3¢ 1 3¢

Z‘(I—S)SB,
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s-lim W{'(s, s)f=fl V(t, r) C,(r) V(r, s)dr=W7'"'(1,s),

k— x

the convergence being uniform in ¢ and s. Since the integrand is strongly
continuous, W/'(¢, 5) is also strongly continuous in ¢ and s. Inductively,
assume that

s-lim Wim(1, s) = Wf-"'(r,s)zf V(1. r) C,(r) W*™=(r, s) dr

k— x

with properties as above, then arguing as above we obtain

s-lim Wi +1(r, s)= Wim+ (s, s)=_[ V1, r) C,(r) WH™(r, s) dr

k — x

with continuity properties as before. We can rewrite (2.4) as

[kr]— 1
Wyﬁ(t,s)=(l +C_,-(1, %))[ y Wi‘”’(t,s)](l+C,<[/;(s],s>),

with W/(1,s)=V,(1,s) for j=1,2. We have from assumption A2.1(ii)

that
. [ks]
im [ (5] =0
uniformly in s. Hence
' {— m M'-"
il <= M i 0<si<,

m! m!

and as the series 3, (M"/m!) is summable independent of k, ¢, and s we
get

[kt] -1 o
s-lim Y Wim™ns)= Y W (1, 5)= W1, s),
k= o m=0 m=0

uniformly in 7 and s which implies

s-lim Wi(t, s)= W'(z, 5)
k= o

uniformly in ¢ and s.
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Let fe &, then for each fixed Brownian path w, V,(1, 5) fe D and

ls(-lim (L) + 1) V(s s)f= i-lim Wi, s)(L(s)+ iy f=W/(t, s)(L(s)+ i)'f.

Since (L(t)+ i)’ is closed and s-lim, _ . V,(t, s) f= V(1, s) f, we get
V(t,s)fe DU(L(2) +i))
and (2.10)
(L2} + ) V(L 5) f= W1, s)L(s)+ i) f VieD.

Also for ue L,(R, ),

Vi1, 5) fe(u) — fe(u)
=s-lim Vi1, 5) fe(u) — fe(u)

k— oo vy

) s

=s-lim l{(—i) [Cl (M, r> + L{r}{(L(r}y+ 1)~ ']

k— 2 vy k

X (L(ry+ 1) Vi (r, s) dw(r)

_.%(Cz <[—1‘Z—], r) —2iC, <[/;'<r]’ r) (L(r)+ 1) '+ LOXL(r)+ )7 ?)

=s-lim ’ {( —i)L (_[ﬁk’_]> Vi(r, s) dw(r) fe(u)

X (L(ry+i)? V(r, s) dr} fe(u)

—olim [’ {(_;) [c, ([k’], r) + LOr)(L(r) + i)']

k— oo dg k

X W (r, $)(L(s)+ i) dw(r)

- <c2 ([—’;’l r) _aic, ([’Z], r) (L) 4+ 1) "+ LUP(L) + 1))

x W2(r, s)(L(s) + i)? dr} Se(u).

Note that |C([kr)/k, r)| <M, |r—[kr)/k| <M,k -0, L(r)(L(r)+i)""
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(L(r)+i)~"and L(r)*(L(r)+i) * are uniformly bounded, s-lim, _ , W/(r, 5)
= W/(r, s) uniformly in r, s. Thus we get by (2.10)

Vi, s) fe(u) —fe(u)
= [ D LOWLEY + 7 W L)+ ) dinr)
— S L(r)A(L(r)+0) "2 W2(r, s)L(s) + i) dr} fe(u)

=J' L= i) L(F) V(r, ) dw(r)— SL(r)? V(r, 5) dr) fe(u),

d V(t,sy=[—iL(t)dw(t)—L(z)* dt] V(s s). 1

As mentioned in the Introduction, we are interested in the unitarity of
V(1, s) and for this we prove the convergence of V}(t, s). We introduce the
dual cocycle following Journé [8] and Mohari [9]. Define

o w)—w(l—n,  0<i<I
"“)_{w(r), 1>1

and

Then we note that

0 {wu)—w(l—z), 0<I<1
W =
‘ w(1) (21,

and note that W is again a standard Brownian motion and we can apply
[to’s formula with respect to .
From Eq. (2.5) by taking the adjoint we have

