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Abstract. The representation theory of the groups S0(5), S0(4, i), SO(6) and 
S0(5, t) is studied using the method of Master Analytic Representations (MAR). 
It is shown that a single analytic expression for the matrix elements of the generators 
of SO(n 4- 1) and SO(n, i) in an SO(n) basis yields all the unitary representations 
(for n = 4,5); and that the compact and non-compact groups have essentially the 
same anMytie representation. Once the MAR of a group is worked out, the search 
for the unitary irreducible representations is reduced to a purely arithmetic opera- 
tion. The utmost care has been exercised to conduct the discussions at an elementary 
level: knowledge of simple angular momentum theory is the only prerequisite. 

Introduction 

In  the course of a study of the unitary irreducible representations of a 
variety of groups we have discovered that, in all cases where the represen- 
tations have been analyzed in detM1, in every linear representation of the 
(locally compact) Lie algebra, the matrix elements describing the represen- 
tation was a specialization of certain analytic functions. We refer to this 
general representation as the Master Analytic Representation (MAIL). I t  
provides us with a method of studying the representations of various 
noneompact groups. In this paper we apply this method to study the 
representations of the groups S0(5),  S0(4, 1), S0(6)  and S0(5, 1). 

The plan of the paper is as follows: in Sec. 1 we study the MAR for 
SO (5) in an SO (4) basis and deduce all the unitary representations of the 
SO (5) group [1 ]. An elementary diagramatie analysis for this purpose is 
developed and exploited. We then use the Weyl trick [2] to write down 
the MAR for the de Sitter group SO (4, 1) and specialize it to find all the 
unitary irreducible representations of SO (4, 1) and of its covering group 
[3]. Sec. 2 deals with the unitary representations of the S0(5, 1) group 
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and its covering group. The MAR of the S0(6) and the S0(5, 1) groups is 
labelled by  three parameters. The values of these parameters which 
furnish the unitary irreducible representations of the covering group of 
S0(5 ,  1) are obtained, thus furnishing a complete catalogue of these 
representations. This is a complete solution to the problem since the 
matrix elements of all the generators are known explicitly. We believe 
that  these results are obtained here for the first time. 

The earliest use of the idea of analytic continuation is due to DInAC [4]. 
Various authors have recently carried out studies in representation theory 
which make use of some of the ideas of MAR. Particular mention must be 
made of the work of BA~VT and FnoxsD~n [5], HEnMA~ [6], and HOL- 
MAN and BIS, DEXHAn~ [7]. The method of MAR have been used by one 
or other of the present authors in other investigations [8] and the theory 
was announced at the Third Coral Gables Conference [9]. An account with 
application is conta'med in a thesis by  one of us (J .G.K.) [10] ; and amore 
detailed presentation of. the method of MAI~ is given in another paper [I 1 ]. 

I. Master Analytic Representations of the Orthogonal and Pseudo- 
Orthogonal Groups in Five Dimensions 

The unimodular, real orthogonM group in n dimensions, SO(n) [12], 
1 

is generated by -2- n (n - -  1) generators 

A ~  = - -  A~ ~, ~, fi = 1 . . . .  n (I.1) 

which obey the commutation rules (C. R.'s) 

-- i [A~, As, ] = g~Azg + gazA,s-- g~vA~-- g ~ A ~  (1.2) 
with 

ff~ = ~ .  (I.3) 

The SO(n) groups have the feature tha t  within any unitary irreducible 
representation (UIR) of SO (n), the SO ( n -  1) subgroup labels uniquely 
specify a state - -  tha t  is to say, if we reduce a UIR of SO(n) with respect 
to SO(n--  1), each UIR of SO(n--  1) will occur at most once. 

We shall obtain the UIl~'s of the covering group of S0(4, 1) [3] by 
the method of Master Analytic Representation (MAR) from the UIR's  of 
the covering group of S 0 (5) [1 ]. The group S 0 (5) has ten generators, six 
of which are generators of the SO (4) subgroup, and the remMning four 
transform as a four-vector with respect to this SO (4) subgroup. We can 
consider the (covering group of the) SO (4) subgroup as a direct product 
of (the covering groups of) two SO (3) subgroups and use these two sets of 
S0(3)  labels to classify the states within an UIR of S0(4) .  In this basis 
the four-vector is a combined spherical tensor of rank 1/2 with respect to 
each of the two S0(3)  subgroups. The advantage in using this basis is 
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that the "magnetic quantum number" dependence of the matrix elements 
{M.E.) of the extra generators of S0(5) wilt be given by the usual 
Clebseh-Gordan (C. G.) coefficients of SO(3). ~ we had used the S0(4) 
labels directly, then this magnetic quantum number dependence would 
be given by a C.G. coefficient of S0(4), which is a little more difficult to 
handle [11]. In this section we shall use this SO (3) ® SO (3) basis for the 
analysis of the UIR's of S0(5) and S0(4,  1). 

We rewrite the C.R.'s (I.1) for the Lie algebra of S0(5) as follows: 

[Xm,, X,n~] = - - / 2  C (111 ; m 1 m 2m ~ ÷ m2) X n ,  + ~ 

[Ym,, Y~j = - - V 2 C ( l l l ; m l m 2 m l  +m~) Ym,+~n~ (I.4) 

[x~,, y,,.,,] = o 

[x,,.Q~,,,,j- Y~-c(1 ' ' ) 2 -2- -2- ; m m l m  + ma Q'~ + ,~,,~n, 
(I.5) 

[Y~, Qm, mJ = -- V~f c ( 1 1 - 1  ; mm2m ÷ m2) Qm, m + m, 

( / '  ' o  ' ) ( ½ ~  ' ' )  [Q~,~,Qm~m6]=41C(-~ Y ;miml0  C ~ l ; m z m z m ~ +  m 2 Y~,+~,& 

(,, , ) ( 1 ,  ) } 
+ C ~ -~ - l ;  mlmI ml + m ~ C -~-~0;m~m~0 X~,~+,~ . (I.6) 

Eqs. (I.4) imply that X~ and Y~ generate two commuting SO (3) groups. 
Eqs. (I.5) imply that Qm,~' is a combined spherical tensor rank 1/2 with 
respect to each of the SO (3) groups generated by X~ and Y~. Eq. (I.6) is 
characteristic oi the semisimple structure of S0(5). 

Representations o] SO (5) and its Covering Group 
We are interested in hermitian representations of the 80(5) Lie 

algebra; this implies 

Q+n = (--1)~-~Q-~,- . .  (1.7) 

We introduce a basis labelled by the quantum numbers (jim1) pertaining 
to a UIR of the X~, and the quantum numbers (j~ ms) pertaining to a 
UIR of the Y~: 

Ijlj~m1*~> • ( I . 8 )  

The hermiticity requirement (I.7) implies then: 

(I.9) 
= (--1) ~-~  (jlj2m~m21 Q - ~ , - ~  h~2mlm22 • 

The Wigner.Eckart theorem as applied to the two S0(3) subgroups 
enables us to factor out the (m~m2) dependence of the M.E.'s of Q as 
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fol lows:  

(l~12mlm~l Q~,ljlj~.m~m2)= C i l~? l ;mlmm~ ~12~'12; m2nm2 (I .10) 

(J; J~il q I!Jli2) . 
Le~ us  def ine:  

(I.H) 

1 . 1 . . 

