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Hierarchies of non-classical states in quantum optics
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Abstract. The conventional separation of states of the quantised radiation field into “classical” and
“nonclassical” types is expressed in a dual operator form and then refined. This is based on new
features of the normal ordering rule for passage from classical to quantum dynamical variables. The
cascs of single and two-mode radiation fields are discussed.
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1. Introduction

The purpose of this presentation is to Jook at some old ideas in quantum optics from a new
point of view, and to refine them in an interesting way that may lead to improved under-
standing and insight. We are concerned with the description and a new classification of
states of the quantised electromagnetic field, and drawing out the experimental implica-
tions of such classification. In particular it is interesting to see how one can bring out as
sharply as possible those features that show the nonclassical properties of radiation.

Given a quantum mechanical state of radiation produced in some way, imagine that
a specific set of measurements is made. It may happen that these results are explainable
within a classical statistical framework, in which case we may conclude that these measure-
ments have not revealed the quantum nature of radiation. Bul there may be other measure-
ments that can be carried out on the same state which are not explainable in this manner;
and then we are entitled to call the state “genuinely nonclassical”.

it must be emphasized that these ideas and categorisations of states are within the over-
all framework of quantum theory. This implies that they are ultimately based on some phys-
ically well-motivated convention. This convention is an oid one, and is closely connected
to the normal ordering rule for passage from classical (o quantum dynarnical variables. In
the sequel we will recall the statement of the convention directly in terms of states, and
then develop a dual operator form, It is the latter that suggests interesting refinernents with
attendant consequences,
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2. BSingle mode radiation field states

We consider to begin with a single mode quantized radiation field. The photon creation and
annihilation operators @', & obey the canonical commutation relation

[a,a1] = 1- (1)

Now the diagonal coherent state representation theorem [1] states that any density matrix
g . ¥
A for this system can always be expanded ir terms of projections onto the coherent states:

p= [ o @

Here ¢(z) is a real weight function which represents 5, and the coherent states are nor-
malised eigenstates of & defined in the usual manner:

;z>xe*%lzlzszﬁ;n>, alz) =zlz), z € C. (3)

=0

The object ¢{z) is in general a distribution, and the extent to which it can be singular
can be precisely characterized [2]. If we switch to the real and imaginary parts of z by
z = (z + iy)/+/2 and then to their Pourier conjugates ¢ and 7, we have the statement:

Fourier transform of ¢z} = el 7 )/4

(square integrable function of ¢ and 7) {4)

We will see examples later where this degree of singularity is indeed preseat. _
The conventional distinctien between “classical” and “nonclassical” j is stated in terms

of #(z) [3}:

7 “classical” < ¢(z) > 0, notmore singular than a delta function;
A “nonclassical” < @(z) # 0, possibly more singuiar than
a delta function. (5)

The motivation, as is weil known, is that if 5 is “classical” in this sense, then all the normal
ardered correlation functions can be reproduced by a suitable classical statistical ensemble,
This as emphasized carlier is a convention but a reasonable one. :

For p to be “classical”, an infinite hierarchy of independent inequalities have to he
obeyed; faiiure of any one of them is evidence of j being “nonclassical”. To establish that
one has a “classical” state ~ short of knowing ¢{z) explicitly, which can be quite difficult
— Is therefore quite hard. Some of the familiar independent consequences of being “classi-
cal” are the quadrature flucluation conditions Ag > —\172 . Ap > ”1\/3 the superpoissonian
condition {AN)? > (N} on the photon number distribution; the recently discovered [ocal
conditions on the photon number probabilities; etc. {41 On the other hand, by any reason-
able method of counting, the vast majority of quantum states j are “nonclassical” — but
they are quite hard to produce,

3. A dual opevator approach for classification of siates
Now we present a formulation of the distinction (5) in an operator form, based on properlies
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of the normal ordering rule. Within quantum mechanics, as is well known, any operator F
is uniquely determined by its diagonal coherent state matrix elements (zIFE 7}, and more-
over hermiticity of the former corresponds precisely to reality of the latter. Now the normal
ordumg rule of correspondence begins with any classical function f(z*, #), replaces z by

4 and z* by at, and by placing every factor &' to the left of every factor & arrives at a
uniquely determined quantum mechanical operator Fy

e, 2) = By = f (31 toleft, @ to right}
(zFnle) = [(z",2) (6)

