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Geometric phase for mixed states: a differential geometric approach
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A new definition and interpretation of geometric phase for mixed state cyclic unitary evolution in
quantum mechanics are presented. The pure state case is formulated in a framework involving three
selected Principal Fibre Bundles, and the well known Kostant-Kirillov-Souriau symplectic structure
on (co) adjoint orbits associated with Lie groups. It is shown that this framework generalises in a
natural and simple manner to the mixed state case. For simplicity, only the case of rank two mixed
state density matrices is considered in detail. The extensions of the ideas of Null Phase Curves and
Pancharatnam lifts from pure to mixed states are also presented.

1. INTRODUCTION

The theory of the geometric phase (GP) for pure state unitary quantum evolution [1] attained a definitive status
in all essential aspects quite some time ago. On the one hand the original conditions of adiabatic cyclic unitary
evolution were relaxed quite early [2],[3] and a purely kinematic approach was also elaborated [4]. On the other hand
the differential geometric framework in which the GP is best viewed has been fully delineated [3]-[5] - this will be
recalled in a specific format below.

As against this situation, the generalisation of the GP concept from pure states to generic mixed states of quantum
systems has turned out to be non unique, and several different approaches have been suggested. This is only to
be expected as one is making a transition from the particular to the general. The approaches include exploiting
the process of purification of a mixed state of a given quantum system by tensoring it with another suitably chosen
quantum system and so attaining a pure state [6]; setting up interferometric schemes in which phase shifts experienced
by a system in a mixed state can be experimentally isolated [7]; using a real metric on the space of Hilbert-Schmidt
operators leading to a natural connection via the Kaluza-Klein mechanism [8]; and so on.

The purpose of the present work is to approach this problem from a differential geometric and, in a sense, a
minimalist point of view, including also an essentially unique interpretation based on the general principles of quantum
measurement theory. The main ingredients are the unitary matrix groups U(n) for general (unspecified) n, some of
their coset spaces, and associated structures. We will first show that the pure state GP problem can be treated in
a systematic way using a set-up involving three principal fibre bundles (PFB): the first two are specific U(n) coset
spaces, the third is an associated bundle (AB) based on the second. In the second and the third PFB’s, the base space
consisting of unitarily related pure state quantum density matrices is a (co) adjoint orbit in (the dual to) the Lie
algebra U(n) of U(n). As is well known, such orbits carry a unique symplectic structure- the Kostant-Kirillov-Souriau
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(KKS) symplectic structure [9]- [12]-and this is directly related to GP’s for cyclic evolutions. Each of the three PFB’s
plays a specific role in the overall picture, with GP’s being realised only in the third one as elements of the U(1)
holonomy group. Certain connections arising naturally in these PFB’s will be made use of, and we will find that the
familiar results are immediately obtained.

The advantage of this set up, which may appear somewhat elaborate for the pure state case, is that it immediately,
easily and unambiguously generalises to the mixed state situation depending only upon general quantum principles.
One of the important points we will emphasize is that for cyclic unitary evolutions of such states, there is no such thing
as the associated GP, but rather there is a collection of several such phases. However the natural KKS symplectic
structure singles out a specific combination of them as having a preferred significance, and it is this that can be
directly interpreted along the lines of quantum measurement theory.

The ‘minimalist’ aspect of the treatment to be given here consists in the fact that we use only the structures that
are already present in the quantum mechanical description of mixed states. We merely display them in a particular
manner, and then exploit them to the fullest possible extent. Any other approach, it would thus appear, must involve
ideas and elements in addition to what is presented here; but in a sense these additions are not really necessary.

For the pure state GP problem, the case of noncyclic evolutions [3], the relation to the Bargmann invariants (BI)
[4], uses of geodesics [4], and the more recently discovered Null Phase Curves (NPC) [13],[14] have all been intensively
studied. In the present work, as we wish to bring out as sharply as possible the most important features of mixed
state GP’s in exclusion to everything else, we shall limit ourselves to cyclic evolutions alone. While we will freely use
geometric and group theoretic ideas intrinsic to the problem, we will also introduce local coordinate calculations so
as to be able to carry out explicit calculations and make the entire treatment very tangible.