O n  a c c o u n t  of (1.7) we  t h e n  h a v e :  

[(211 + 2) (2j2+ 2)/(2j~ + 1) (2j2+ 1)]1/~ a(]lj~) = d* (A+ 
I 

(I.12) 
1 . 1 

[ (2 /1+  2 ) (2 j2 ) / ( 2 j t+  1 ) ( 2 ] 2 +  1)]l/2b(]lj~) : - - c *  (Jl + ~ % - -  ~ )  

So we  are  left, w i t h  t w o  u n k n o w n  r e d u c e d  M.E., a (]t]2) a n d  b (Jl]~). We 
ske t ch  be low t h e  m e t h o d  for  o b t a i n i n g  t h e m .  

W e  cons ider  t h e  C .R .  

[Q-II2-112, Ql121t2] : - -  2 (X 0 + I7o) (I .13) 

a n d  s a n d w i c h  i t  b e t w e e n  t h e  s t a t e s  [hi~mlm2) a n d  <]~]~m~m~[. F o r  
]1 = Jl + 1, ]~ = J2, we  get ,  us ing  (I.10) a n d  (I.11) : 

a(ylj~ ) _ [  2]~ ]112 b(]l]2) (1.14) 
a (]l -I- 1 . 1 " 

\ 

~'or if = J~, J~ = J 2 - 1 ,  we get: 

b (jl]2) = [  2 ] ,  ]112 g(Jl J2) (1.15) 
1 1 • 

W i t h  ?'~ = h - -  1, j~ = j~, we  ge t :  

d(jl)2) __ [ 2]~ ~- 2 ]1/2 c(jl j~,)  (I .16) 
1 1 " 

C o m b i n i n g  (I .12),  (I .14) a n d  (I .15),  we  f ind:  

]a(jlj2)12__(211+3) (2j~+1) a (  1 _~_)2 
(2]i ~- 2) (2jl ~- 2) J l +  ~ ,  72 - -  . (I .17) 

S imi la r ly ,  (I .12) ,  (I .15) a n d  (I .16) l e ad  to  

ib(y~j2)12 (2j~+ 1) (2i~--1) b [" 1 , .  I~F - (2j~+2) ~2j~) ' [ h - - g  ~2 - -~} [  • (1.18) 
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I t  is advan tageous  a t  this point  to change variables and  define 

x = j l  + j ~ +  1 

A (x, y) ~ la(]~j2)[ 2 

B (x, y) -~ ]b (],js)[ 2 (I.19) 
Eqs.  (1.17) and (1.18) then  read  as follows: 

[ ( x +  1 ) S - - y 2 ] A  (x, y) -- [ ( x +  1)2--(y  + 1 ) ~ ] A ( x , y +  1 ) ~  V(x )  (I.20) 

Ix 2 -  (y + 1) 3] B(x, y) = [ (x - -  1) 3 
(I.21) 

- -  ( y  + 1)  s ]  B ( x  - -  1, y )  ~ - -  W ( y )  

Next  we need an inhomogeneous equat ion for the reduced M. E. ' s  A (x, y) 
and  B ( x ,  y).  For  this we consider the  diagonal  ma t r ix  e lement  of the  
C.R.  (I.13) for the  s ta te  l]i]~mlm.~) to  obta in :  

[a (j, j~)] ~ Ib (Jl j~)]2 
(2i, + 1) (2]: + 1) [2m'(?'2 ÷ 1) + 2m2( h + 1)] + (2j, + 1) (2/~ + 1) 

b (jl -- 1 . 2 - ' ~  + 1 )  2 

• [ 2 m l j s - - 2 m 2 ( j i - t -  1 ) ] +  \ 2j~(2]2 + 2 )  [ - -2ml(J~  + 1) + 2msjl]  

1 

÷ 2 j~ 2 J2 - -  [ - 2  m l j  s - -  2 m~jl] = - -  2 (m 1 + ms) (I.22) 

Since m~ and rn2 v a r y  independent ly  of one another ,  we m a y  equate  the 
coefficients of ml on the  two sides of (I.22), and similarly for ms. The 
resulting equations,  expressed in t e rms  of V (x) and W (y), read:  

V(~)  - W ( y )  r (~ - ] )  - W (y - 1) 2 ( x  2 - -  y")  
x + y + l  x + y - 1  

(I.23) 
V(x) -- W (y -- 1) V (x - 1) -- W(y) 2(x2 y2) 

x - - y + l  x - - y - 1  

~Ve have  to solve these two equat ions to  determine V ( x )  and W ( y ) .  
Let  x = e and y = ] - -  1 be zeros of V (x) and W (y) respectively.  T h a t  

is to say, 
V(e)  = W ( / - -  1) = 0 (1.24) 

Then  sett ing x = e + 1, y = ] in (1.23) enables us to solve for V(e  + 1) 
and W (/) : 

V(e + 1) = - -  2(e + 1) (e + l + 1) ( e - -  l + 2) 

W ( I )  = 2 1 ( e - - / )  (e + 1 + 1) (1.25) 

We now make  explicit use of the t ha t  W (y) is independent  of x, so t h a t  
W (y) can be evalua ted  ~t any  value of x, and  in par t icular  a t  x = e + 1. 
~Ve set  x = e + 1 in Eqs.  (I.23) and  use (1.24) and  (I.25) to  get  two 
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equations in W(y) and W ( y - -  1). Solving them, we find: 

W(y) = - -  (e - -  y) (e + y + 1) ( / +  y) (1 - -  y - -  1) (I.26) 

We use the same trick to evaluate V(x); we set y = ] in (I.23), use (1.25), 
and solve for V (x). The solution is: 

V ( x ) = ( x + f ) ( x - - / +  l ) ( e - - x ) ( e + x + l )  (I.27) 

Thus we have solved for the independent reduced M.E. a(]~]2) and 
b (Jl?'~)- To analyze the representations, it is convenient to write the final 
expressions in the following form: 

+ - ( / -  + - + 
a(]112)= L (x + 1) 2 - -  y2 ] 

b(]lj2)= [{e(e + l ) _ y ( y  + l ) } ( ( / _  l ) ] _ y ( y  + ~ - ( y  + l) ~ (1.28) 

These analytic functions with the definitions (I. 10) and (I. 11) furnish the 
Master Analytic Representation with parameters e and ]. 

