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Families of Bose Rays in Quantum Optics 
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Having known classical wave optics and wave mechanics, can we reverse 
SchrSdinger's path and extend the concept o f families of  rays of  light to provide a 
new exact rendering of  quantum optics including the Bose nature of photons? This 
question is answered in the affirmative, and the implications of  the Bose symmetry 
for certain nonlocal correlations of the many-ray distribution functions are worked 
out. The similarities and the differences between classical and quantum wave optics 
are brought out. The ray-ray Bose correlation is analyzed. The generating 
functional for the many-ray distribution functions is formulated; and the notion of  
paraxial illumination for quantum optics is made precise. 

1. PREAMBLE 

Schr6dinger,(l) in his discovery of wave mechanics, was much inspired by 
Hamilton's work (2) on the analogy between optics and mechanics. 
Hamilton first worked on and discovered the usefulness of the "charac- 
teristic function" in geometrical optics, based on Fermat's least-time 
principle in optics. Later Hamilton arrived at his "principal function" in 
mechanics. 

In optics Hamilton found, as an infinitesimal expression of Huygens' 
principle, the simplest instance of the eikonal equation: 

I VS(x)l = n(x) = refractive index (1) 
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Here, S(x) has the dimensions of length, so both sides are dimensionless. 
(To keep track of dimensions of various things, h and c will appear 
explicitly.) In mechanics he found the Hamilton-Jacobi partial differential 
equation (P.D.E.), which, for the simplest case of a particle of mass m and 
energy E moving in a potential V(x) in three dimensions, is 

IVS(x)l = ~ 2 m ( E -  V(~)  (2) 

Here S(x) has the dimension of action, so both sides carry dimensions 
mlt ~. Hamilton's discovery was the similarity of the above two P. D. E.'s in 
different contexts. 

The P.D.E. (2) describes special families of classical particle trajec- 
tories in phase space suitable for mechanics. The most elementary notion in 
mechanics is that of an individual trajectory traced out by a mass point 
following Hamilton's ordinary differential equations of motion. In optics, 
though, while (1) describes a bundle of rays in the geometrical optics limit 
of wave optics, (3) this bundle or family is not in any physical sense built up 
from individual trajectories of some localizable physical object or entity. In 
optics in this limit, the family of rays is the really primitive concept, even 
though formally one can imagine a hypothetical "point" tracing a path in 
space according to Fermat's principle, formally "quantize ''(4) such a system 
with the wavelength playing the role of h, and thus arrive at classical wave 
optics. 

In any case, it is seen that in the geometrical optics limit of wave 
optics, the basic notion is that of a bundle of rays, the bundle described by 
the single function S(x) of (1). Schr6dinger asked whether the bundle of 
classical particle trajectories described by (2) could similarly be the 
"geometrical" limit of an underlying wave theory, and was led to this wave 
mechanics. The "geometrical" limit now corresponds to h--* 0 rather than 
wavelength 2 - ,  0; and in this limit of wave mechanics again the primitive 
notion is that of a bundle of trajectories tied together by one principal 
function S(x), not individual phase space trajectories. 

One can now "reverse" Schr6dinger's point of view in a certain sense 
and ask: having known classical wave optics and having now learned wave 
mechanics, can the concept of rays of light be extended so as to provide an 
exact new language in which to describe all of wave optics, both classical and 
quantum, and not just its geometrical limit? It is appropriate that methods 
learned in wave mechanics guide us in this task. The proper framework for 
considering these questions is statistical optics, and we here restrict our- 
selves to time stationary states. For a review, see the classic work of Man- 
del and Wolf. (5) We have already done quite some work at the level of the 
two-point function, (6-11) and shown the usefulness of the idea of generalized 
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rays at that level. A statistical state in classical (quantum) optics is 
described by a hierarchy of correlation functions F ~ .... / (...)(G!,,m)(...)) 
which will be defined explicitly later. Throughout, for simplicity, we deal 
with scalar waves and ignore polarization. [A systematic procedure for 
passing from scalar optics to vector optics was developed in Ref. 9 and has 
been applied to several interesting problems. (12 14)] At the level of F (~'1) 
and G (I'1), there being no distinction between classical and quantum cases, 
a partial generalization of rays of light, allowing for light and dark rays, <6) 
has sufficed. Their usefulness comes from their simple behavior under 
various conditions. (7 11) Now one can raise several questions: 

(1) Is it possible to totally transcribe all the complete information of 
a classical statistical state contained in the entire collection {F (n'm)} for 
n, m = 0, 1,..., 0% into a generalized ray language? 

(2) Similarly, for a quantum state and the collection {G ( .... )} for 
n , m = 0 ,  1 ..... oe? 

(3) What are the differences between classical generalized rays and 
quantum generalized rays, which must exist and which could not be seen at 
the n = m =  1 level? 

(4) What are the consequences of "Bose statistics" for generalized 
rays, classical or quantum? 

(5) While the collections {/-(n,m)}, {G(n,m)} can be neatly handled via 
generating functionals, are there similar characteristic functional methods 
for handling collections of joint distribution functions for generalized rays 
by working "up in the exponent"? 

(6) What is the ray distribution function for a black-body cavity in 
thermal equilibrium? 

(7) In the quantum case, what is the most convenient definition of 
the practically important paraxial situation? 

In order to investigate these and other questions, we must establish 
our notation and introduce the primary correlation functions in both 
classical and quantum wave optics. Since much of the development is 
parallel, we shall use similar notations. Without any essential loss of 
generality we will work with a complex scalar field ~b(x, t )=O(x )  and 
distinguish operators by putting a caret on the field symbol. We shall also 
restrict our attention to free space so that ~b(x) satisfies the free-wave 
equation. Its positive frequency "analytic signal" part will be denoted by 
~(x). Then the classical correlation functions are given by (15'16) 

F(n'm)(Xl, X2 ..... Xn; Yl,  Y2,..., Ym) 

= (O*(Yl)" ' "  O*(Ym) ~t(Xl)""" @(Xn)) (3) 
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Of the several choices available in quantum theory, we will stick to the 
normal ordered correlation functions 

G(n'm)(xl,  x2 ..... Xn; Yl ,  Y2,'", Yrn) 

= <~+(Yl)"'" ~+(Yrn) ~(Xl)""' @(Xn)) 

= Tr{@(x,) . . .  @(x,) +dt~(y, ) . . .  @*(Ym) } (4) 

For the (quasi) monochromatic situation, each of the x's and y's which 
stands for both a space vector x, y and a time t, t' can just be replaced by 
the space part alone. For  the full three-dimensional case, every xl ..... xn, 
Yl,.-., Ym is a 3-vector, but if one wants to study paraxial propagation 
problems, one simplifies further to x's and y's which are 2-vectors on a 
transverse plane. Detailed definitions of @, @ are given in the sequel. Note 
here that F (n'm) and G ( .... ) have the same physical dimensions. 