The contents of this paper are organised as follows. In Section 2 we reformulate the GP associated with pure state
unitary cyclic evolution in the framework of three PFB’s, pointing out the role played by each PFB in the overall
argument. Section 3 then shows how this framework can be generalised in a natural way to evolution of mixed states in
the rank two case, leading to a physically well defined meaning of the GP to be associated with such cyclic evolution.
The important role of the KKS symplectic structure in helping us identify the mixed state GP is clearly brought out.
Section 4 provides the physical interpretation of the results of Section 3, bringing in the familiar meaning of mixed
state density matrices in the context of quantum measurement theory. In Section 5 we discuss the role the recently
introduced NPC’s [13],[14] play in the mixed state situation.; this involves generalising them and the associated ideas
of Pancharatnam lifts and Null Phase Manifolds from pure states to mixed states. The Concluding Section 6 outlines
some general features of the extension of our approach from rank two mixed states to higher rank mixed states;
contrasts our approach and interpretation with some other treatments; and mentions some open problems.

2. REFORMULATION OF PURE STATE GP

In this section we reformulate the pure state GP using the framework of coset space PFB’s and AB. As explained
in the Introduction we consider only the case of cyclic evolution, as our main purpose is to extend the treatment to
mixed states in later Sections.

We denote by H the Hilbert space of pure states of some quantum system. We will suppose that H is of (complex)
dimension n, however in the final GP formulae the parameter n will in fact drop out. The group U(n) of unitary
transformations on H will hereafter be denoted by G; for the most part we deal with the defining representation of
this group. Its Lie algebra is described in Appendix A.

The unit sphere in H is denoted by B:

B = {ψ ∈ H| ||ψ|| = 1} ⊂ H, (2.1)

and the space of unit rays by R:

R = B/U(1) = {ρψ = ψψ†| ψ ∈ B}. (2.2)

The projection π maps B onto R. The preferred or natural connection one form on B, whose importance for pure
state GP theory is well known, is

A = −iψ†dψ. (2.3)

The two form dA on B,

dA = −idψ† ∧ dψ, (2.4)
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is the pull back of a symplectic two-form Ω on R:

dA = π∗Ω. (2.5)

The intrinsic definition of Ω is as follows [15]. At each point ρ ∈ R, vectors in the tangent space TρR arise by
evaluating the commutators of hermitian operators K on H (generators of G) with ρ:

ρ ∈ R, X ∈ TρR : X = −i[K, ρ], K† = K. (2.6)

Here K is determined by X upto an operator commuting with ρ, but this ambiguity does not matter in the definition
of Ω below. If ρ = ψψ†, then a general X and a K producing it can be expressed in terms of a vector χ orthogonal
to ψ [4]:

K = i(χψ† − ψχ†), X = χψ† + ψχ† , (ψ, χ) = 0. (2.7)

Now Ω is defined at each ρ by giving its evaluation on two tangent vectors there:

X, X ′ ∈ TρR : Ωρ(X,X
′) = −iTr(ρ[K,K ′])

= 2 Im(χ, χ′). (2.8)

This Ω is in fact the Kostant-Kirillov-Souriau (KKS) symplectic two-form on R viewed as a non-generic (co) adjoint
orbit in the Lie algebra G of G.

The connection A is now used to define horizontal lifts of smooth curves in R. If

C = {ρ(s) ∈ R|s1 ≤ s ≤ s2, ρ(s1) = ρ(s2)} ⊂ R (2.9)

is a parametrised closed curve in R, and

Ch = {ψ(s) ∈ B|s1 ≤ s ≤ s2} ⊂ B (2.10)

is a horizontal lift of C to B, then at each point of Ch we have

Aψ(s)(ψ̇(s)) = −i(ψ(s), ψ̇(s))

= Im(ψ(s), ψ̇(s)) = 0. (2.11)

This lift Ch of C is in general not closed, as ψ(s1) and ψ(s2) may differ by a phase. This is the GP associated with
C, and is the U(1) holonomy group element in the sense of (B.20) in this case:

ϕgeom[C] = arg(ψ(s1), ψ(s2))

= −
∫ ∫

S

Ω , ∂S = C, (2.12)

where S ∈ R is any smooth two-dimensional surface with boundary C.
Now we explain the way in which this pure state GP emerges in a systematic and generalisable manner from a

set-up involving three PFB’s, each being used for a particular purpose.
The group G acts transitively on B. Choose as a ’reference point’ or ’origin’ in B the first canonical basis vector in

H,

ψ
(0)
1 =











1
0
·
·
0











. (2.13)