To proceed with the specialization to unitary representations (of the 
covering group) of SO (5), we note that  the state labels must vary in such 
a domain that  the master analytic functions remain real. Since these 
functions are symmetric in e(e + 1) and ( / - -  1)/, we may assume without 
loss ol generality that  

e ( e + l ) = > ( ] - - l ) / ; e ~ - - y , ~ =  2 ' e + l  ~ f  (1.29) 

The quantities e(e + 1) and ( ] - -  1) ] cannot both be negative because 
a(]112) would become imaginary. (Remember that  x = 71 + J2 + 1 > 0.) 
We now wish to s tudy the behaviour of the expressions for the matrix 
elements when the state labels x and y vary. The denominators within the 
square root do not change sign; we are therefore interested in the be- 
haviour of the polynomials in the numerators of the two expressions in 
(1.28). This is facilitated by considering the following diagram in which 
we plot the sign of the polynomial numerators as x and y from - -  ~ to 

t - - f  ~ X  f e 

Fig. l. MAR 
- f+ l  * y f-I  

diagram for S0(5). The shaded regions represent the domain of 
variation of x and y respectively 

+ c~. Nonnegativity of the master functions together with the informa- 
tion x = ] l + j 2 + l  ~ 1 , [ y i G x - - 1 ,  show that  the only region of 
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interest is 
e > x > ] ,  / - - l > y >  1 - - /  

so that  
e - - 1  > x - - 1  > / - - 1  > y >  1 - - /  (I.30) 

which are the Gcl'fand-Tseitlin branching rules for SO (5). Each UIR of 
SO (5) is labelled by two parameters e, / which are both integral or both 
half integral which satisfy e >- [ -> 1. 

The UIR's of S0(4)  included in a UII~ of S0(5)  are obtained by 
requiring the transition matrix elements for transitions leading out of 
the allowed set to vanish. Thus, since a (]1, ?e) vanishes at ]i + ]2 + 1 = e, 
the transition from the state labelled by (]1]~) (with ]I + ]3 + 1 = e) to 
(]1 + 1/2, ]2 + 1/2) is no~ possible. On the other hand, for ?'1 + J3 + 1 
= / - -  1, the same transition is forbidden, but  this means that  ]1 + ]3 + 1 
= ] is the lower limit, since that  state cannot be connected with the state 
with ?'~ = ]1 - -  1/2, and ?'~ = ]2-- 1/2. I t  is then clear that  the parameters 
of the MAR, which originally entered as the arbitrary constants of the 
solution to the recurrence relation for (or, better, as the zeros of the poly- 
nomials associated with,) the matrix elements, serve to specify the range 
of variation of the state labels. Due reflection will reveal that  this is no 
mere accident and this characterizes the MAR for any compact group. 

The group S0(5)  has two Casimir operators Q, R of the second and 
fourth degree respectively. They take the values 

1 
Q -- - f f A ~ ¢ A ~  = e(e ~- 1) + / ( ] - -  1 ) - - 2  

R = W~W~ = e(e ÷ 1 ) / ( / - -  1) (I.31) 

1 
and W~ = -ff e~¢r~. A~v Az~ 

for these representations. 

Representations o/ the de Sitter Group S 0 ( 4 ,  1) and its Covering Group 

The method of MAR demands that  we carry out Weyl's trick, [i.e., 
(2 ~ P = iQ, and then {X, Y, P} generate SO (4, 1)], and then analytically 
continue the M.E. into regions in which the corresponding operators are 
hermitian. I t  is trivial to verify that  the ~¥eyl trick gives quantities satis- 
fying the C.R.'s for generators of SO (4, 1). Defining the reduced M.E. of 
P by  the equation 

(j;J~ mf m~l P.,~nl ]l]2ml m2) = C [11~?l ; ml m ml  } C %-2-~2 ; m2n m2 (I.32) 

(i; i.;II Pllili3?... 
the first step in the method of MAI~ is the following identification: 

( i f  J;H rI[]l]2) = i ( i f  ]~lI Qilh]2). . . (1.33) 
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The  two independent  M.E.  of P are 
/ 1 ] \ 
~1-5 ~- ,  ]3 -5 -~ P ]1127 ------ [A' (x, y)]1/2 

_ -  r(x(~  + 1) - ~(~ + i)~ ~ ( ~  + 1 ) -  u -  1)s~] l t  ~, 
[ (x + 1) a -- y2 J 

( I . 3~ )  

_ [{~(~  + 1) - v (y  + 11} ~v(v + 1) - (f - 1 ) / } V ~  
[ x ~ __ (y + 1) ~ J 

The nex t  step in the me thod  of MAR is to analyt ical ly continue the range 
of variat ion of x, y in A'  (x, y) and B'  (x, y) and choose e, / so tha t  P is 
hermitian,  i.e., A '  (x, y) and B'  (x, y) are real and nonnegative.  

We note  t ha t  previously e and / tu rned  out  to  be limiting points in the 
ranges of x and y, while here e and / must be considered as parameters 
which can a priori taI~e any arbitrary complex values. However ,  though e 
and / may  be complex parameters ,  both  e(e + 1) and ( / - -  1) / mus t  be 
real. For,  if e(e -5 1) were complex, then  the reali ty of B'(x,  y)implies 
t ha t  ( / - -  1) ] is the complex conjugate  of e(e -5 1); bu t  then  B'(x ,  y) is 
negative.  

We consider the functions 

~(x) = [(x + 1) 3 -  y~'] A'(x ,  y) 

= [~(x + 1) - e(~ + 1)] [x(x + I) -- (/-- i)/] 
(1 .35)  

fl (y) = [x 2 - (y -5 1) ~] B' (x, y) 

= [e(e-5 1 ) - - y ( y +  1)] [y(y-5  1 ) - -  ( / - -  1) / ]  

For  hermit ian  representat ions of S 0 ( 4 ,  1), the following conditions are 
satisfied: 

x=i~-5]s-51 => []x-]~l+1=lyl-51 ~ 1, 
(1 .36)  

a(x) -->_ O, fl(y) _>-- 0 

Since ~(x) and t3(y) are both  symmetr ic  in e(e + 1) and ( / - - 1 ) ] ,  and 
since e(e -5 1) and ( ] - -  1) / mus t  bo th  be real, we m a y  assume wi thout  
loss of general i ty tha t  

e(e -5 1) ~ ( / - -  1) / (1.37) 

Jus t  as in the  case of S0 (5 ) ,  we can first prove  t ha t  e(e + 1) and ( ] - -  1) / 
cannot  bo th  be negative.  For  if t hey  were, then  the funct ion fl(y) is 
negative for all integral and half integral values of y except  possibly for 
y = - -  1/2. If  y = - -  1/2 is the only of y to  be considered, we can also 
restr ict  x %o be half odd integral. Then  we see t h a t  ~ (x) is nonzero for all 
positive half  odd integral values of x;  in part icular,  ~ (x) is nonzero for 
x = 1/2. This means t ha t  we have a nonvanishing transi t ion mat r ix  
element  f rom x = 3/2 down to x = 1/2. Since x = ?'1 + ]z + 1 => 1, the 
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~ormer is "al lowed" while the  lat ter  is not.  We conclude t h a t  e (e + 1) and 
( ] - - 1 ) /  cannot  bo th  be negative. I n  view of the  inequali ty (I.37), 
e (e + I) is positive or zero. 

The reafity of e (e + I) and ( ] -  1) [ implies t h a t  either e is itself real 
or a complex number  of the form e = - -  1/2 + i a ;  similarly, J is either 
real or of the form 1/2 + i0. However,  we have just  seen tha t  e(e + 1)is 
nonnegative.  We conlude tha t  e is a real number  in the range 0 N e < co. 
[Note tha t  e appears only in the combinat ion e(e + 1).] As for f, it is 
either real and in the range 1/2 < ] < 0% or complex of the form 
/ = 1/2 + i e .  