So in any state j for the expectation value of Fy we have

By =T (i) = [ 221", | 0

The correspondence f + Fy is clearly linear, and as stated earlier reality goes over into
hermiticity. But the key point for our purposes is that positivity is not preserved in the
passage from classical f to quantum Fy:

Eyz>0=f>0,
f20% Fv>0 (8)

Elementary examples showing this are the foliowing:

= (@t va) -1,
2

—+
f=(+2"e "N((af+a) #3)2—6,
f o= sz*zz% *1 RHFN “Zcﬂln | (9)

In the last case we can easily construct exampies where f is nonnegative even though some
coefficients €', are negative. This means that (when the normal ordering rule is used) every
positive operator F definitely arises from a positive classical function f, but some positive
classical functions f do lead to indefinite Fy: we may refer to this as “quantum negativity”
permitted by the normal ordering rule — 50 in a state 7, the Fy corresponding to some
classical nonnegative f(z*, z) may well have a negative expectation value. Combining eqs
(5,7) we now see: a state 4 is “classical” if this permitted quantum negativity never shows
up in expectation values, “nonclassicat” if it does. This dual statement is exactly the same
in content as the conventional statement (5), but now the focus is on expectation values of
observables and not on ¢(z).

Purely for purposes of comparison, we describe how positivity behaves in two other
familiar rules of correspondence. With the antinormal ordering rule [53, we have

F(z",2) — Fa = f(a toright,d toleft)

f20= Ey = [ 20
Fyz0% f>0 ‘ (10)
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In the Weyl rule of correspondence (6}, which in an algebraic sense is midway between the
above two rules, positivity fails in both directions:

£l A G §tip
.f(zaz}""')Fl-V“f(\/ﬁ, \/§>

foa= (z} — By = parity aperatot,

r . 2 9 g 1 _.2_ .2 ]
Fﬂ»’zil>(}~]'+f((_hp) - ;(q-{‘““‘p“u—é)e q P, (11}

;
symmetrized in ¢ and 3

(For the Weyl rule, the hermitian quadrature components §, p are the natural variables),

4. A refinement of the classification scheme

Now we return to the normal ordering rule characterised by egs (7,8), and motivate a refine-
ment of the distinction between “classical” and “nonclassical” 4. Suppose we Hmit the class
of operators F (we omit hereafier the subscript V) being measured in some well-defined
way. Specifically, consider all classical f(z*, z} which are phase invariant:

fzre™™ 2 ') = (2%, 2)- (12)
A complete independent basis for such £, and the corresponding F7s, is given by

. g g B2 fin
falz*, 2) = g™ " — sz B |n){n)- (13)

For expectation values of these £ all the information contained in ¢(z) is not needed as
an angular average will suffice:

(Fi) = (nlpln) = ] A1 Py e,
0

2

/' B (Ilﬂem) : (14)

2w
0

P(I)

In general, of course, P{[) is alsc a distribution which can be characterized in quite precise
terms. This can be indicated in terms of the Fourier Bessel integral theorem for square
integrable functions on the positive real line [7]:

= / dK - g(FK)Jo(2VIE)
g{K) = .dIvf(I)Jo(Q-\/ff), ar. F(D)? = ldK{g(K)iE (15)
/ e
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‘Then the consequence of eq. (4} for ¢(z) reads as follows for P{I}):

P(I) == Fourier Bessel transform of /2y

(square integrable function of K} (16)

The situation is marginally better than for ¢(z) as only the angular average of the latter is
involved. Now while positivity of ¢(z) implies that of P(7), the converse does not hold.
This motivates the introduction of a three Told classification, a refinement of (5):

p “classical” & ¢{z) >0, P(I) >0,
5 “weakly nonclassical” < ¢(z) # 0, P(I) > 0,
i “strongly nonclassical” « ¢{z) # 0,P{I) 20 (17)

In comparing egs (5) and (£6), we see that the “classical” case remains unchanged. How-
ever the previous “nonclassical” is split up into the “weakly nonclassical”, in which all
phase insensitive measurements seem classical, while some phase sensitive ones reveal
nonclassicality; and the “strongly nonclassical” where even some phase insensitive mea-
surements show up “quantum negativity™.