The stability group of ψ
(0)
1 , namely the subgroup of G leaving ψ

(0)
1 invariant, is H0 = U(n− 1) acting on dimensions

2, 3, · · · , n in H. Therefore B is the coset space G/H0 = U(n)/U(n− 1). The first coset space PFB we introduce is
(G,B, ··, H0), where for simplicity here and later we omit the symbol for the relevant projection map. The purpose of
this PFB is to help us compute the Maurer-Cartan one-forms on G in a practically useful form. For a general ψ ∈ B,
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let ℓ(ψ) be some (local) choice of coset representative, namely an element of G carrying ψ
(0)
1 to ψ. Therefore ℓ(ψ) has

the form

ℓ(ψ) =











· · · · ·
·

ψ · · · · ·
·
· · · · ·











, (2.14)

with the first column being ψ and the rest determined upto an element of H0 on the right. A general matrix U ∈ G
is then parametrised in the following way:

U = U(ψ, h0) = ℓ(ψ)h0, h0 ∈ H0, (2.15)

with ψ ∈ B and h0 ∈ H0 being (local) coordinates on G. The full set of Maurer-Cartan one-forms on G can now be
computed using eq. (B.10). In the general notation of Appendix B, if we write the generators of H0 as Ja and the
remaining generators of G as Jµ, eq.(B.10) gives [11],[12]:

U(ψ, h0)
−1dU(ψ, h0) = −iθ̂(0)aJa − iθ̂(0)µJµ

= ψ†dψ Q1 +H0 terms + cross terms,

Q1 =











1 0 · · 0
0
·
· 0
0











. (2.16)

To make contact with the notation of appendix A, the generators Ja of H0 are Qj, Jjk, Qjk for j, k = 2, 3, · · · , n;
the ψ-dependent term is the unambiguous contribution involving the first diagonal generator Q1; and the cross terms
involve J1k, Q1k for k = 2, 3, · · · , n, all outside H0. The coefficient of Q1 is independent of the freedom in the choice
of ℓ(ψ), and is essentially the one-form A in eq.(2.3).

Next we turn to the second coset space PFB. The origin ψ
(0)
1 ∈ B determines a corresponding point ρ(0) =

ψ
(0)
1 ψ

(0)†
1 ∈ R. The stability group of ρ(0) is the subgroup H = U(1) × H0 = U(1) × U(n − 1) ⊂ G, U(1) being

generated by Q1; and R is the coset space G/H . The second coset space PFB is taken to be (G,R, ··, H). Here the
base is a particular (co)adjoint orbit in the Lie algebra G. On this PFB, by the definition (B.33), we have a preferred
connection by retaining the terms in eq.(2.16) involving generators of H alone, and dropping the cross terms:

ω(2) = −i
(

U(ψ, h0)
−1dU(ψ, h0)

)

H

= −iψ†dψ Q1 +H0 − terms. (2.17)

Lastly we bring in a PFB associated to (G,R, ··, H): the base remains the same, while G and H are replaced by
suitably chosen E and F . These are: F = U(1) subgroup of H = U(1) subgroup of G generated by Q1; and E = B.
So this AB is (B,R, ··, U(1)). The action of H on F which is needed is defined by making H0 in H act trivially, while
U(1) in H acts on F = U(1) by the ( Abelian) U(1) group composition law. Thus the connection ω(2) of eq. (2.17)
goes over in this third PFB to the connection

ω(3) = −iψ†dψ = A. (2.18)

Thus we have arrived at eq. (2.3). The H0-terms in ω(2) have been dropped since H0 is defined to act trivially
on F = U(1), and we have also set Q1 = 1. In this final result, the dependence on n and the freedom in the choice
of ℓ(ψ) have both disappeared. What we have seen already is the connection (2.5) between dA on B and the KKS
symplectic two-form Ω on R.

To recapitulate, the first coset space PFB (G,B, ··, H0) is used along with a choice of coset representative ℓ(ψ) to
calculate the Maurer-Cartan one-forms on G ( at least the terms of interest to us ) in a convenient manner. This
result is used to define a preferred connection ω(2) in the second coset space PFB (G,R, ··, H), at the same time
bringing in R as the base space. This connection is then ’transferred’ to the AB (B,R, ··, U(1)) and gives back the
connection A needed for pure state GP’s. In both the second and third PFB’s the base R is a (co)adjoint orbit in G,
carrying the KKS symplectic two-form Ω. In the third PFB, we recognise that dA on B is related to Ω by pull-back,
and the sequence of operations is complete.
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3. MIXED STATE GP’S