We now divide the  analysis into the cases where [ is real, and / is 
complex. 

i) Representations o/the D Series: [ real, ] > I. We begin with the 
following si tuat ion:  e(e + 1) > ( ] - -  1) ] > 0 (I.38) 

and consider later the possibility of replacing the inequalities by  equali- 
ties. (I.38) is equivalent  to e +  l > f > l  (I.39) 

I n  the integral case, the least possible values of e and / would be 2, while 
in the  half-odd-integral case, this least vaIue would be 3/2. The zeros of 
~(x) and fl(y) occur a t  the  points e, ] - -  1, - - ] ,  - - e - -  1 which obey:  

e > / - -  1 > - -  / > - -  e - -  1 (I.40) 

I n  particular,  note  t h a t  no two of these zeros coincide. The signs of g (x) 
and /~ (y) are plot ted in Fig. 2. [The shaded regions are the regions of 
positive ~ (x) and fl (y) which qualify for the domain of variat ion of x and 
y respectively in U I R . ]  

0 ,, x e÷1 

- e  - f  0 - - ~ y  f e 

Fig. 2. MAR diagram for general discrete series 

a(x) is str ict ly positive for e + 1 < x < 0% and vanishes for x = e. 
Hence the states with x > e + 1 cannot  be connected to those with 
x < e + 1. The r a n g e - - ]  < x -< ] - -  1 is one for which ~ (x) is nonnegative,  
and ~(x) vanishes at  x = ] - - 1  and x = -  f. Hence the  states wi th  
1 - - f < x ~ ] - - I  cannot  be connected to  those with x > ] - - I  or 
x < 1 - - ] .  Similarly, /3(y) is nonnegat ive for / - - 1  < y ~ e, and for 
- - e  - -  1 < y G - -  ], and vanishes for y = e, [ - -  1, - - f ,  - - e  - -  1. Hence the  
set of states with [ < y < e cannot  be connected to states with y outside 
this interval;  and similarly, states w i t h - - e  < y < -  ] cannot  be con- 
nected to states with y outside this range. Remembering tha t  x _~ lY[ + 1, 
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we see tha t  the only representat ions in this case are the following: 

D+l:x>= e4-1;  e>= y>=]; (1.41) 

D ~ , f : x > e ÷ l ;  - - ] > y > - - e ;  e + l > / > l  

I n  terms of ]1 and  ]~, the ranges are 

]l + ]2-= e, e-f- 1, e +  2 , . . . ~  
(1 .42)  

J: ( £ -  ]2) = / ,  / + 1 , . . .  e 

I n  the representations D~f given b y  (I.41) or (1.42), we must  remember  
tha t  e and / are both  integral or both  half-odd-integral,  obeying the in- 
equMities (1.39). 

Now we consider the possibilities t ha t  arise when the inequalities in 
(I.38) are replaced by  equalities. Suppose we take  

e(e + 1) = ( f - -  l)  ] > 0 (I.4a) 

This is equivalent  to 
e + l = f > l  (1.44) 

(x) and fl (y) become 
o:(x) = [x(x + 1) - -  e (e  + 1)]  2 

fl(y) = - -  [y(y -i- 1) - -  e(e ÷ 1)] 2 (I.45) 

fi (y) is str ict ly negative for all y except y = e or y = - -  e - -  1, where it  
vanishes. So in principle the states in the range e ~ y > - - e  are con- 
nected only to  one another,  and no t  to  states with y outside this range. 
However,  since e =~ 0, there are at  least two distinct values of y in the 
range e > y > - -  e; in particular,  e - -  1 > - -  e. Bu t  then  the transi t ion 
matr ix  element f l ( e -  1) f rom y = e down to  y = e -  1 becomes nonzero 
and negative. We conclude t h a t  we have no representations for 

e(e ÷ 1) = ( / - -  1) f > 0 (I.43) 

Consider next  the possibility where the second inequal i ty alone in 
(I.38) is replaced by  an equal i ty :  

e(e + 1) > ( ] - -  1) f = 0 ,  
(I.46) 

i.e., e(e ÷ 1) > 0, / = 1 

This is the same as the  r equ~emen t  f = 1, e > 0, so t h a t  the  values of e 
and f under  consideration are 

[ = 1 ; e = 1, 2, 3, (1.47) 

We have, first of all, a set of representations very  similar to the D~] of 
(I.41) ; namely :  

D + l : x >  e +  l;  e >  y >  l ;  
(I.4S) 

D ~ , l : x ~ e + l ;  - - l > y > - - e ;  e >  1. 
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These represen ta t ions  were no t  inc luded  in  (I.41) because  there  [ = 1 was 
no t  al lowed. W e  can now consider  the  represen ta t ions  D~f of (I.41) wi th  
] > t ,  and  the  represen ta t ions  D~t of (I.48), as cons t i tu t ing  one class of 
representa t ions .  However ,  the  s i tua t ion  descr ibed  b y  (I.46) leads  to  
fu r the r  represen ta t ions  because  of the  fol lowing reason.  The  func t ion  fl (y) 
vanishes  for  y = / - -  1 = O, and  for y = - -  ] = - -  1. This  vanish ing  of/7 (y) 
for two consecut ive in tegra l  values  of y implies  t h a t  the  s t a tes  wi th  y = 0 
form a set which canno t  be connec ted  to any  o ther  s ta tes  wi th  y ~= O. W e  
find therefore  the  following class of representa t ions .  

: 1 I r/iSSe#/~, 
0 - - - - , -  x e+1 

v"/'+~"z//a ~,~ ........................ ZfZ;Y.Y, YSs'e~SeJ I 
- e  - t  0 1 - . * y  e 

Fig. 3. MAR diagram for t, he case / = l showing D,~ and D~I 

D°e,1 : x > e + 1, y = 0; e = 1, 2 , . . .  (I.49) 

The  ranges of ]1 and  ]3 in D~I  and  D°,l are  g iven b y  (see Fig.  1.3) 

D ± • e , l . h + ] ~ = e , e +  l . . . .  co,  

:t: ( i ~ - - ] 2 )  = 1, 2 . . . .  e;  e > 1 (a)  
(I.50) 

D o e, l  : ]l ÷ ]2 = e, e - k  l . . . .  oo , 

7"1--]z = 0 ;  e > 1 . . .  (b) 

W e  have  a st i l l  fu r ther  excep t iona l  s i tua t ion  which occurs when  
e = ] = 1 so t h a t  the  zeros e , / - - 1 , - - ] , - - e - - 1  are  t he  consecut ive  

I m 
0 1 2 , x  

- 1  0 1 , -y  

= = D n , D l l a n d l  t~ig. 4. MAR diagram for e f 1 showing ± 0 

integers 1, 0 , - - 1 , - - 2 .  I n  th is  case in add i t ion  to  the  represen ta t ions  
D +,  Di~, D O 11, we have  y e t  ano the r  poss ib i l i ty  because  the  s t a t e  wi th  
x = 1, y = 0 is d isconnected  f rom all  o the r  s ta tes .  This  gives rise to  the  
i d e n t i t y  represen ta t ion  (see Fig.  1.4): 

I : x = 1, y = 0 (1.51) 
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The " range"  of values of ?.~, ]2 are 

I : ]1 = ]2 = 0 (I.52) 

Las t  of all we consider the possiblity tha t  both  inequalities in (I.38) 
are replaced by  equalities: 

e(e  + 1) = ( / - -  1) / = o : e = o ,  I = 1 ( I .53)  

The functions ~ (x) and fl (y) are explicitly: 

~(x) = x2(x ÷ I)2; fi(y) = _ y2(y ÷ 1)3 (I.54) 

We find a single representat ion which should be added to the class D °, 1 
of (I.49). We have the representat ion 

DO, 1 : x ~ 1, y = 0 (I.55) 

The range of values of ?'1 and ?'3 is: 

D00,1 : ?.1 ÷ ]2 = 0, 1,2  . . . .  