Now in dealing with F (1"~) (or G (1'1/) the Wigner-Moyal transform I'7) 
of quantum mechanics has played the key role. Its usefulness has been 
established beyond any doubt, (~°'u) so we must exploit it. Even though 
Ul.l) is purely classical, we have treated it "as though" it were the (unnor- 
realized) configuration space density matrix of a suitable single particle in 
quantum mechanics, and then exploited the Weyl-Wigner Moyal methods. 
Now we make some observations: 

(1) It is impossible to have a classical looking description of quantum 
mechanics at the level of the wave function @, linear in the wave function; 
while in the WKB limit classical pictures can be used, in an exact sense any 
classical-like version of quantum mechanics must use bilinears ~@@*. 

(2) Similarly, while in the eikonal limit a classical wave is describable 
in ray language, there is no exact ray-like descrition of the classical wave 
which is linear in the wave amplitude. What has been earlier demonstrated 
in this direction is at the F '(1'1) level. 

(3) Hence a generalized ray language is not possible for all F t .... / and 
G("'ml; it can be achieved only for all diagonal F ~"'~1 and G (~'n). 

(4) To handle, say, F (N'N) and G (N'NI, we would compare them 
with unnormalized quantum-mechanical density matrices for N particles, 
moving in two or three dimensions as appropriate, and then borrow the 
technology of WWM (Weyl-Wigner-Moyal)  to talk of N-fold joint quasi- 
probability distributions of generalized (classical or quantum) rays. 

(5) Thus all the information about a statistical state in optics cannot 
be recast in ray language; only that part relevant for photon counting or 
intensity correlations, for example, can be given a generalized description. 
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(6) tn this context, it is but right to view the state space of N 
identical quantum particles as a subset of the state space of N possibly 
distinguishable quantum particles. Therefore to deal with F (N'NI and G (N'N) 
the way we have handled F ~'I) previously, we must develop WWM for N 
possibly distinguishable particles, and then impose the "Bose statistics" 
requirement. 

(7) We will see later how F (N'N) leads to an N-fold ray distribution 
function cox(...); and similarly G (N'N) to a function WN(... ). It will turn out 
that the "Bose condition" on coN('") and WN(... ) is essentially nonlocal in 
terms of ray variables. 

(8) We can obtain a generating functional for the ray density 
functions. 

(9) It is clear that the collections {ON} , {~/fN} cannot give a 
generalized ray description of all features of a statistical optical state. What 
then can be done for this purpose? 

(10) We can fall back on the following general principle: for any 
quantum system based on canonical O's and/3's, the Wigner distribution is 
always available for a classical-looking descrition of a general state. For the 
quantum optical field, then, we can define the Wigner distribution 
functional for the entire field, and this certainly contains all information in 
the full density operator ft. How are WN(... ) and G (N'N) and even G ( .... ) 
obtained from the field's Wigner distribution? 

This essay, undertaken as an offering in homage to the memory of 
Erwin Schr6dinger, has thus exceeded our original limited purpose of 
seeing how reversing Schr6dinger's path leads us to use the concept of 
generalized bundles of light rays to provide a new language of descrition. 
By the first fundamental theorem of quantum optics (la) the two point 
functions G (1'1) and F °'I) are in one-to-one correspondence and hence 
(apart from the generalization to dark rays needed in wave optics!) no 
specific quantum features come into the ray distribution function. But the 
situation is radically different even for the four point functions G (2"2) and 
F(2'2t; and the correlated distribution of light rays reveals a rich structure 
which we are only able to outline in this paper due to limitations beyond 
our control. 

2. Q U A N T U M  M E C H A N I C S  FOR O N E  D E G R E E  OF F R E E D O M :  
THE WEYL-WIGNER-MOYAL METHOD 

Let ~ and /~ have dimensions of length and momentum, respectively, 
and obey 

[q, p] =ih (5) 
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q and p are corresponding classical real variables with the same dimensions 
as 0 and /3, respectively. For any classical function f(q, p) with the 
representation 

f(q, p)= da dr f(~r, ~) e i(aq --z.p) (6) 
- -  ~ - -  C f d  

the Weyl-Wigner-Moyal method (WWM) °7) associates the quantum 
operator F: 

fL< F= da & f(a, r) e i(~° ~¢) (7) 
- -  o o  

Therefore dimension of f =  dimension of F To relate f and F directly, (19) 
let us introduce the family of operators: 

- h__f da f d~ dO(o--q) ,~(b p) W(q; P ) -  2u (S) 

Here - co < q, p < ~ .  The important properties are: 

W(q; p)* = W(q; P) 

Tr ffZ(q; p ) =  1 

Tr W(q; p) ffZ(q,; p,) = 2~h 6(q' - q) 6(p' - p) 

W(q; p) is dimensionless 

½{q or/~, I-~/(q; p)} = (q or p) W(q; p) 

[glor ~,W(q;p)] - i h ( +  ~--~) = or - /YV(q; p) (9) 

We also recall that the trace operation in quantum mechanics (QM), and 
also the density operator t5, are both dimensionless. Using the above we 
now have: 

WWM rule 

F= f f  ~ f(q, p) VV(q; P) 

~--~ f(q, p) = Tr FIfV(q; p) 

= f dq' eipq'/t~(q - ½q' IF] q + ½q') 

in the position representation (10) 
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Then for two operator F and G 

c f dq dp ,~, 
Tr FG = j j  ~ j~q, p) g(q, p) (11) 

and if FG = H corresponds to h(q, p), we have 

h(q, p ) =  ( f  , g)(q, p) 

= e x p  dqOp' Op f ( q , P )  g(q',P')l¢=q.p'=p 

In all the above, h is explicit. But if we want to use WWM in a purely 
classical context, we retain q as position with dimension of length, and 
replace momentum p by hk, the wave number k being an inverse length. 
Then h disappears completely. If we wish, in that context we can work with 
operators W(q; k), which are really the same as W(q; p): 

IYV(q;k)=~-g~ da & e  i°(°-q~ i~(~-k) 

(13) 
[~,/~] = i, i Oq etc. 

WI4qvl in complex representation 

For ray distribution functions, we would generalize the above to many 
degrees of freedom. But for handling the scalar field analytic signal, it may 
be useful to develop WWM in a different notation, but with no essential 
change. To make the necessary changes, let a mass m and a frequency co 
with appropriate dimensions be given. Then define: 

fi = meo 0 + ifi fi, = mo3{1 - ilJ 

x /2mo~ '  w/2moo 

Ea, a*] =8 (14) 
a+a* 

O=. 2/ -7m (a-a*) 

So a and d both have dimensions of (action) 1/2, but no h is included in the 
definition of ~ and 6 '  in terms of 4 and /~, so that these equations make 
sense classically too. 