A pure state density matrix is a rank one operator, with one non zero eigenvalue unity and the remaining eigenvalues
equal to zero. A mixed state density matrix has in general a spectrum of non zero eigenvalues each with some
multiplicity, followed by a remainder (in general) of zero eigenvalues. Whereas pure state density matrices are acted
upon transitively by G, this is not true for the mixed state case since both the rank of the density matrix and its
spectrum of eigenvalues are preserved under unitary transformations. For each rank k the generic case is when the
spectrum of nonzero eigenvalues κa is non degenerate i.e., they obey

0 < κk < κk−1 < · · · < κ2 < κ1 < 1,
k

∑

a=1

κa = 1. (3.1)

The corresponding set of density matrices may be denoted by Rκ. Keeping k and κ fixed, each of these sets is acted

upon transitively by G, and is homeomorphic in a κ- dependent manner to the coset space G/(U(1)k × U(n − k)).
Cases of degeneracy among the κa correspond to non generic lower dimensional situations described by other coset
spaces.

As the simplest case of a mixed state we consider rank two density matrices ρ for which the non zero eigenvalues
are non degenerate. Let us write κa, a = 1, 2, for these eigenvalues and agree that

0 < κ2 < κ1 < 1 , κ1 + κ2 = 1. (3.2)

Then ρ has the form

ρ = κ1ψ1ψ
†
1 + κ2ψ2ψ

†
2, (3.3)

where the vectors ψa, a = 1, 2, each determined upto a phase factor, form an ordered orthonormal pair:

(ψa, ψb) = ψ†
aψb = δab. (3.4)

Hereafter we keep κa fixed. So each such ρ is in unique one to one correspondence with an ordered pair of pure state
density matrices defined as and obeying

ρa = ψaψ
†
a , ρaρb = δabρa (no sums!),

ρ = κ1ρ1 + κ2ρ2. (3.5)

This set of ρ’s forms a (co)adjoint orbit under G. At the vector space level we have to deal with ordered pairs
ψa, a = 1, 2, as in eqs.(3.3, 3.4). We recognise here the generalisations of B and R of the pure state situation to mixed

states of the form (3.3), in which for any κ = (κ1, κ2) with κ2 < κ1 and κ1 +κ2 = 1, we have an orbit R(2)
κ replacing

R. We now define and describe these spaces in detail, stressing that we need something at the vector space level ’on
top of’ density matrices.

The space B(2)

We define this space to consist of ordered pairs of orthonormal vectors in H, with no explicit mention of κa. For
later convenience we write the pair of vectors in a particular notation:

B(2) = {Ψ = (ψ1 ψ2)|ψa ∈ B, ψ†
aψb = δab}. (3.6)

In an obvious manner, the group G acts transitively on B(2). A convenient ’origin’ consists of the first two canonical
basis vectors in H:

Ψ(0) = (ψ
(0)
1 ψ

(0)
2 )

ψ
(0)
1 =











1
0
·
·
0











, ψ
(0)
2 =











0
1
·
·
0











. (3.7)
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The stability group of Ψ(0) is the subgroup H0 = U(n− 2) ⊂ G acting on the dimensions 3, 4, · · · , n in H. (The use of
the same letter H0, and later H , as in the previous section should cause no confusion.) Thus we recognise B(2), the
orbit of Ψ(0) under G action, as a coset space:

B(2) = G/H0 = U(n)/U(n− 2),

dimB(2) = 4(n− 1). (3.8)

Elements of the tangent space to B(2) at Ψ can be described as follows. Each Φ ∈ TΨB(2) is a pair Φ = (φ1 φ2),
φa ∈ H, obeying restrictions which follow from eq.(3.4):

(ψ1, φ1), (ψ2, φ2) = pure imaginary,

(ψ1, φ2) + (φ1, ψ2) = 0. (3.9)

Taking out a factor of i we can write each such Φ uniquely as

Φ = iΨh+ χ,

h† = h = 2 × 2 matrix,

χ = (χ1 χ2),

χa ∈ H⊥(Ψ) = subspace of H orthogonal to ψ1 and ψ2. (3.10)

Thus we have a one to one correspondence

Φ ∈ TΨB(2) ↔ h, χ. (3.11)

This is a generalisation of the pure state case where any φ ∈ TψB has the unique form [4]

φ = iaψ + χ,

a∗ = a,

χ ∈ H⊥(ψ). (3.12)

The real number a gets generalised to a 2 × 2 hermitian matrix h, while χ ∈ H⊥(ψ) has been replaced by an ordered
pair χ = (χ1 χ2) with each χa ∈ H⊥(Ψ).