[kt]
V:(t, S)= 1_[ ei[w(l Adm 4 11k ~ wis vme‘ki]um‘kl’
m=T[ks]
ie.,
{kEY
V;:(t, S) — 1_[ ei[\?(f A Bk (v (o 1k Lk = Vk(s;’ i’)’
m=ki}

where we have defined ~ by m=k—m, L(1)=L(7), and {x} is the
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smallest integer greater than or equal to x. We have also noted that the
transformation ¢ — 7 changes the order 0 <s <1< 1 to 0<7<5< 1 and that

(svTN—W\ﬁ and ! m+ | N—? |
=5n n T =1V =

Equivalently defining

{ki}

1’7’(“ 5) = ﬁ QIR A myky s v m - Lk f (
,5) =

m= {ks}

i:—) for 0<s<rx]

just as for V,(t, s) except for a sign change (of —i to +J) and { }, W, and
L replacing [ ], w, and L, respectively, we make the estimates as we did for
Vi(t,s). The change from [ ] to { } is minor and does not affect the
estimates as kK — oo, and we obtain the convergence of ¥,(t,s). Hence
V.(5, )= V1, s) will converge strongly, in which case the limit must be
V*(t, s) and therefore V(z, s) must be unitary. Also, the propagator V*(1, s)
satisfies the differential equation
d,V(t, s)*=V(t, s)* [iL(t) dw(r) — 1 L(¢)? dt], 0<s<r<l

(2.11)
Vis,s)=1
Combining the above results with Propositions 2.2 and 2.4, we have

THEOREM 2.5. Defining V,(1,s) as in (2.2), V(t,s)=s-lim,_ . V,(¢, s)
exists in h®1"(L2(IR+)) uniformly in t,s for t,s5 in [0, 1]. Furthermore,
V(t,s) is a strongly continuous (both in s and t) family of unitary operators
satisfying the quantum stochastic differential equation

d,V(t,s)=[—iL(t)dw(t)— SL(t)* dt] V(1, s) for 0<s<t<cc
with V(s,s)=1
We also have

THEOREM 2.6. There exists a unique unitary solution of the quantum
stochastic differential equation (2.1),

dV(t)=[ —iL(t)dw(t)—SL(¢)> dt] V(1) Vi0)=1, 0<i< o,

with VN2 NLY R, )< D(L(t)))Q I'(LXR,)). The solution is also
strongly continuous in t.
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Proof. The existence of a strongly continuous unitary solution is clear,
once we put

V(t)=V(t,0) for 0<r<1

and use Theorem 2.5.

Now suppose V,(t) is another unitary solution of the above differential
equation, with V,(1(Z2 ® (LR, )))c D(L(t)’)® I(L* (R, )), then by
quantum Ito’s formula [2],

V) fe(u), V(1) ge(v)) — { fe(u), ge(v))

= [ <=L (5) V(5) fetu) V1(5) ge(w) (o) + di(s)
+ L CALOY V19) felw, V(s) getw) ds
+ [ CHs) fetu), —iL(s) V() ge(w) (i) + dofs)
+ [ V) fetu), = 3L V(9) gelo) > ds

1 L= L) V) fetuh, (=) L(5) V() gelw) ds

for f,ge2, u,vel*(R,),0<1<1
=0.

Hence V*(t) V(1) ge(v) for ge % and ve L*}(R, ), ie., FV*)V,(¢+)=1, but
V(¢) 1s unitary, so V(1) = V{(t), proving uniqueness.

3. A SpeciaL CASE

In this section, we apply the results of the last section to obtain unitary
solutions of the quantum stochastic differential equation,

dU(t)= UL dw(t)+ (= LL2 +iH)dt],  V(0)=1 (3.1)

on h® I'(L*(R,)), where L and H are, possibly unbounded, self-adjoint
operators on /.
In this section we assume

A3.l. (i) 32 < D(L?) such that & is a core for L/, j=1, 2, and 2 is left
invariant by ¢ and ¢'*' for every re R.
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(ity H, [L,H] and [L, [L, H]] are L-bounded, where the second
and third expressions have to be interpreted as the L-bounded extensions
of the associated forms on D(L).

We set
L(ty=e""Le """, (3.2)

Lemma 3.1, Let L and H satisfy A3.1. Then L(t)=e™"'Le """ satisfies
assumption A2.1,

Proof. 1t follows trivially that L(¢) satisfies assumption A2.1(i) by
assumption (i) above.

The proof of the second part is by direct computation and all the
domains are just right by virtue of assumptions.