To accompany (14) we also define at the c-number level 

mooq + ip a* m~oq -- ip (15) 

a=  ~ ,  = 2x//~ 7 
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and replace the integration variables a and ~ by 

mwz + ia mwz -- ia 
{ -  ~/2m----~ ' ~ * = ~  (16) 

Hence, 
dimension of a and a * =  (action) 1/2, and dimension of { and 
{* = (action)-1/2. (17) 

Then 

Hence 

l i , d2a-dReadIma=~dqdp=-~da da 

I i , dZ~=-dRe~.dIm~=~da &=~d~ d~ 

ffZ(q; p) as defined in Eq. (8) 

- W(a; a*)  (abuse of notation!) 

.=h f d2~ e{ae-~*a+¢*a ~a* 

h f d2 ~ eCa, e__¢. a e (h/2)¢*{+¢*a- Ca* 

(18) 

(19) 

If f(q,  p)=-f(a, a*) ~,w% F, then 

1 2 f(a,a*)=TrFl;V(a;a*), F=-£-~f d af(a,a*) ffZ(a; a*) 

(20) 

Tr FG=-~ f dZa f(a, a *) g(a, a*) 

After generalization to many, in fact infinite, dimensions, this will be useful 
in handling the field after quantization. 

3. W W M  T E C H N I Q U E S  FOR M A N Y  D E G R E E S  OF F R E E D O M :  
BOSE S Y M M E T R Y  

Now, going back to the real q -  p formalism, we generalize WWMfor 
N particles each in n-dimensional space. The basic operators are 

0~j,/~j: c~ = 1, 2 ..... N =  particle label 

j--- 1, 2 ..... n = Cartesian component in n-dimensional space 

[q~j, ~k]  = ih 5~ 6jk (21) 
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The compressed notation is 

{fi} = {fi~, fi2 ..... fiN} 
q~- {O~:, 0~2,---, O~}, similarly for p 

Then 

(22) 

( h ,]~u 
W({q);{P})=\~n/  f d~uadnN~ 

x exp i 2 (%" (fi~ - q~) - %' ( / ~ -  P~)) 
t -  ~ = 1  

= I~({q}; {p})* 

½{0~ior fi~j, I~({q}; {p})} : (q~jor p~j) l,V({q}; {p}) 

[O~jorp~j, VV({q};{p})]=ih(~ ~ )  or - fi/({q}; {p}) 

Tr w({q}; {p})= : 
Tr W({q}; {p}) W({q'}; {p'}) 

N 

= (2~zh) "N IF] 6(")(q'~-q~) 6(")(P'~-P~) (23) 

Again, IY¢ is dimensionless; and the WWM correspondence is 

~=1 ~ (2--~h-~ )Ytlq), {P}) W({q}; {P}) 

f({q}, {p})=Tr FI~({q}; {p}) 

= f  ~=1I~ d"q'~exp (i ~l p~'q'Jh 

x ( { q - ½ q ' }  IF] {q + ½q'}) (24) 

For products of operators we get 

FG=H:h=f *g 

h({q}'{P}):exp[ 2 =,j~,l - - - -  c?~::)] 

"f({q}, {P})g({q'}, {P'})[q'=q,p'=e 

~:~ \ ~ .jf({q}, {p}) g({q}, {p}) (25) 
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So far the N particles have been treated as distinguishable. How are 
particle permutation operators to be described in WWM? It is quite 
straightforward. 

Consider the operation/312 which interchanges particles 1 and 2 and 
leaves the rest alone. Its definition and properties are 

/312 I{ql, q2, q3,..., qA,} ) = I{q2, q~, q3,.-, qs} ) 

P12(0U or Pls) Pi21 = O~s or i62j 

/312(02 j or Pz;) P121 = qu or Pu 

P,2 = PI2 =/~;~1 (26) 

To find the WWM representative of P~2, we just use the last formula of 
(24): calling the representative function P12 again, we find 

Pl2({q}, {P})=f  I-NI dnq'~exP(h ~ P~'q'~) 

x ( { q - ½ q ' } l  P12 l { q + ½ q ' } )  

= j  Iq dnq~exp P~'q 
c ~ : l  c l : l  

1 r • ~/~)(q~-q2-~(ql+q[))6n(qz-q~ 1 ' -- ~(q2 + q',)) 

x 6"(q~)... ~n(q~v) 

= 6"(qi - q2) f d"q~ d"ql 

× e~/hlp~-qi + p: q~),~')(q~ + q~) 

= (2~h)" ~<"~(q,- q2) 6~"~(pi- p:) (27) 

For any other pair of particles ~,//with ~ ~ 3, the WWM representative of 
/~,  is 

P~,({q}, {p}) = (2~h)" 6(n)(q~ -q~.) 6~n)(p~ - PlJ) (28) 

/ 3  is an element of the group Sp(2nN, R) acting on the nN canonical 
pairs, since it just interchanges the 0's and /~'s of particle c~ with those of 
particle 3. Thus, if an operator F is transformed to F' by 

F' =/3~F/3~)1 (29) 

then the corresponding WWM representatives f '({q},{p}), and 
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f ({q},  {p}) are related by a simple exchange of arguments q~-+q~, 
p~ ~ p~. In fact, every element of the permutation group SN acts in this 
simple way: conjugation of F by any element of SN amounts to simple 
permutation of arguments in the W W M  representative f of F. 

However, if fi(N) is a density operator for N identical Bose particles in 
n dimensions, while it is true that 

p0~fl/~(N) p~]l = ~ ( N )  for each pair ~/3 (30) 

this is not the most  primitive relation. Rather the primitive relation is 

p ~ ( N )  = fi(n-) for each pair ~, fl (31 ) 

from which (30) follows by hermitian conjugation and the hermiticity of 
fi(x) and Pop. That (31) must hold is clear since ~(N) has to be built up 
from vectors 10) which are themselves invariant under P~,: 

~(N) ,~ .~  [O)(@l, P=al@) = [O) (Bose symmetry) 

?(N)/3 =/~(N), and 1~c~flp(N)P~} 1 ~--- p(N) (32) 

In fact, if F is any hermitian N-particle operator obeying (31), what is the 
expression of this property in terms of the WWM representative f of F? 
We must use (28) and the first part of (25)[ For ~ = 1, fl = 2  for simplicity: 

P12F= F . ~  F~612 = F 

( q l ,  q2 ..... qu[ F [q'1, q;,..., q~v> 

= (q2,  q~ ..... qNI f Iq'~, q~,.-, q~v) 

: (q~,  q2,..., qN[ F [q~, q'~ ..... q~v) 

"*~ P,2 * f = f * P,2 = f (33) 

In the W W M  description this is transcribed as follows: 

f ( q , ,  q2,-", q:v, P,, P2,--., PN) 

= (P12 * f ) ( q , ,  q2,---, qu, P~, P2 ..... PN) 

:expire 0 0h ] 
j = I  

• (2~zh)" J(")(q, --q2) 6(n)(Pl --P2) 
/ t ! ! ! 