The space R(2)

This is the space of mixed state density matrices we are interested in, and it can be described in several useful ways:

R(2) = {ρ† = ρ ≥ 0,Trρ = 1|Spectrum of ρ = (κ1, κ2, 0, · · · , 0)}
= {Uρ(0)U−1|U ∈ G, ρ(0) = κ1ψ

(0)
1 ψ

(0)†
1 + κ2ψ

(0)
2 ψ

(0)†
2 }

= {(ρ1 ρ2)|ρa ∈ R, ρ1ρ2 = 0}. (3.13)

The last description of R(2) ( we omit κ in R(2)
κ since κ is kept fixed in the discussion), in which κa do not appear

explicitly, is actually equivalent to the earlier description, via a κ- dependent diffeomorphism. However we do not
mention this repeatedly.

Under G action, the stability group of ρ(0) is H = U(1) × U(1) ×H0, the U(1) factors acting on the first and the
second directions in H. Thus we exhibit R(2) as a coset space which is in fact a (co)adjoint orbit in G, as well as a
quotient space starting from B(2):

R(2) = (co) adjoint orbit of ρ(0)

= G/H

= B(2)/U(1) × U(1),

dimR(2) = dimB(2) − 2 = 2(2n− 3). (3.14)

The (κ dependent ) projection π : B(2) → R(2) takes Ψ ∈ B(2) to ρΨ ∈ R(2) according to

ρΨ = π(Ψ) = ΨκΨ†,

κ =

(

κ1 0
0 κ2

)

. (3.15)
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The description of the tangent spaces TρR(2) involves a little effort. If we use the representation (3.15) for ρΨ, and

take some Φ ∈ TΨB(2), a general X ∈ TρΨR(2) is certainly expressible as

X = ΨκΦ† + ΦκΨ† ∈ G. (3.16)

Using eq.(3.10) for Φ and writing out and grouping terms, we see that

X = iΨ[h, κ]Ψ† + Ψκχ† + χκΨ†. (3.17)

This is certainly determined by h and χ, but h11 and h22 are not needed since

[h, κ] = (κ1 − κ2)

(

0 −h12

h21 0

)

,

h21 = h∗12. (3.18)

Therefore, as is easily confirmed, each X ∈ TρΨR(2) is determined by, and corresponds in a one-to-one fashion to, a
complex number h12 and a pair χ:

X(h12, χ) = −i(κ1 − κ2)(h12ψ1ψ
†
2 − h∗12ψ2ψ

†
1) + κ1(ψ1χ

†
1 + χ1ψ

†
1) + κ2(ψ2χ

†
2 + χ2ψ

†
2). (3.19)

If we alter ψa by independent phases eiαa which leave ρΨ invariant, to keep X unchanged we must replace h12 →
ei(α2−α1)h12, χa → eiαaχa. Returning to Φ ∈ TΨB(2) in (3.10), we can tentatively separate it into vertical and
horizontal parts, the former being the h11, h22 terms and the latter the rest:

Φ = iΨh+ χ (3.20)

= iΨ

(

h11 0
0 h22

)

+ iΨ

(

0 h12

h∗12 0

)

+ χ.

The horizontal part is in unambiguous correspondence with X in eq. (3.19).
For the later determination of the KKS two-form on R(2), we need to express each X ∈ TρΨR(2) as the commutator

of some hermitian operator K ∈ G with ρΨ. This is easily done:

X(h12, χ) = −i[K(h12, χ), ρΨ],

K(h12, χ) = i(χΨ† − Ψχ†) − Ψ

(

0 h12

h∗12 0

)

Ψ†. (3.21)

The presence of new terms compared to eq.(2.7) in the pure state case should be noted.
We may add the following remark. Each (co)adjoint orbit (fixed by κ as explained above ) meets the subalgebra of

diagonal matrices in as many points as the number of diagonal matrices we get by applying the permutation group

( Weyl group ) to the starting diagonal matrix ρ(0) = κ1ψ
(0)
1 ψ

(0)†
1 + κ2ψ

(0)
2 ψ

(0)†
2 + · · ·κkψ(0)

k ψ
(0)†
k , just intersecting

each Weyl chamber exactly once. Fixing κ in such a way that 0 < κk < κk−1 < · · · < κ2 < κ1 < 1 is
then equivalent to choosing a particular Weyl chamber. Therefore, we have as many orbits as the points in the
interior of a Weyl chamber, the boundary points corresponding to the case where the mixed state density matrix has
degenerate eigenvalues. For example, in the rank two case, analysed explicitly in this Section, the Weyl chamber is a
one-dimensional segment that we have chosen to parametrize by κ1 ∈ [1/2, 1).