/~- i2 = 0 ( I .56)  

Let  us summarize the results of this subsection. Assuming [ to be real, 
we considered here the possibility ] _> 1. We then  find the  following 
representat ion of S 0 (4, 1), in all of which e and / are quantized:  

D~I :  ] = 1, 3/2, 2, 5/2 . . . .  ; e = 1, 3/2, 2 . . . .  ; e ÷ 1 > / 

D o ,~ : / = 1 ; e = 0, 1, 2 . . . .  (I.57) 

_/:h=i~=0 
fi) Reprezentations o/the C Series. ] = 1/2 ÷ i o, 0 < ~ < c¢. 
We have in this case: 

1 2 1 
e ( e +  1) ~ 0 ,  e _>_0; / ( / - - 1 )  4 ~ ; - - ~ - > ] ( ] - - l ) > - - c c . . .  (I.58) 

The zeros and signs of ~ (x),/? (y) are given in Fig. (I.5) : 

X e+~ 

-e 0 *y e 

Fig. 5. MAR diagram for continuous series 

The  functions ~(x) and fl(y) are 

(I.59) 
f l ( y ) = ( e ( e ÷  1 ) - - y ( y +  1 ) } { ( y + l ) U ÷ ~  2} 

A s t ra ight lorward analysis using the diagram in Fig. 1.5 yields the fol-  
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lowing general  class of represen ta t ions :  

C~,~:x>= e +  l , e ~  y > = - - e ;  
(I.60) 1 

e =  0 , ~ ,  1 , . . . c ~  

so t h a t  the  ranges  of Jl, ?~ are  given b y  

J~ - - ] 2  = e, e -  1 . . . .  - -  e ; (I.61) 

1 
e = 0 ,  y , 1 , . . .  ; ~ > 0  

There  is no d is t inc t ion  like D~! for the  C Series, and  the  range  of x and  y 
is i ndependen t  of the  va lue  of ~. No except ional  eases arise for the  C Series. 

I n  the  above  we assumed  Q ~ 0~ thus  excluding the  poss ib i l i ty  ~ = 0, 
when / =  1/2 becomes real .  L e t  us now look a t  th is  possibi l i ty .  F o r  
in tegra l  x and  y, we have  the  same k inds  of represen ta t ions  as before,  
because fl (y) does no t  acquire  a n y  new zeros: 

C(0) e,O:Ji +~2  = e , e ÷  1, e ÷  2 . . . .  c~; 

Jl - -  ]2 = e, e - -  1 . . . .  - -  e ; (I.62) 

e - - 0 , 1 , 2  . . . .  

However ,  for half  in tegra l  values  of x and  y, fi (y) acquires  an  ex t r a  zero, 
a t  y = - -  1/2. Then  the  s ta tes  wi th  e ~ y _-> 1/2 are connected  only  to  
one another ,  and  no t  to  any  o ther  values  of y;  s imi lar ly  the  s ta tes  wi th  
- - 1 / 2  _-> y ~ - -  e are  connec ted  only  to  themselves .  W e  find two  new 
families of represen ta t ions  which could be classed along wi th  D~] of (I.41) 
and  (I.48). They  are:  

+ > e + l , e >  > 1 1 De, 1/9 : x = = y = ~ ; e = ~ - ,  3 / 2 , . . .  

1 (I.63) 1 
D~,l/2 : x => e +  1,--~-_--> y ~ _ - - e ; e = - ~ - , 3 / 2  . . . .  

The corresponding ranges of ]2 and  ]2 are :  

D ± • e, l12" J1-~ ]2 = e, e + 1, e + 2 , . . .  c~ ; 

1 3/2 . . . .  e ; ( I .64 )  + (J~-J2)= ~ ,  

1 
e = y ,  3/2, 5 / 2 , . . .  ~ .  

iii) Representations o / the  E Series. / = 1/2 ÷ r, 0 < r < I/2. 
F r o m  the  expressions (I.59) for  ~(x) and  fi (y), we can see t h a t  when x 

and  y are bo th  integral, we have  a f ami ly  of represen ta t ions  of the  fol- 
lowing k ind :  

1 
E s , ~ : x ~  e +  1;  e ~ y ~ - - e ;  O < r < ~  (I.65) 

e = O ,  1 ,2  . . . .  
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The  range of ]1 and  j~ is provided by :  

Ee, s : ] l + ] 2 = e , e +  1 , . . . c ~ ;  

Jl - -  Jz = - -  e, - - e  + 1 , . . .  + e ; e = O, 1, 2 , . . .  (I.66) 

I f  one so chooses, these Ee, ~ representa t ions  could be pu t  into the same 
class as the Ce, Q representat ions  of (I.60). 

I n  all these eases, discrete as well as eontinouous,  the  Casimir opera tors  

have  the  values Q = e(e + 1) + / ( ] -  1) - - 2  
(I.67) 

R = e(e + 2) [ ( / -  2) 

We note  t h a t  the  values of the  Casimir opera tors  do not  label the  represen- 
ta t ions  uniquely;  D+1 and D~,] have  the  same Casimir opera tors ;  
D+I,  D~I  and D O  all have  the  same Casimir operators ;  and finally 
D+D D~- 1, D°1 and I have  zero for bo th  Casimir operators .  To  distinguish 
be tween  different representa t ions  wi th  the  same Casimir operators ,  we 
should use "nonana ly t ic  labels" like the domain  of var ia t ion of the  s ta te  
labels x and  y. I t  is also re levant  to notice t h a t  these representat ions  
which have  the  same value for the  two Casimir operators  have  ma t r ix  
e lements  which are the  same analyt ic  funct ions;  and  they  are all asso- 
ciated with  the  same un i t a ry  represnta t ion  of the compac t  group, if 
such a representa t ion  with the  same values of the  Casimir operators  
exists. 

We conclude this section b y  listing together  all the  classes of U I R ' s  of 
S 0 ( 4 ,  1), including in each case the  spec t rum of U I R ' s  of S 0 ( 4 )  t h a t  
appear .  (The t r ivial  iden t i ty  represen ta t ion  is omit ted.)  

1 
D+I : e ~ ] ~ -2- ; e - -  ] = integer  ; 

1 
D~,! : e >_-- ] ~ y ; e - -  ] = integer  ; 

- - e ~ y ~ - - ] ;  e + l < = x < ~ .  