"f(q, ,  q2 ..... ' qn, P~, P2 ..... PN)I (34) q ' ~ q , p ' =  p 
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The right-hand side of this equation is really nonlocal in the arguments of 
f and by putting in Fourier representations for the delta functions we find 

/312F= F 

<:> f (q l ,  q2,-.., qN, Pl, P2 ..... PN) 

d"q'd"P'(27ch)~ [ ~ ( P " ( q l  q 2 ) - q '  (P l -P2) )  1 - [ J e x p  - - 

"f(ql 1 , -- ~q, q2 + ½q', q3,--., qN, 
1 t 

Pl - ~ P ,  P2 + ½P', P3 . . . . .  P N )  

<=> f(ql,..., qN, Pl ..... PN) 

(2rch)" exp (P'" (ql - q2) - q "  (Pl - P2)) 

. f  (.ql 2 q 2 1 t ql -1- q2 1 
2 q '  2 t- ~ q', q3,..., qu, 

\ 

Pl+P2 l p , , P I + P 2  1 , ) 
2 2 2 + ~ P , O 3  ..... PN (35) 

The second step follows by a simple translation of q' and p'. It follows that 
given this primitive nonlocal relation for f,  essentially a double use of it 
will lead to a local but nonprimitive relation 

f ( q l ,  q2, q3,-", qx,  Pl, P2, P3,..., PN) 

=f(q2 ,  ql, q3 . . . . .  qN, P2, Pl, P3,"', PN) (36) 

and similarly for the other elements of SN. 

4. B O S E  S Y M M E T R Y  O F  T H E  H I G H E R - O R D E R  C O R R E L A T I O N  

FUNCTIONS 

Let us now consider the classical and quantum diagonal correlation 
functions F (N'N) and G (N'N) as defined in Eqs. (3) and (4). We suppress the 
time components of the arguments and imagine the space components to 
be n-dimensional vectors with n = 2 or 3 (paraxial or not). Then, as noted 
before, both F (N'N) and G (N'N) have the same dimensions and, formally, 
though not in terms of physical dimensions, we can say there is a similarity 
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between them and the configuration space matrix elements of density 
operators ~(N) for N Bose particles in quantum mechanics: 

or  

/ '(N'N)(x1, X2 ..... XN; Yl, Y2,'", YN) 

G(N'N)(xl, X2,..., XN; Yl, Y2 ..... YN) 

(×1, x2,..., xNI ¢3 (N) lYl, Y2,..., YN> 

within the framework of the Hilbert space H (N)= L 2 ( R ' x  R ' x  . . .  x Rn). 
Now this Hilbert space is appropriate for N particles, indistinguishable or 
not. So the position eigenkets Ix1, x2 ..... XN> are nontrivially acted upon by 
P~2, P~3 ..... any/3 e SN. On H (N) a general operator 6 has a general kernel 
O(. . .x. . . ;  . . . y . . . )=  ( . . .x . . . I  O [...y... >, with no simple behavior under SN. 
For such quantities the WWM methods must be introduced independently 
for each "degree of freedom." Having done so, we then impose the Bose 
condition! To this end, regard F (N'N) as the kernel of an operator /%N) 
on H(N): 

F ( N ' N ) ( x 1 ,  X2,"', XN; Yl, Y2 ..... YN) 

<Xl,  X2 ..... Xx I /~(N)]Yl, Y2,'", YN> 
(37) 

G(N'N)(x1, X2,'", XN; YI' Y2 ..... YN) 

~. <Xl,  X2,... ' XN 1 ~(m)[YI,  Y2,'", YN> 

Now we know that F (N'N) is separately symmetric in each set of arguments, 
and so is G (N'N). In operator form this means, at the primitive level, 

~//ff '(N) = /%(N) 

(38) 
P o z f l G ( N ) = G  (N), 1 <<. ~, fl <~ N 

We now define the ray density functions for the classical and quantum 
fields, co u and WN. For the rays we will use position vector and wave 
vector description, rather than position and momentum, so h will be 
absent. Patterned after Eq. (24) but rearranging the arguments, we define 
the N-fold joint classical generalized ray distribution function for one ray 
with parameters Xl, kl,  another with x2, k2,... , and the final one with 
X N ,  k N aN 

(L)N(X 1 , kl;  x2, k2; ...; x N, ku) 

~=1 ~=1 

.F(N,N)(xI 1 t 1 t .  1 t 1 , -- ~Xl,..., XN--  ~XN, Xl -~ ~X 1 ..... XN-~ ~XN) (39) 

825/18/3-4 
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Similarly, we define the N-fold joint quantum generalized ray distribution 
function 

WN(XI, kl  ; X2, k2; ... ; xN, kN) 

(27c)-nN f I~ d~x" exp k~. x~, 
~=1 ~=1 

. G ( N . N ) ( x I  1 , 1 ' . 1 , 1 , --~XI,...,XN--~XN,XI ~-~XI,...,XN~-~XN) (40) 

It is true that both (.o N and WN are invariant under any permutation of 
complete sets of ray arguments, i.e., tbr example 

(xl ,  kj)~-+ (x2, k2), etc. 

But the more basic conditions (38) tell us that generalized rays, whether 
classical or quantum, are correlated in a nonlocal way, which must thus be a 
partial rendering of the Bose nature of light: from (35) 

((,O n o r  W N ) ( X I ,  k i ;  x 2 ,  k 2 ;  .. .;  XN,  k N )  

f d"x' d"k' - -  e l k  ' • (xl -- x2) -- ix". (k t -- k2) 
(2re)" 

" ((0N 0 r  W N ) ( I ( X l - - ~ X 2 )  - -  ~Xt ,, ½(k l  + k 2 )  _ l~k,., 

~ ( x ~ + x 2 ) + l  , ½ ( k l + k ~ )  I ' + ~ k ; x 3 ,  k3; ;XN kN) (41) 

and similarly for any other pairs of rays. It is then a consequence of this 
nontoeal correlation (41) that we have local relations like 

(co N or Wu)(xl,  k 1 ; x2, k2; x3, k3 ; ... ; XN, kN) 

-7- (0,.) N or WN)(X2, k2; X I, kl ;  x3, k3; ...; xu, kN) 

This relation holds for both "bosons" and "fermions," so (41) is the basic 
result ! 