Local coordinates on B(2)and R(2)

To later connect Hilbert space notations with differential geometric ones, we now describe correlated local coordinate
choices around general points in B(2) and in R(2). Take a point Ψ0 = (ψ01 ψ02) ∈ B(2), not necessarily the ’origin’
Ψ(0) of eq (3.7). Its image in R(2) is

Ψ0 ∈ B(2) → ρ0 = π(Ψ0) = Ψ0κΨ
†
0 ∈ R(2). (3.22)

Convenient neighbourhoods of Ψ0, ρ0 will get determined as we describe them. The orthogonal complement to Ψ0, a
subspace of H of complex dimension n− 2, is defined as

H⊥(Ψ0) = {ψ ∈ H|(ψ0a, ψ) = 0, a = 1, 2} ⊂ H. (3.23)
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Let Ψ = (ψ1 ψ2) ∈ B(2) be ’near’ Ψ0. Then each of ψ1 and ψ2 is expressible as a unique linear combination of ψ01, ψ02

plus some vector in H⊥(Ψ0). Let us write

ψa = Sbaψ0b + χ0a, a = 1, 2,

χ0a ∈ H⊥(Ψ0),

i.e.Ψ = Ψ0 S + χ
0
, (3.24)

with S a complex 2 × 2 matrix. The condition (3.4) becomes:

S†S = 12×2 − χ†

0
χ

0
. (3.25)

Let us then limit χ
0

so that the two eigenvalues of χ†

0
χ

0
= (χ†

0aχ0b) both lie in [0, 1). (This means χ
0

involves 4(n−2)

real independent variables.) This makes S non singular, the general solution being

S = U(1 − χ†

0
χ

0
)1/2, U ∈ U(2). (3.26)

Here the square root is the unique hermitian positive definite one, so this is the polar decomposition of S.
If we allow U to be a general U(2) element, that brings in four new independent variables, so U and χ

0
together

account for 4(n-1) real independent variables which would be right for B(2). However the action of U(1)×U(1) on Ψ
amounting to a motion along fibres is

Ψ → Ψ

(

eiα1 0
0 eiα2

)

, (3.27)

and it is convenient to have the charts on B(2) and R(2) related in this way. We therefore limit U in eq.(3.26) to a two
parameter family. We see easily that if U ∈ U(2) has real positive diagonal elements, then it is actually an element of
SU(2) and takes the form

U(z) =

( √

1 − |z|2 z

−z∗
√

1 − |z|2
)

, |z| < 1. (3.28)

We thus have a local coordinate description of a neighbourhood of ρ0 in R(2) as follows: a point ρ ∈ R(2) near ρ0 is

ρ = ΨκΨ†,

Ψ = Ψ0U(z)(1 − χ†

0
χ

0
)1/2 + χ

0
. (3.29)

In all, z and χ
0

amount to 2(2n− 3) real independent parameters, the dimension of R(2). The neighbourhood of ρ0

is defined by the conditions on χ
0

and z in eqs. (3.26, 3.28). For each ρ in this neighbourhood, we have a unique lift

Ψ ∈ B(2) given in (3.29). A general Ψ′ ∈ π−1(ρ) differs from Ψ by a diagonal phase matrix :

Ψ′ = Ψ

(

eiα1 0
0 eiα2

)

, 0 ≤ α1, α2 < 2π. (3.30)

Both ρ and Ψ in eq (3.29) are functions of z and χ
0
. In addition Ψ′ involves α1 and α2. At ρ0 and Ψ0 both z and χ

0
vanish. At Ψ0, α1 = α2 = 0 as well. To compare eqs.(3.29), (3.30) with the pure state case, see [14].