D°,l : e ~ 0 ;  / = 1 ; e = in teger ;  

y = 0 ;  e + l ~ x < c ~ .  
1 

C~°~ e _-> 0 ; / = ~- + i e ; e = integer;  0 _-< e < ~ ; 

- - e ~ y ~ e ;  e ÷ l ~ x < c o .  

CO/2 ) . 1 1 e,~ .e==_~-; / = ~ - +  i ~ ;  2e = odd integer;  O < ~ < o o ;  

- - e < - - y < e ;  e + l < x < o o .  
1 1 

E ~ , , . : e ~ O ;  / = ~ - + r ;  e = i n t e g e r ;  O < r < ~ - ;  

- - e < = y < = e ;  e + l ~ x < c o .  
15 Commun. math.  Phys., Vol. 8 
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(In D~I, e and / are simultaneously integral or simultaneously half-odd 
integral.) In  any given representation, the reduced matrix elements of 
Pnn linking one UIR of 0(4) to another are given by (I.34). 

II. Representations of Orthogonal and Pseudo-Orthogonal 
Groups in Six Dimensions 

l~epresentations o/ S0(6) and its Covering Group 
In this section we would like to make use of similar methods to find 

all UIR of SO (6) and SO (5, 1). The computation of the master analytic 
functions proceed along lines very similar to the one sketched above for 
SO (5), except that  the algebraic computation is twice as long and more 
than twice as laborious. In our study of the UIR of S0(5)  and 80(4, 1) 
in an 0(4) basis we made use of the special circumstance that  (the 
covering group of) the S0(4)  group is isomorphic with the direct 
product (of the covering groups) of two commuting S0(3)  groups. 
However the final expressions (Eqs. (I.28)) for the reduced matrix 
elements are in fact given in terms of the 0(4) labels defined by 
Eqs. (1.19). Since the C.G. coefficients of S0(5)  are not familiar 
quantities we shall not bother to write down the explicit reduced matrix 
elements of those generators A6~, 1 g # =< 5 of S0(6)  which are not in 
S0(5) .  These quantities form the components of a five-vector with 
respect to S0(5)  and it is therefore sufficient to know the complete set of 
matrix elements of any one of them. We choose the component A65. 
Since A6~ transforms as a scalar with respect to a S0(4)  subgroup of 
S0(5), its matrix elements are independent of the labels ], m which 
occur a~ the magnetic quantum numbers of the 0(4) representations. 
Since a state in a UIR  of S 0 (5) labelled by  the two nonnegative parame- 
ters e, ~ requires as magnetic quantum numbers x, y the labels of the 
S 0 (4) representation and the quantities ], m for its complete specification, 
we are interested in matrix elements of the form 

(e" f x' y']' m' IAe5 le/xy]m} . (II. 1) 

But  in view of the fact that  Ae5 is scalar with respect to S0(4) ,  these 
matrix elements vanish unless 

x ' = x  y ' = y  j ' = ]  m ' = m  

and for this nonvanishing case they are independent of ~ and m. The 
relevant matrix elements may be denoted as: 

(e'/' xy] A~5 Ie/xy).  (II.2) 

I t  is seen that  the only nonvanishing matrix elements are obtained for the 
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cases when 
( e ' , / ' ) = ( e , / ) ,  ( e ~ l , / ) ,  ( e , / ± ~ ) .  

B y  a direct  computa t ion  we obta in :  
xy 

(e]xytA6~lefxy} = e(e + 1 ) / ( / - - I )  (~ + 1) f l ( y - -  1) 

{(e -F 1): - - x  z} {(e + 1) ~ - -y~}  
<e+ 1/xy]  A6~ Ie/xy} = (e + 1) ~. {4(e + 1)~-l}{e +l)~-p}{(e  + 1) ~ - ( / -  1) ~} 

• { ~ +  1) 2 - ( e +  1) ~ } { ( e +  1) 2 - ~ 2 } { ( e +  1) 2 - ( ~ - 1 ) 2 }  

-- (e[xylAs51e ÷ 1/xy}* 

~/ (x 2 _ ] ~ ) ( / 2 _  y2) 
(e /+ 1 xy I A65 le/xy} = /~ (4/2 - 1) {(e + 1) 2 - / : }  {e ~ - /~}  

• V{(a -F 1) ~ - / 2 }  { f i 2 _  [~} {/2 _ (7 - 1) 2} (II.3) 

= @fxy[AGslef ÷ lxy}* .  

All SO(6)  representa t ions  are to  be obt, ained f rom an analysis of these 
ma t r i x  elements.  

The  Gei ' fand-Tsei t l in  "branching  rules"  for  the SO (4) " c o n t e n t "  of a 
UI1% (e, ]) of S 0 ( 5 )  are [1]: 

e ~ x ~ /  / - - l > = y > = l - - /  e_- -> /~  1 .  (II.4) 

These assure us t h a t  the  poles of the  quanti t ies  within the square  roots  
m a y  be ignored al together.  We m a y  therefore consider the  behaviour  of 
the  polynomials .  

E(e) = {(~ + 1) ~ - -  (e + 1) ~} fie + 1) ~ - -  fi~} {(e + 1) ~ - - ( y  - -  1) ~} 
(H.5)  

F ( I )  = {(~ + ])~ - -  / ~} { ~  - -  l ~} {1~ - - ( ~  - -  ~)~} = - -  E(/--  ~) 
and their  var ia t ion  as e and  ~ assume bo th  integral  or bo th  half  integral  
values  sat isfying e => l => 1. 

0 -~e /3 

-.~f y /3 

Fig. 6. MAR diagram for S0(6) for D~.~ v. Shaded portions indicate the relevant 
domains of variation of / and e respectively 

The  U I R  of (the covering group of) SO (6) are to be sought  b y  finding 
suitable values of ~, fl, ~, and corresponding domains  for  the  s ta te  labels 
such t h a t  the  mas t e r  ana/:y~ie funct ions represent  a hermi t ian  opera tor  
A65. These considerations are faeil iated b y  the  use of diagrams.  
15" 



220 J.G. KIII~IYA]¢, lq. MUKUlqDA, and E. C. G. S~IDAI~S~X: 

Nonnegativity of the polynomials together with reality of the diagonal 
matrix element in (II.3) require that  ~, fi, y be all real. Recalling that  
E ( e l ) =  0 implies tha t  e l - ~ e l +  1 transition is forbidden, P ( / 1 ) = 0  
implies tha t  ]1 -> ]1 + 1 transition is forbidden and that  e > ] > 1 we 
find that  for positive ~,/5, y only one class of representations D ~  r 
labelled by the three parameters ~, fl, y occur with the branching rule: 

D ~ : ) ,  < ] g /5 < e < ~ .  (11.6) 

The explicit matrix elements are already given by (II.3). The requirement 
on the parameters are that  ~, fi, y be all nonnegative integers or all 
nonnegative half integers. 

If any one (or all three) of the three parameters ~,/5, y change sign we 
get a representation which is inequivalent to the original one unless 
(c¢ + 1 ) / 5 ( y -  1) = 0. Without loss of generality we could choose ~,/5 to 
be nonnegative and y to be of either sig3.~ if it is nonzero. The representa- 
tions D ~  r and D ~ , e _  v are conjugate representations and can he 
obtained by the outer automorphism: 

A ~ - >  A ~  

A ~ z - ~ -  A6z 1 ~ /~ ,  v ~ 5 (II.7) 

which is equivalent to the operation of space inversion in the carrier 
space of S0(5).  