The nonlocal relation (41) contains within it the Bose effect which in a 
normal Bose gas exhibits itself as distance correlations/z°) In addition to 
this, we know from photon number fluctuation¢ 21) that the quantum fluc- 
tuations must include both the particle fluctuation ~ ( n )  and the wave 
fluctuations ~ ( n ) 2  We shall take up these two questions in the following 
two sections. But before that we wish to make a number of observations: 

(1) For any fixed N>~ 2, the set of all F(N'N)(x; y) is a proper subset 
of the set of all G(N'N)(X, y) = the set of all (unnormalized) N-particle boson 
density matrices ( x  I ~N)iY) '  This is SO for the following reason: While 
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F(N'N)(x, y), G(N'N)(x, y), and (x] ~3 <x) lY> are all hermitian, positive semi- 
definite, and Bose symmetric, Y~S'N)(x;y) has to be an ensemble over 
realizations of the special form 

~*(Yl) "'" ~b*(yN) ~(x~)..-~/(xN) 

For instance, an allowed G (2'2) and • ( 2 )  but not F (2'2), is 

~b*(Yl, Y2) ~(Xs, X2) 

~ ( x s ,  x O  -- u ( x , )  v (x2)  + u(x2)  v ( x , )  

(2) We recall that G (N'N) and F <u'u) have eigenmode decom- 
positions; but while an eigenmode that enters in F <~'~) must enter all I "(N'N) 

it is not necessary that the eigenmodes that enter G ~1'1) be present 
in G(N'N). (22) 

(3) The set of all F(N'N)(x;y) can be realized as moments of a 
probability functional; but the corresponding generalized diagonal weight 
functional is not pointwise positive for the set G(N'N). (23"16) 

Many of these questions would benefit from a detailed analysis of the 
multivariate ray density functions. In this paper we shall attempt only the 
implications for the pair correlations of light rays. 

5. CORRELATIONS OF LIGHT RAYS 

For the case of N =  2 we get the bivariate light ray distribution 

f dnx, dnk , 
W2(xI'kl;x2'k2)= (2~z)~ eik"txl-xz)e ix' " (k I k2) 

W2(½(xs+x2) -l~x, '  ½(ks + k 2 ) - ½ k ' ;  

½(x 1 + x2) + ½x', ½(kl + k2) + ½k') 

An identical relation obtains for co N . This somewhat untidy relationship 
would look much more satisfactory if we use the average and relative coor- 
dinates 

X = ½(X 1 ÷ X2) , k = ½(k, + k2) 

= (Xl - x2) ,  q = (k ,  - k2)  

and abuse notation by writing 

W(x, k; ~, q ) - -  W2(x1, ks; x2, k2) 
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Then the Bose property demands 

t d~¢' d%f W ( x , k ; ~ , q ) =  0 ~---~ e +in'g-'g'n W ( x , k ; { ' , q ' )  (42) 

For each x, k the distribution in the relative coordinates and momenta {, q 
is self-conjugate in the sense that 

dn~ ' d-o ' 
f(¢, q ) = f  (2g)" e i(¢ ' .~-~.q ')f(¢, ,  i1, ) (43a) 

This symplectic-invariant transformation would take us from the Wigner- 
Moyal function to the ambiguity function (24) in the normal case, but here 
the two coincide. 

There are many solutions to this functional equation. If g(~, t/) is any 
solution, then so is the function 

gl(~, t/) = ( +  fi2 7-~ 

A set of distinct solutions is provided by 

f(¢, tl)= ~ gm.¢m(~/fl) ~).(~fl) (43b) 
m , n  

~b~(~) = exp ( -  ~ ~2) Hn(~) (43c) 

g,,m=-(--1)(m+~)/2gmn i f m + n = e v e n ,  gm~=0 i f m + n = o d d  

Here Hn(¢) are the Hermite polynomials and fi has the dimensions of a 
length. 

All these functions ~bn(~ ) are bell shaped and show that the beam 
spreads extend over a phase cell. This is the spread in the relative wave 
vectors k and position x and is over and above the beam spread inherent in 
the wave nature of light. 

This additional correlation between the light rays is a manifestation of 
their inherent Bose symmetry and is an alternate manifestation of the 
positive distance correlation in an ideal Bose gas. (2°) Since it depends only 
on the symmetry of the (N, N) order correlation function valid for both 
-F '(N'N) and G (N'N), we see that this aspect of the Bose symmetry of light rays 
is valid for both classical wave optics and quantum wave optics. 

It is now useful to consider the relation between the various mul- 
tivariate many-ray correlation functions especially since this would bring 
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out essential quantum field theoretic differences. As a preliminary to this, 
we need to consider the WWM formalism for many degrees of freedom in 
its complex form and its limit for dealing with operator analytic signals. 

6. W W M  IN COMPLEX FORM FOR M A N Y  DEGREES 
OF F R E E D O M  

We start with 2M hermitian operators 

obeying 

[glr, l~s] = i h  5r,, r, s = t ..... M (44) 

Then, using M masses m 1, m2,..., mM and M frequencies col, ~o2,..., O)M (for 
keeping dimensions correct) we arrive at ar and #~ obeying 

[at, as*] = h 5,.,, [at, #s] = [drt, 6~] = 0 (45) 

Then we generalize Eqs. (19)-(20) thus: If a =  (a t, a2,..., aM)=a  set of M 
complex numbers, #-= (~1, 32,..-, ~M)=similar set, with g having dimen- 
sions (action) ~/z, and # having dimensions (action) l/z, 

W(~a;~a*)=f )YIi (~d2~r)e#'Ote--~*°e (~/2)#*#+#*'a-# (46) 

The dot means product and sum over M terms. Then any operator F has a 
WWM representative f :  

f (a ;  a*) = Tr FtTV(a; .a*) 

, = 1 \  =h } f ( q ; a * )  (47) 

,=~ \ ~h j f(a;_a*) g(a; a*) 

In the above we can connect to real q's and p's by 

rn/o,q~ + ip, m,c~q~-- ip, 
a , =  ~ , a * =  ~ 

(48) 
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Now the WWM rule associates, for any ~ = (2~, 22,..., 2M), 

e.~..at _ ~...a WWM e~. ~. _ ~..~ 

o r  

e_)..,.g e-a*.a ~ ; C(h/2)a*.~. e~.~.a * ~* _ . . . .  -~~ , a  

= e x p - -  \ c~a*~a~ 

Therefore, expanding the exponentials and comparing terms, we see that 

I @  ~ c? ~-a] a*'''a*ma'~'''a'n (49) Cir*L""' a~* ~i,,' '. d~, ~ wwM' exp Oa* 
r = l  

Thus, for any operator F with WWM representative f, we have 

~,---~-)f(g;g )exp a,*...a,*a,,...a,.° (50) 

In the case F = t3 = density operator for some state, we will write W instead 
of f, and associate the factors of h in the volume element with W: i.e., we 
will say 

,6 yWM hMw(a ; a*) 

Tr(fia~ .. ~* ~ • a , ~ a ~  ,.. ~ )  

.'. ar, a~. l ..- gts~ ) 

= f f i  (-d--~) W(fi,; q*)exp [ - - h  ~ ~2/0a, Oa,l at*'" a,*as,." .a,o 
r = l  2 1 

W(~t; a* )= ,~1  m Tr(/6 I~(.a; a*)) (51) 
n 

This is arranged so that the volume element I-I (d2a,/7t) in this case remains 
acceptable classically. 