Vectors and forms at Ψ0

Since the matrix (1 − χ†

0
χ

0
)1/2 is not easy to differentiate, we limit ourselves to small regions in R(2) and B(2)

around ρ0 and Ψ0 respectively. By Φ′ we denote a general tangent vector in TΨ′B(2) in the manner of eq.(3.10).
We will actually need expressions for XΦ′ , A(a) and dA(a) (defined later) at Ψ0, which means we ultimately take
Φ′ ∈ TΨ0

B(2). For these purposes we find that it is adequate to retain only terms linear in αa, z and χ
0
. From eqs.

(3.29, 3.30) we have:

ψ′
1 = ψ01(1 + iα1) − z∗ψ02 + χ01,

ψ′
2 = ψ02(1 + iα2) + zψ01 + χ02. (3.31)
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Next we let Φ′ ∈ TΨ0
B(2) correspond to the pair h′, χ′ in the sense of (3.10). Then the nearby point Ψ′ = Ψ0 + ǫΦ′,

for small ǫ, involves small changes δα1, δα2, δz, δχ0a around zero, obtained by comparison with eq. (3.31):

Ψ′ = Ψ0 + ǫΦ′ :

δα1 = ǫh′11, δα2 = ǫh′22,

δz = iǫh′12, δz∗ = −iǫh′21,
δχ01 = ǫχ′

1, δχ02 = ǫχ′
2. (3.32)

Dropping ǫ, the standard differential geometric way of representing Φ′ at Ψ0 is as

XΦ′ = h′11
∂

∂α1
+ h′22

∂

∂α2
+ ih′12

∂

∂z
− ih′21

∂

∂z∗

+
∂

∂χ01
χ′

1 +
∂

∂χ02
χ′

2 + χ′†
1

∂

∂χ†
01

+ χ′†
2

∂

∂χ†
02

. (3.33)

In a similar spirit we compute A(a) and dA(a) at Ψ0. For the former we find

A(a) = −iψ′†
a dψ

′
a = dαa, (3.34)

which implies

iX
Φ′
A(a) = h′aa, a = 1, 2. (3.35)

Thus as anticipated in eq.(3.20)

Φ′ horizontal ⇔ iX
Φ′
A(a) = 0 ⇔ h′11 = h′22 = 0. (3.36)

Now we look at the two-forms dA(a) again at Ψ0. Simple calculations give the results

dA(1) = −idz ∧ dz∗ − idχ†
01 ∧ dχ01,

dA(2) = +idz ∧ dz∗ − idχ†
02 ∧ dχ02. (3.37)

We can contract these with tangent vectors Φ′,Φ′′ using eq.(3.33) and we then get

dA(1)(XΦ′ , XΦ′′) = iXΦ′′
iX

Φ′
dA(1)

= −i(h′12h′′21 − h′21h
′′
12) + i(χ′′†

1 χ
′
1 − χ′†

1 χ
′′
1),

dA(2)(XΦ′ , XΦ′′) = iXΦ′′
iX

Φ′
dA(2)

= +i(h′12h
′′
21 − h′21h

′′
12) + i(χ′′†

2 χ
′
2 − χ′†

2 χ
′′
2). (3.38)

With these preparations we can go on to GP considerations.

The PFB framework and GP’s

We now follow the same pattern of arguments as in the previous Section for pure states. The first coset space PFB
is now (G,B(2), ··, H0) with H0 = U(n− 2). A choice of coset representative at Ψ ∈ B(2) is of the form

ℓ(Ψ) =











· · · · ·
·

Ψ · · · · ·
·
· · · · ·











∈ G,

ℓ(Ψ)Ψ(0) = Ψ. (3.39)

This replaces eq.(2.14), and ℓ(Ψ) is arbitrary upto an element of H0 on the right. A general matrix U ∈ G is
parametrised as

U(Ψ, h0) = ℓ(Ψ)h0, h0 ∈ H0 (3.40)
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in place of (2.15). The replacement for eq. (2.16) involving all the Maurer-Cartan forms on G is

U(Ψ, h0)
−1dU(Ψ, h0) = ψ†

1dψ1 Q1 + ψ†
2dψ2 Q2 +H0 terms + cross terms. (3.41)

The second coset space PFB is (G,R(2), ··, H) with H = U(1)×U(1)×H0. The preferred connection on this PFB
is obtained from eq.(3.41) by dropping the cross terms and retaining only the H-terms:

ω(2) = −i
(

U(Ψ, h0)
−1dU(Ψ, h0)

)

H

= −iψ†
1dψ1 Q1 − iψ†

2dψ2 Q2 +H0 − terms. (3.42)

which replaces eq.(2.17).
The third PFB is an AB to the previous one in which we replace G and H by suitable E and F : E = B(2),