Every UIR of S0(6)  is thus labelled by three numbers ~,/5, y all of 
which are integral or all half integral and the first two nonnegative. For 
y > 1 we find 

D ~ : ~ < ] <  / 5 < e <  ~ .  (II.8) 

For ~ < 1, we find: 

These two expressions may be amalgamated into the single expression 

.D~:, : 1 + I~'-- 1[ __< / ~-_/5 < e < a .  (II.9) 

These representations are conjugates of each other. When V = 1 we get 
self-conjugate representations. 

All these representations were found by G~L'FAND and TSEITLr~ [1]. 
The representations with/5 = ? = 1 have f = 1 and hence, by virtue 

of the S0(5)  branding rules (II.4), y = 0 so that  these give the "symme- 
tric tensor" representations with ~ labelling the rank. 

Representations o/S0(5, 1) and its Covering Group 
We can now carry out the method of MAR and use Weyl's trick to 

find the UIR of S0(5,  1) (and of its covering group). Accordingly we let 

As~,->iA'~,; A,~-~A~,~; 1 ~ / ~ , v - < - 5  (II.10) 
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and search for values of the parameters  g, fl, y and the domain of e, ] such 
tha t  we get matr ix  elements which represent a hermitian operator. 
Since 

, x y  i ( ~  + 1) /5(~- -  1) (11.11) ( e / x y [ A 6 5 I e / x Y )  = e(e + 1 ) / ( / - -  1) 

has to be real if all the quantities ~ + 1,/5, y - -  1 are nonzero, not all of 
them can be real; let us choose y to be complex in such a case. Since the 
other matr ix  elements are, according to (11.10) also simply multiplied by 
i we are led to consider the polynomials 

E'(e)  = {(e + 1) 3 -  (ce + 1) 2} {(e + 1)~'--/5 ~} {(e + 1)2--(y - I) 3} 
(11.12) 

F'(I) = {(~ + 1 y -  t~} { y - / 5 2 }  {y _ ( r -  1)3}. 
The polynomials will change their sign only at  isolated zeros. For large 
values of l, F '  (l) is negative and if all the quantities g + 1,/5, y - -  1 were 
complex there would be no domain where f could range. Hence at least 
one of these quantities should be real; let us choose it to be ~ + 1 if only 
one of the three quantities is real, otherwise let it be the largest of the 
real quantities among ~ + 1,/5, y -  1. I f /5  is complex (and y is already 
complex) F '  (]) will have only two real zeros, symmetric about the origin. 
But  the domain so given for the range of variation of f is inadmissible. 
(I~eeall the S0(5)  branching rule (11.4) which says / > 1.) Hence/5 must  
be real, or else ( y - -  1) must  be zero; but  this simply is equivalent to 
/5 = 0 and y being complex. Thus we deduce tha t  e,/5 must  be real and 
y complex; reconsideration of (II.11) now tells us tha t  ( y - - 1 )  is pure 
imaginary or zero. We now study the possible MAR diagrams system- 
atically. 

0 B+I ---.-~ e et+1 

I 

0 ~+l --~f a+l 
Fig. 7. MAR diagram for the principal series oi S0(5, 1) 

i) The Principal  Series o~ > fl > O. We begin with the case: 

>/5=> O; y = l + i r ,  v 2 > 0  (11.13) 

and consider later the possibility of replacing one or more of the in- 
equalities by  equalities. Again remembering tha t  e => / ~ 1 we find the 
allowed domain of variation 

P ~ a ~ : f l +  l <= [ < ~ + l _ _ < e < o ~  
(11.14) 

, ¢ > / 5 ~  O; z 2 > O  
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independent  of the (positive or negative) value of T. We m a y  take,  wi thout  
loss of generality, = and/5  both  integral or both half integral and non- 
negative. The representat ion P = ~  and P=~_~ are conjugate to each other. 

For  = > fl ~= 0, T = 0 we get  a class of representations with the same 
domain of variat ion 

P ~ o : f l +  l < /<=~+ l < e<oo 
(1I.~5) 

~ > f l > 0 ;  i t = y - - l = 0 .  

These representations are self-conjugate. 
For  a = fl >= 0, z ~ > 0 we get  a class of representations which are 

simply specializations of (II.14) for ~ = / 5 ;  they  are distinguished by  the 
fact  tha t  [ is now kept  fixed: 

P ~ : ] =  ~ +  1 < e < o o  
(11.].6) 

~ = f l > 0 ,  z~>0. 

The representations P~ ~ and P ~ - ~  are not  equivalent  bu t  conjugate to 
each other. For  z = fl > 0, T = 0 we have a specialization of (II.15) for 

= fi with / fixed: 

P ~ o  : f = o~ + l <= e < ~ 
(11.17) 

~=fi_>-0; i r = 7 - - 1 = O .  

These representations are self-conjugate. 
The representations of the principal series are thus defined by  three 

numbers  ~, fi, T of which the first two are nonnegative while the third  one 
m a y  take any  real value positive negative or zero. The domain of variat ion 
of e and ] (i.e., the branching rules) depend only on c¢,/~ and are:  

P ~ : f i + l  < f <  ~ + 1  < e < ~  

z¢ => fl =~ O; - -oo  < ~ < oo (11.18) 

- -  fl integral;  2/5 in tegral .  

For  T # 0 the representat ion P ~  is not  self-conjugate bu t  the conjugate 
representat ion is P ~ - ~ .  For  ~ = 0 the representations are self-conjugate. 

For ~ > ~ > /5- I there are no representations. 

il) The Supp lemen tary  Series/5 = 7 = 1. For  the case tha t  y = 1 (T = 0) 
we have consecutive zeros of the polynomials E (e) and F (f). F rom our 
previous experience we anticipate new kinds of representations to arise in 
such cases. The corresponding MAR diagram is given in Fig. 8. We see 
t h a t  the  range of variat ion of e is like in the case of the principal series bu t  
there are two distinct ranges for ]. There are double zeros a t  e = - -  1 
/ = 0 and simple zeros at  e = 0, ~ and ] = 1, ~ + 1. The allowed range, 
2 = / <  ~ + 1 < e < ~ gives a specialization of the self-conjugate 
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representa t ions  of the  principal  series: 

P ~ 1 0 : 2 = / <  e + l < e < ~  

- -  1 nonnegat ive  i n t ege r .  

- - -~e ~+1 

0 1 2 - - - f  ~+1 

Fig. 8. MAR diagram for the principal series of S0(5, 1) 

But ,  in addition, the  s ta tes  with f = 1 form a set which cannot  be con- 
nected  to a n y  other  s ta tes  with / >  1. We find therefore the following 
class of representa t ions :  

S~:[= I ; ~ +  I=< e < ~  

- -  1 normegat ive  in t ege r .  

We  can find, for  the  supp lemen ta ry  series, one more  possibil i ty:  t ake  
= 0. I n  this case the  range  of var ia t ion  of e, [ are:  

S o : [ = l ;  l < e < ~ .  