The motivation is always the question: does the “quantum: negativity” permitted by
normal ordering show up in expectation values or not? And the answer, natarally, depends
on the class of measuremenis contemplated.

An instructive example of a system which causes a transition fram the “classical” to the
“weakly nonclassical” regime is given by the Kerr IHamiltonian,

Hyorp = v i+ f (a78)° (18)

which conserves photon number. We start with a coherent state |zo) which has ¢{z) =
88z — zy), P(I) = 8(1 ~ |z0}?) and so is “classical”. Evoluticn under the Hamiltonian
(18) conserves photon number probabilities and so P([) as well. However ¢{z) goes into
the weakly nonclassical regime as the following arguments show. For any state, positivity
of ¢(z) trivially implies that of the associated Wigner function W{g, p). For a pure state,
Hudson’s Theorem [8] shows that a positive Wigner function implies that both W {g, p) and
the wave function ¢{g) are Gaussian. Now the initial coherent state |2} has a Gaussian
1o((), but this Gaussian nature is destroyed by evolution under Hy,, Since however the
state remains pure, we conclude that W{g, p) cannot be positive, hence ¢(z) has lost its
positivity as well.

Another usefu} example of seeing how our classification waorks uses the Tamily of states
with Gaussian Wigner distributions [9]. Here analytic results can be presented. We limit
curselves to centred Gaussians separable in the quadrature variables g and p. These form a
two-parameter [amily, the parameters being the spreads in g and p:

1 ¢ P
I’V((bp) = mexp (mé_a’? e zﬁz) 3
a=Ag, B=Ap; af>1/2 (19)

The inequality on the product ¢¢f3 is the uncertainty principle; for nonsqueezed states we
have individually a, 8 > \/5—7 while if one of them 15 less than ;}»; we have squeezing.
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Purety formally in the spirit of eq. {4) we have:

B

e ’//dgd'r i :Ary)eg%-(‘zagfl)azfi(z 3* l)rJ

= (g 4+ iy) V2 (20)

In the nonsqueezed case, o, 7 > 1/\/5, ¢(z) exists as a finite nonnegative function,

6(z) = 2((20” ~ 1)(25° - B

2
2 y® ,
xexp( b T g ),a,,6>1/\/§

(21)

and cne has P(I) > 0 as well, So in our classification the state is “classical”. However
the moment one of o and 5 dips below i/\/j and the slate is squeezed, we see that the
Fourier transform of ¢(2) is an exploding Gaussian in one variable, so it is a distribution of
the kind allowed by eq. (4). A detailed study shows that P(7) also becomes a distribution,
so with the onset of squeezing we have a sudden jumyp from the “classical” to the “strongly
nonclassical” case, completely omitting the “weakly nonclassical™ option,

5. {seneralisation to the two-mode case

Finally we indicate briefly the generalisation of these ideas to the two-mode case. Here
naturally there is a richer classification. The diagonal representation invelves an object
¢(z1, #2) dependent on two complex variables. Depending on the class of cbservables
being measured, the amount of information needed varies. We have this situation:

To measure Need

All operators P(z1, 23)

Operators conserving total photon P, 1L, 0) =
2w

number ﬁ;&l + (“Ll; i ‘w] Sl ( Uze““,[j”e““*”)
0

Operators conserving individual photon
2

numbers aial and & 1, P, L)= ‘”} P(Il,
0

=

This mativates a four-fold classification of states as follows:

b ¢ P P

Classical >0>0>0
Weakly nonclassical I 0 >0 >0
Weakly nonclassical I 20 # >0
Strongly nonclassical ¥ 0 20 #0

These are exhaustive and mutually exclusive — as one goes down the table, the states be-
come progressively more nonclassical as mere and more operators are avaitable (o show
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the “quantum negativity”.

The pair coherent states [10] can be shown to be neither classical nor even weakly
nonclassical-I. So also for the squeezed thermal state for strong enough squeezing.

In conclusion, we have presented a new lock at old things in quantum optics, a way 1o
relate the extent of nonclassicality of the state to the set of measurements being made. This
highlights the “quantum negativity” idea implicit in the normal ordering rule, and helps us
classify and discriminate among states in a more detailed and richer way than belore.
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