Now we can set up the formulas for the spinless scalar field. Start with 
the classical Lagrangian, then proceed. Just to have all factors in place, we 
write 
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/z ~[ "2 1 2 d=  -½8.48 ¢=~c20 -~(V4) 

go0 = -- 1 

X 0 = Ct 

¢(x) =- q~(x, t) = real scalar (52) 

~r(x) = canonical m o m e n t u m  = ~ = d(x, t) (53) 

The equation of motion and equal time Poisson brackets are 

c~b9 ¢=0 
(54) 

{~(x, t), n(x ' ;  t} = ,5(3)(x - x'), rest zero 

The general solution is 

x/~ d3k 
~ b ( x ) = ~ f - ~ ( a ( k ) e i / ~ X + c . c . ) ,  k ° : [kJ=og/c  

(55) 

~ ( x ) =  Z ~  fd3k  (a(k) d k . x _  c.c. ) 
(2 )3/2 J 

So O(x), the analytic signal positive frequency part  of ¢(x), is given by 

d3k a(k 

= ~ @5(x) + t _ ~ V 2  ~(x) ) (56) 

~(x)  obeys a first-order equat ion of motion(22"23): 

0 
Ot ~b(x) = - i c  x / - V  2 ~b(x), ~b(x, t) = e -ic''/C--v~ O(x, 0) (57) 

It follows that 

tp(x) ._o~-to-o,e Ct(X, 0) = O(X) * -2'ye-t? . . . .  , a (k)  

{~b(x, t), ~z(x', t)} = 6(3)(x -- x') ~ {a(k), a*(k ')} = -i~i(3)(k - k ')  
rest zero rest zero 

. , - "--ic ~d3k i*.(x-x') {0(x), ¢, = Jsve 
--ic 1 

- /---6-7 63(x -- x ')  = A(+)(x -- X'; 0), say (58) 
2 x/__ W 
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In the spirit of an earlier paper (25) by two of us, we define a space S of 
solutions 4'(x) as follows: 

S={4'(x)[ l l~[12~-/d3kta(k)[2<oo t (59) 

This norm t14,1t 2 can be written as 

I} qJlj z =--2ifd3xq/*(x)Oo4'(x) 
c 

= _ 2/f d3x(G0*(x)) 4'(x) 
c 

: !  j d3x ~*(x)(--V2)l/2 4'(X) 

=2 f d~((-V~)~/2 4'("))* 4'(") 
c 

(4'', ~t)= f d3k a'(k)* a(k) 

= ! f d 3 x ~ ' ( x ) * ( - V 2 ) I / 2 4 ' ( x )  

=! f d3x((-V2) 1/2 4't(x))* 4'(x) (60) 

So 

S= {$(x)lll4'tl2-~2 J d3xo(x)* (-V2)~/20(x)<°° (61) 

Let us introduce a complete orthonormal basis in S, based on {fr(k)}, 
r =  1, 2,..., oo" 

f d3k fr(k)* f~(k) = 6~, L fr(k) f~(k')* = 6(3)(k - k') 

"v/7 ~ d3k ~ k 

2 f --V2) l/2 (¢,,., ~,s) - -  d 3 x  4'r(x)* ( 0+(x)  = &, 
c 

c e d3k . .. 
4'r(x) O r(x')* = 7g7C5_~3 | ~-Z-6m e*k ( ..... ' =  iA +(x- -x ' ;  0) (62) 

~= l (2r~) O 2k 
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So {0r(X)} is an orthonormal basis for S. If a general ~, e S is expanded as 

~/(X) : ~ ,  ar~llr(X): a r = (Or, ~J) 
r = 1 ( 6 3 )  

110112 = ~ [arl 2, {at,  a*}e.B. = --i(~rs 
r = l  

To quantize, we promote a~, a* to operators and set up the analytic signal 
field operator 

r = l  

r = l  

[gG, 6~3 =h6rs; [~(x), ~*(x')] =ihA'+)(x-x';O) (64) 

It is consistent that at, ~r, a~, a* all have the dimensions (action) l/;. 
Now, to set up the WWM machinery, we pick a sequence of complex 

numbers {at } and define formally 

I~'[{ar};{a*}]=2im°°fr=l f i  ( h d 2 ~ )  exp ~r6~ exp - - ~ ' 6 ~  

-exp --~ (~r*~)+2(~*ar--~ra*) (65) 
1 

This is nothing but (46). Formally taking the limit M--* o% we identify 

@(X) = E ar~lr(X) e S 
r 

(66) 

r 

¢r6~ = (~, 4), etc. 
r 

Now we define in a heuristic way 

ff/[~b( .); 0" ( - ) ]  = an operator functional of ~,(.) s S 

=;sD~ * D~ exp(~, ~ ) e x p [ -  (~, ~)]  

• exp [--~- (~, ~) + (~, 0) - (~,, ¢)] (67) 
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fie is a functional of 0( ' )E S, and the integration variable 4(') also runs 
over S. If F is an operator, 

f wwM f [0 ( ' ) ;  0" ( ' ) ]  = functional on S 

= Tr Fife[ 0 ( • ); 0*(" )] (68) 

Also the WWM treats elementary exponentials as follows. For any 2(. ) e S, 

exp(~, 2 )exp[- (2 ,  ~)] wwM, exp +~ (2, 2) exp[( 0, 2 ) - (2 ,  0)] 

exp I2h-(2, 2)] = limit of exp Ih  r~2"2~ 1 

= exp [_~2 h 82 ~ 8-~,.* 8art acting on exp[(0, 2 ) - ( )  . 0)] 

= exp (-~-2h A)acting on exp[(0, 2) - (2, 0)] 

In detail: 

exp(~,2)exp[-(2,  ~)] wwM exp - ~ A  exp[(0, 2 ) -  (2, 0)], 

A=i fd3y fd3y 'A(~) (y -y ' ;O)  ~ fi (69) 
60"(y) 60(y') 

Comparing coefficients, we have 

~*(Yl)-- ~'(Ym) ~(xl)""  ~(x.) 