It is clear that L(r) is essentially self-adjoint on 2. Hence the (L(z)+ i) 7
are bounded operators on i. We also have

(L) +i) /=™ (L+1i) e " for j=1,2.
Now for s< ¢,

C,(t,s):_[ M iH, L+ il L+i) e ™ e (L+i)e H(L(s)+1i) 'dr

K

and writing = |i[H, L+iJ(L+ )", and a(t, s)= | C,(1, 5))| we get

x(,$) < [ NL)+iNL() +i) ) dr
<p[ 11+ Colrosl dr
<p {(r —8)+ f’ a(r, s) dr}.

Fix s and take k(¢) = (t—s)+ [ a(r, s) dr for 1> s, to obtain

kK'(ry=1+4a(r,s) <1+ Bk(r).

Solving the above differential inequality with initial value k(s)=0, we
have

k(?) <f P D gy,



SDE IN FOCK SPACE 27

Hence a(1, 5) < k(1) < Peb(t —s) (as 0<s <1< 1), ie, ||Cyt, 5)| S M (1 —5)
for some constant M,. We rewrite C,(1, s) as

Coltys)= [ &7 iLH, (L+i)2Y(L+i) 2 e ™ (L +iY e " (Ls)+i) 2 dr,

vs

and note that
[H, (L+i)WL+i)?
=L+, [H (L+DINL+D *+2[H (L+HUL+1) 1,

so that [H,(L+i)*](L+i)"% is a bounded operator by assumption
A3.1(ii). Let 8= |[H, (L +i)*J(L + i) 3| and (1, s) = ||Ca(t, 5)|. Then

W6, 5)<8 [ (LI + 2 (Lis)+ Dl dr

<o(r—s)+ J" v(r, s) dr.

As before this leads to
1Co (e, s) < My(1—s),
for some constant M,.

To prove that the second part of the assumption A2.1(ii) holds, observe
that

iLH, (L(y+ 0/ (L() +0) /=™ {i[H, (L+i)J(L+i) '} e ™,

which is bounded uniformly in ¢ in norm and is strongly (uniformly)
continuous in . Also note that

H(L(s) + i) = (L) + D) 7l = [(L(1) +8) 7 C, (1, 5)]
SIL+D) 7 M(t—s)—>0, as sTr

Now,
(t—s)"'Ci(1,5)

s (€L i) e Y (L4 i)
:el 5
(r—s)

}(L+i)’e' iHs

e | S [ e G L iYL ) )

xe~iHr{1 + Cj(r, 0)}] e—le'
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Since ||C;(r, 0)|| = 0 as r —» 0 and since i[ H, (L +{)’](L + ) ’is a bounded
operator by hypothesis, the

slim {(Ils)fo” e GLH, (L+1) (L +i) )y e ™ {1+C,(r, 0);}

exists and equals i[H, (L +i)’](L +{) ’. Hence the result. |

Immediately we have the theorem.

THEOREM 3.2. Assume A3.1. Then there exists a unique unitary solution
of the quantum stochastic differential equation (3.1),

dU(t)= U()[iL dw(t) + (—$L* + iH) dt], U)=1,

with U2 @ NLY R, ) D(LY)YQ IN(LXR,)). The solution is also
strongly continuous in t.

Proof. Lemma 3.1 ensures that we can apply Theorem 2.6 to obtain a
strongly continuous unitary F/(¢) satisfying

dV(t)=[—iL(t) dw(t)— SL(t)> dt] V(1) Vio)=1

Clearly V*(t) is strongly continuous, unitary and since by Theorem 2.6,
VN ® NL3(R,))) € D(L(1)*) ® I'(LXR,)) it satisfies the adjoint
equation

dV*(ty= V*()[iL(t) dw(t) — LL(1)2 d1],  V*(0)=1.

Now set U(t)=V*(t)e™ and verify that U(r) satisfies the required
differential equation. Uniqueness follows as before. ||

4. APPLICATION TO ONE DIMENSIONAL DIFFUSION
In this section we demonstrate a simple application of our results to one

dimensional diffusion. Let a be a real valued C* function on R with «'
bounded. Consider the autonomous system

VLD gy o0, v =x, acR @1

The properties of solutions of such systems are well known and we have

PROPOSITION 4.1. Let a and Y, be as above. Then,
(i) W, defines a group of C™ diffeomorphisms of R.
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(i) For every a€ R, define U, on L*(R) by
dyr ,(x)

dx

U, f(x)= ’ JW.x),  Vo=1I (4.2)

then U, is a group of unitary operators in L*(R).
(iif) U, leaves C§ (R) invariant for every a.
(iv) Let L be the self-adjoint generator of U,. Then C;(R) is a core

Sfor L and Lf=XaP + Pa)f for fe C;(R), P being the momentum operator
(—i(d/dx)).