We m a y  thus  re ' i re  the  full set :  

S ~ : / = I ;  ~ + l ~ e < ~  
(II.19) 

ce= 0, 1 ,2  . . . .  f l = 7 = l .  

This new class of self-conjugate representa t ions  const i tutes  the  sup- 
p l emen ta ry  series. The  e, J values are all integral  and  b y  vir tue of the  
SO (5) branching rules, / --- 1 implies t h a t  y = 0; hence the  supp lemen ta ry  
series furnishes all the  " symmet r i c  t ensor"  representa t ions  of S 0 (5, 1) 
wi th  e labelling the  rank.  

. . . .  I 

1 2 ~ e  

o 1 2 ---.- f 

Fig. 9. MAR diagram for the identity representation of SO (5, 1) 

iii) The Identity Representation a = fl = 7 = 1. For  the  principal  
series we found t h a t  ~ = / ~  implies t h a t  the  range  of var ia t ion  of / was 
l imited to  a single va lue  [ = ~ + 1. We  now consider the  special case 
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when ~ = / ~  = ~ = l .  There  are double  zeros a t  e = - -  1 and  ] = 0 and  
simple zeros a t  e = 0, 1 and ] = 1, 2. Searching for the  al lowed domains  
of e and  [ consis tent  wi th  e > ] > 1 we find first  of all a specia l izat ion 
of the  se l fconjugate  represen ta t ions  of the  pr inc ipa l  series:  

P ~ o  : 2 = [ < e < ~ . 

N e x t  we find a special  r ep resen ta t ion  of the  supp l emen ta ry  series : 

S : : / =  1; 2 <  e < ~ o .  

Fina l ly ,  since the  s ta tes  wi th  e = 1 are no t  connec ted  wi th  s ta tes  wi th  
e > 1, we have  the  new represen ta t ion :  

I :  ] = 1 ; e = 1 .  (II .20) 

This  represen ta t ion  is the  one-dimensional  i d e n t i t y  representa t ion .  

iv) The Exceptional Series 0 < / 3  < 1, y = 1. I n  the  pr inc ipa l  series of 
represen ta t ions  we made  use of the  vanishing of F ( ] )  a t  [ = ~ to  ob ta in  
the  range  of va r i a t ion  ~ + 1 < ] < ~ + 1. A n d  for the  supp l emen ta ry  
series we made  use of the  vanishing of F (]) a t  ] = 0 and  ] = ~ = 1 to  
show t h a t  s ta tes  wi th  [ = 1 fo rmed  an  i so la ted  set. However ,  for y = 1, 
F ([) has  a double  zero a t  ] = 0 and  we could  make  use of th is  zero to  
ob ta in  an Mlowed range 1 < [ < ~ + 1 provided the  zero a t  [ = / ~  does 
no t  in terfere  to  spoil this .  Bu t  th is  is assured as tong as ~ lies in  the  open 
in te rva l  0 < ~ < 1. W e  ob ta in  in this  manne r  the  represen ta t ions  of the  

0 * e a~+l 

0 1 - " ~  f ~'+1 

Fig. 10. MAR diagram for the exceptionM series of S0(5, 1) 

except iona l  series : 

E ~ : I  < ] ~  ~ + 1  < e < ~ z  

nonnegatSve in tegra l  (II .21) 

0 < f l < l ;  y = l .  

I n  these  represen ta t ions  e a n d  J are  a lways  in tegra l  and  these  represen ta -  
t ions  are self-conjugate.  The case fl = 0 has  a l r eady  been ident i f ied  as the  
r ep resen ta t ion  P~oo of the  pr inc ipa l  series which  is, in  tu rn ,  the  self- 
conjugate  member  of the  special  class P~0~. 
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It is to be noted that  for fl = 1/2, y = 1, we have an exceptional 
representation E~I/2 in which the parameter ~ is integral so that  e, ] take 
on only integral values. We have already found a representation of the 
principal series with ~ half integral and fl = ]/2 with y = 1 ÷ i~ for 
which e and / take on only half-integral values independent of the value 
of ~ (-- ~ < ~ < ~ )  and in particular for ~ = 0. 

All representations of the exceptional series are self-conjugate. We 
note that,  here also, the values of these three Casimir operators do not 
label the representation uniquely: P~ 10 and S~ have the same Casimir 
operators; Pt10, $1 and I have the same eanishing Casimir operators. To 
distinguish between different representations with the same Casimir 
operators we should use nonanalytic labels like the domain of variation of 
e, ]. As in the case of representations of SO (4, 1), the representations with 
the same Casimir operators have matrix elements which are the same 
analytic function; and they are all associated with the same UIR having 
the same values of the Casimir operators for the compact group SO (6). 

All the UIR with integral e, / are representations of S0(5, 1) and 
those with half integral e, / are those of the covering group. 

For the convenience of the reader, we list here all the representations 
of 0(5, 1) [13], giving in each class the spectrum of representations of 
0 (5) that  appear (the trivial identity representation is omitted). 

P ~ : ¢ ¢ ~  / J ~ O ;  y = l + i ~ ;  ~ - - f l = i n t e g e r ;  - - ~ < ~ < ~ ;  

fi+ l <=/G ct+ l ~ e < ~ .  

S~ : ~ >  0;  f l = y = l ;  ~ = i n t e g e r ;  

/ = 1 ;  ~ + l G e < ~  

E ~  :~_>_0; O < f l < l  ; y = l  ; ~ = i n t e g e r ;  

[In P ~ ,  ~ and fl are simultaneously integral or simultaneously half-odd 
integTal.] In  any given representation, the matrix elements of the 
generatorA ~6 linking one representation of 0 (5) to another are given by 
the transcription (II.10) applied to the matrix elements (II.3). 

Discussion 

With increasing use of noncompact groups in particle physics, it 
would be of interest to be able to deal with their representations in a 
direct and straightforward manner. Even when mathematical discussions 
of the unitary representations of certain noncompact groups exist, dif- 
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ferent families of representation are handled differently. This is in direct 
contrast with the uniform treatment presented in this paper. We believe 
that  the method of MAR brings the theory of unitary representations of 
noncompact groups down to the same level of familiarity as the unitary 
representations of compact groups. 

Elsewhere we have studied several other applications of MAR to other 
noncompact groups [11]. The major technical obstacle to the detailed 
study of all simple groups is the problem of multiplicity: the same 
representation of a labelling subgroup occurring more than once. But this 
is a major obstacle to the representation theory for compact groups as 
well. 

The method of MAR can be traced back to the work of DraAc [4] and 
I-~AI~IsH-CHANDRA [14] on expansor and exspinor representations of the 
Lorentz group. Dirae pointed out that  the notion of a tensor could be 
extended to tensors of complex rank with an infinite number of com- 
ponents. The generalization of Dh'ae's discovery relates different represen- 
tations of the same Lie Algebra. There is another idea due to Wmr~ [2[ 
which relates a representation of one Lie algebra to a representation (of 
the same dimension) of a different Lie algebra with the same complex 
extension. This involves multiplication of suitable elements by appropriate 
complex numbers ; and is often referred to as the Weyl trick. The method 
of MAI~ may be thought of as a synthesis of the Dirac principle and the 
Weyl trick. 
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