, exp A 0*(yl) ' ' -0*(ym)0(Xl) ' ' '0(Xn) (70) 

We can use this to express the G ( .... ~ for a quantum state ~. Notwith- 
standing troublesome infinite powers of h, we can formally define the 
Wigner distribution function for the whole quantum field as a functional 
on S: 

fleE0(" ); 0 * (  )3 = Tr/3 fleE0(. ); 0*(" )] (71) 

Then the hierarchy of quantum correlation functions is 

G(n'm)(xt, x2 ..... xn ;  Yl, Y2 ..... Ym) 

= Tr(c3~t(Yl)"" ~+ (Ym) ~(xl)""  ~(x~)) 

= fsDO * DO ffz[O('); 0*( ' ) ]  

-exp - ~  0*(Yl)"'0*(Ym) 0(xl) ' "0(x, , )  (72) 
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In this form, since the WWM method treats the two factors in the Trace 
FG symmetrically, we see that the quantum features reside in two places: in 
IF[0( ' ) ;  0*( ' ) ] ,  which is a real but not necessarily nonnegative functional, 
and in exp((-h/2)A). The factor exp((-h/2)A) reflects the normal 
ordering in definition (4). 

This is reminiscent of the "excess fluctuation" of the photon counts (21) 
including the particle-like Poisson noise in addition to the wave noise: 
( n 2 ) - ( n ) 2 = ( n ) 2 + ( n ) .  We may compare (72) with the heuristic 
classical case: 

/ '(mm)(x1,'", Xn; Yl ..... Ym) 

- ( O * ( Y l ) " ' "  O*(Ym) O(Xl) "'" O(Xn))  

=fsDO* DO P[O(');O*(')JO*(yl)"'O*(ym)O(xl)...O(x,) (73) 

We see that IF is replaced by P which is a "pointwise" nonnegative 
functional on S, and exp( ( -h /2)  A) is of course absent. If, however, we use 
the diagonal representation (23) of Sudarshan, then in place of (72) we have 
the formally simpler expression 

G ( n ' m ) ( x l ,  .,., Xn; Yl ,'--, Ym) 

I" 
= Js Do* Do (b[O("); O*(" )3 

• 0*(Y,)""" 0*(Ym) 0(XI) "'" 0(X,) (74) 

SO the factor exp( ( -h /2 )A)  is removed, and W gives place to the more 
singular (in general) functional q~. Now comparing the classical (73) with 
the quantum (74), the only change is the replacement P [ 0 ; 0 * ]  
q~[0; 0*]- A/ /quantum effects are now in qs: again all this is because we 
have normal ordering in (4). 

7. THE N-FOLD RAY DISTRIBUTION FUNCTIONS 

In this notation what do the N-fold ray distributions O)u and W~ look 
like? The expressions are quite nice. From (73) we have for the classical 
ray distribution function defined by (39) 

(DN(Xl, k l; x2, k2; ... ;XN, kN) 

= fs DO* DO P[0("  ); 0*(" )] m~*)(Xl, kl)~o~*l(x2, k2)- ' '  (D~0)(XN~ kN) 

((D~P)(x1, kl ) ('°~tP)(x2, k2) " "" (D~P)(XN, ku) ) e (75) 
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the ensemble average being over the classical ensemble defined by 
P [ 4 ( ' ) ;  4*( ' ) ] .  Here 

k) = (2re) - '~f d'~x ' eik '~" 4(x - ½x') 4*(x + ½x'), 0 ~ S (76) co~0)(x, 

is the random-valued generalized ray-distribution function we would have 
defined at the level of F (1"I) for a random-valued pure state 4 e S !  
Moreover, from (74) the same col ~) suffices to express the quantum ray 
distributions W u provided we use the weight functional ~ :  

WN(Xl, kl; x2, k2; ... ;XN, kN) 

= f DO* D4 ~ [ 4 ( "  ); 0*(" )] co~°)(x,, k , ) . . ,  co~¢')(x x, kN) 

= (co~0)(Xl, k l ) " .  C0~¢')(XN, kN))® (77) 

The quantum nature is partially rendered in the relations between the 
different WN'S. From (75), since P>~0, if we have a nontrivial field of 
illumination so that the classical ensemble has some nonzero 4, then 

col(x, k) :~ 0 -~ CON(X1, kl ; ... ; XN, kN) # 0 for all N~>2 

But in the quantum case we can have a state /~ with a finite number of 
photons, and then WN vanish for large N! Thus W ~ ( x , k ) # 0 ~ ,  
WN(Xl, kt;...; XN, kN)-¢0 for N>~ 2. We come back to this later. But first 
let us develop generating functionals for CON and WN! 

These are quite easily set up, based on the expressions (75) and (77). 
To begin with, we deal with the classical CON: since CO~¢) as defined in (76) is 
a real function of x, k, it suffices to introduce a real "external source" 
function 2(x, k) and set up 

( e x p [ i f  d'~xdnk2(x,k)co~°'(x,k)]t e 

i N 
= 1 +  ~ -~ . fd~x ,d"k l . . .d"xudnkN2(x ,k l ) . . .  

N=I 

~(XNkN) CON(Xlkl;,..;XNkN) (78) 

Thus the entire collection of classical generalized ray distributions can be 
handled compactly "up in the exponent." If we wish, the expression in the 
exponent could be rewritten in the spirit of (11 ) as 

f d"x d"k 2(x, k) co]~)(x, k ) =  (2~)" f d"x d'x' ~(x; x') 4(x ' )  0*(x) 

( x + , , )  2 i (x;  x ' ) = j  d"k 2 \ , k  e a ' (* -  ~') (79) 
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so that we have 

(exp[i(2rc)"fd"xdnx' ~(x; x') O(x') O*(x)l/e 

= 1 +  ~. d"xld"kl...d~xNd~kN2(Xlk~)... 
N = I  

,~.(xNkN) co~,,(x ~ k~ ; ... ; xNkN) (80) 

Now we can compare all this with the expression (77) for the quantum 
functions WN, and immediately see that the ensemble averaging is to be 
done with respect to q~ rather than P: but in terms of ~ this just means 
normal ordering! Thus we have 

i N 
l +  ~,  -~T. f dnXldnkl,..dnXNdnkN,~(xlkt)... 