Proof. (i) As a' is bounded a is globally Lipschitz. Now apply
Theorem 4.21 of [10, pp.44-50] to obtain the group of C> diffeo-
morphisms .

(i1) This is clear from (i) by direct computation.

(iii) Let fe CF(R) with support(f) < K, where K is a compact subset
of R. Then from (4.2) it is clear that support (U,(f))<y_ '(K) and as ¢,
is a diffeomorphism ¢ '(K) is compact.

Also _observe that dy,(x)/dx=exp([;a’'(y4(x))dB)>0, and hence
VA (x)/dx| is C* and consequently U, fis in Cg(R).

(iv) Cy(R)c2(L)and Lf=i(aP+ Pa)ffor fe C&(R) is clear from
direct computation. From (iii), ™" leaves CJ (R) invariant for every real
a and hence C5(R) is a core for L (see Theorem VIIL11 of [117]). 1

We also need essential self-adjointness of L? on CJ(R).

LemMMA 4.2, Let ae C*(R) with a>0, a’' and aa” bounded then Cg (R)
is a core for L* (L is defined as in Proposition 4.1).

Proof. An easy computation shows that for fe CI(R),

d d
Lf(x)= e p(x)— f(x)+q(x) f(x),
X dx

where p=4a” and g = — (2aa” + a’?). It is clear from assumptions on a that
p is strictly positive and g is bounded below. Now Theorem XII1.6.15 of
[12] gives the required result. [

By replacing the function a by a real valued Cg function b in (4.1) we
obtain another group of diffefomorphisms n,. Let ¥, be the corresponding
group of unitaries from Proposition 4.1 and A be its self-adjoint generator.
In order that L and H satisfy assumptions A3.1 we make the following
assumptions on «a and b.
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Ad.1. a, b are real valued, ae C*(R), a(x)> A >0 for some 4, a’, and
aa” bounded, and be C; (R).

LemmAa 43, On CF(R), H, [L, H], and [L, [L, H]] are L bounded.

Proof. For fe Cy(R), observe that

(ab’ — ba’)

2a /

b
Hf = <;> Lf+ (=)

Now as a is bounded away from zero and as be C°, L boundedness of H
is clear. In a similar way [L, H] and [L, [L, H]] are also seen to be L
bounded on C(R) by looking at their actions on C{ functions. ||

THEOREM 44. Let L and H be the self-adjoint operators on L*(R)
defined above with a and b satisfying the assumptions A4.1. Then there exists
a unique unitary process U(t) satisfying the quantum stochastic differential
equation

dU() = UL dw(t) + (=32 + iH)dr],  U@©)=1  (43)
on the domain CJ(R)® I'(L* (R, )).

Proof. From Proposition 4.1, Lemmas 4.2 and 4.3 we know that L and
H satisfy assumptions A3.1. Hence by Theorem 3.2 we have the required
result. ||

Let .o/ be the algebra of bounded twice continuously differentiable
functions C3(R). Define j,: o — B(I'(L*(R . ))) by

Ji(@)=U(1) pU(1)*, (4.4)

where we denote by the symbol ¢ also the operator of multiplication by the
function ¢ e C3(R).

THEOREM 4.5. The homomorphism j, defined above is a quantum
stochastic flow satisfying

dj(¢)=jlad’) dw(t) +j(3a°¢" +c¢') dt, (4.5)

where c=b+ Saa’. Moreover the family {j(#)} is commutative.

Proof. That j, satisfies the required quantum stochastic differential
equation is seen from computing dj,(¢) using quantum Ito’s formula [2].
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The commutativity of the family {/,(¢)} is clear as

Jd¢)=slim Vi(z, 0)* e "Mg(x) eV (1, 0)

=s-lim V, (1, 0)* ¢(m (x)) V(2 0)

k — oo

= i‘lim ¢(¢wm — w(Cke1k) © T ke )k © Yo o-o T ikel/k® 7,(x)). (4.6)
- oL

Then j,(¢#) commutes with any multiplication operator and hence is itself a

m

in
m

fir

ultiplication operator. |}

It should be remarked that (4.6) and also the very construction of V(¢, s)
Section 2 is in a sense, a random Trotter-Kato product formula. One
ay see [13] for some results in this direction.
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