N = I  ' 

/~(XNkN) WN(Xl  k l ;  ,.. ; XNRN) 

(81) 

Comparing expressions (80) and (81), we can say that in classical 
statistical optics the generalization in the concept of rays that has been 
necessitated already at the level of dealing with the two point function 
F (~), leading to bright and dark rays (just a consequence of WWM in 
QM!), is all that is needed in generalizing rays to handle F (x'N) for all N, 
apart from the Bose correlation of rays. This is because the averaging in 
(80) is over a positive semidefinite functional P [ . . ]  describing a true 
statistical mixture. In quantum mechanics, on the other hand, the normal 
ordering needed in (81) tells us that when we go from N =  1, i.e., G (~,~), to 
NI> 2, quantum-generalized rays acquire "new properties" not seen at the 
level of G (1'1). Simply because ~b[..] is not a probability, that is all. Since 
the entire difference is caused by the normal ordering in (81), the situation 
is qualitatively similar to the difference between a classical state possessing 
first-order coherence and a quantum state possessing first-order coherence, 
as explained, for example, in Ref. 16. Suppose for some classical statistical 
state we know that in terms of some ~o(X)~ S 

I'(1"1)(x; y) ---- (~h(x) ~h*(y)) = ~ho(X ) @*(y) (82) 

Then the ensemble consists only of (complex) multiples of Oo(X)! That is, 
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there is some probability distribution p(z) over the complex plane, z ~ C, 
such that for any functional f [@(.) ;  000"(')] the ensemble average is 

I @o(.) z* 000*(.)] (83) 
(f[O(');tP*(')])=-fcdazP(z)f z ll-~ol~; 11000011J 

c dRZ z*zp(z) = 110000112 

Then all F ("'m) factorize: 

F ( n ' m ) ( X l  " " ' X n ;  Y l " "  Ym) = 7.,m@0(X,)""" @0(X~) @*(Yl)' '" ~b*(y,.) 

S d2z z"(z*) m p(z) 
~,.,,-- ilq~oll. +m , ~1 , , - -  1 (84)  

Then the generalized ray distributions are 

03N(Xlkl;...;XNkN)-=TNO3]tO°)(Xlkl)'"O.)]O°)(XNkN) (85) 

where 7N =- 7N, N is nondecreasing: 

1 =71,1 ~----71 472 "~-< 73 ~< "'" (86) 

On the other hand, if we have a quantum state fi for which 

6 (1' 1)(x; y)-= T r ( / ~ * ( y ) ~ ( x ) ) :  ~bo(X ) @*(y) (87) 

then/~ has to have the following general form: we define 

I~l(@o) : ([#0, ~ ) : ! ; d3x @~(X)(--V2) 1/2 

a(~¢O)i-: (~, 000000) = 2  f dax ~(x) 1 (--V2) 1/2 #.to(X ) 
c (88) 

[a(~,o), a(@o)*] -- h II@oll ~ 

[ ~ ( x ) ,  a(@o)*]  = h@o(X) 

and the most general t~ obeying (87) is 

1 ( a(@o)* .~ m 
Io> 

. . . .  o - x / m ~  \h'/2 I 1 ~ ' o 1 1 / - - ~ ' "  "'" " 
(89) 

m = O  
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Then since 

the other G (=',=) are 

'~(~'o) t~ d(x) ~ = tbo(x) 

,~(q'o)* 
~d(x)  t = ~*(x )  ~ flIPol 2 

(90) 

G ~ .... )(xi .-.x= ; y , - - .  Ym) = g=.,=tPo(Xl)"" ~o(X,) ~<(Yl)""  0~<(Ym) 

(n + m)/2 

g ~ "  = N ¢ o / "  + "~ Tr t , ~ / )  tY~l t  ) A 

The quantum generalized ray distributions are 

(91) 

WN(X1 k 1 ; ..." XNkN) • gNO)~q'O)(xl k 1 ) ' "  O)~O0)(XNkN) 

g N  =- gN, N 

Comparing (92) with (85), we see that ~N has been replaced by gN: 

(92) 

1 
~'I N = lii]]0]12N f d2z [ZI 2N p(z)  

h "  
__> gN = ~ T r [ f $  : (/~t/~)N:] 

~_ ~ ,o )  (93) 
- h ~/21~ol 

This is just the same normal ordering seen in (81) as compared to (80)! So 
its main general effect must be qualitatively similar to its effect in the 
special case of first-order coherent fields where while 7N cannot decrease, 
gN certainly can; and in fact for a state with at most No quanta, gNo + 1 and 
all higher g's vanish: i.e., for such nonclassical states, I4~,o+1= 
WN0+2 . . . . .  0. 

8. DISCUSSION 

In this paper we have raised and partially resolved the question of the 
description of statistical wavefields in terms of bundles of rays. This ray 
description is an e x a c t  t ranscr ip t ion  of the wavefield phenomena, both 
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classical and quantum, and not a short wavelength limit. For the standard 
optical phenomena described by the (1, 1) correlation function we need to 
generalize the notion of a bundle of rays to include both light rays and dark 
rays. There is a conjugacy between position and wave number so that the 
bundle has a minimum spread over a phase cell. When we go to the N-ray 
distribution function, there are additional Bose effects leading to ray-rm, 
correlations: these obtain both for classical and quantum fields. 

The distinction between the two comes when ray distribution functions 
of N~ and N 2 rays are compared. In classical wave optics if N~ ray dis- 
tribution is nonvanishing, N2 ray distribution is also nonvanishing as long 
as N~ and N 2 are nonzero; but for quantum optics, this need not obtain. 
This in turn can be traced to the diagonal quasi-probability functional in 
quantum optics (23) not being necessarily pointwise positive. 

In classical optics paraxial wave propagation is an important special 
case. (s-~4"~6) For paraxial propagation the wave equation can be rewritten (s) 

~ =  -~x~+ ax~ &r0~j¢(xlx2~z) =° 

with 

~r=ct--x3, ~=½(ct+x3) 

If we consider quasihenochromatic (8) light with wave number ~g ,  the 
wave equation can be rewritten 

This is now quite similar to a two-dimensional SchrSdinger equation. First- 
order axial optical systems acting on such wave amplitudes realize the 
Sp(4, R) group which can in turn be realized by the fundamental represen- 
tation in terms of the paraxial light rays. Elsewhere (1~'27~ we have 
elaborated on these questions. 

The question now arises as to the paraxial nature of a statistical 
ensemble and, therefore, as to how the N-ray distributions are paraxial. 
For classical wave optics this is straightforward: if all the components of 
the ensemble are paraxial with approximately the same axis, the resulting 
wave field ensemble is also paraxial. The N-fold ray distributions will all 
deal with paraxial rays. Recall that no ray can be present which is not 
already present at the (1, 1) level! 
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For  the q u a n t u m  optics case also this cont inues  to be true. I f  the (1, 1) 

funct ion describes a paraxiaI  bundle o f  rays, all the N- fold  ray distributions 
must  be exclusively paraxial.  

It is unpa rdonab l e  to conclude this essay without  comput ing  the 

N-fold ray dis t r ibut ions for a cavity at temperature  T. But Erwin 
Schr6dinger generally concentra ted on the essential principles from which 

other conclusions,  which were but  na tura l  consequences al though impor-  
tant  ones, generally were omitted. We use this as our  excuse. 
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