F = U(1) × U(1) part of H . The action of H on F is defined again by making H0 act trivially, while U(1) × U(1)
acts on F following the abelian composition law. Thus from ω(2) we arrive at the connection

ω(3) = −iψ†
1dψ1 Q1 − iψ†

2dψ2 Q2, (3.43)

on this third PFB. Now we cannot delete Q1 and Q2 here as they are the two independent generators of the two U(1)
factors in U(1) × U(1). Alternatively we can say we have two independent one-forms A(a) on B(2):

A(a) = −iψ†
adψa (no sum). (3.44)

while the U(1) × U(1) valued connection ω(3) is

ω(3) = A(1) Q1 + A(2) Q2. (3.45)

The evaluations of A(a) and dA(a) on tangent vectors at general points on B(2) are contained in eq. (3.35, 3.38).
If we consider a closed curve C ⊂ R(2) (cyclic mixed state evolution), a horizontal lift Ch ⊂ B(2) must obey two

conditions at each point:

A
(a)
Ψ(s)(Ψ̇(s)) = 0,

i.e., (ψa(s), ψ̇a(s)) = 0, a = 1, 2. (3.46)

In general now the end points of Ch differ by a pair of phases, an element of U(1) × U(1), not just by a single phase.
Each of them is a GP and should be counted independently. This leads us to consider the two independent two-forms
dA(a) on B(2). On the other hand, the KKS construction leads to a single symplectic two-form Ω on R(2), so the
question is to find out which linear combination of dA(a) is related to Ω via pullback. We now find this combination.

The KKS two-form on R(2)

In eq.(3.21) we have an expression for a general tangent vector X ∈ TρR(2), as well as a hermitian generator K

leading to it upon commutation with ρ. The KKS symplectic two-form Ω on R(2) is defined at each point by its
evaluation on two tangent vectors [15]:

Ωρ(X
′, X ′′) = −iTrH(ρ [K ′,K ′′]). (3.47)

For clarity we have indicated that the trace has to be computed on the Hilbert space H. Using eq.(3.21) we find after
some algebra:

Ωρ(X
′, X ′′) = −i(κ1 − κ2)(h

′
12h

′′
21 − h′21h

′′
12)

− iκ1(χ
′†
1 χ

′′
1 − χ′′†

1 χ
′
1) − iκ2(χ

′†
2 χ

′′
2 − χ′′†

2 χ
′
2). (3.48)

Comparing this with the expressions for dA(a)(XΦ′ , XΦ′′) in eq.(3.38) we see that we have the relation

∑

a

κadA
(a) = π∗Ω. (3.49)

Here finally the non zero eigenvalues κa of ρ ∈ R(2) have reappeared, and at the same time dependences on n have
disappeared.
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This approach indicates that the unique GP we can associate with a cyclic evolution in the coadjoint orbit of a
given rank 2 mixed state density operator is a linear combination of the two phases provided by the U(1) × U(1)
holonomy group element , and this combination is expressible as the symplectic area of a surface in R(2):

ϕ(a)
geom[C] = arg(ψa(s1), ψa(s2)) , a = 1, 2 ;

∑

a

κaϕ
(a)
geom[C] = −

∫ ∫

S

Ω , ∂S = C. (3.50)

Here C = {ρ(s)} is a closed loop on R(2) and Ch = {Ψ(s)} is a horizontal lift of it in B(2).
We explore the physical interpretation of these results in the next Section.

4. PHYSICAL INTERPRETATION OF MIXED STATE GP’S

The present approach to mixed state unitary evolution based on the PFB framework has naturally emphasized the
fact that ( in the rank two case) the holonomy group is U(1) × U(1) . So at the end of a cyclic evolution we have a

pair of geometric phases ϕ
(a)
geom[C], not simply one. On the other hand the KKS definition of a canonical symplectic

structure on the space of these density matrices, which form a (co)adjoint orbit in G, leads to a unique two-form Ω
given in eqs. (3.47, 3.48). The symplectic area integral of Ω is a weighted average of the two GP’s, as in eq. (3.50).
We now construct an interpretation of this result, based on general quantum mechanical principles.

A mixed state density matrix ρ for a quantum system is a convex combination of any number of pure state density
matrices [16]:

ρ =
∑

r

prρr, ρr ∈ R, pr > 0,
∑

r

pr = 1. (4.1)

(Of course there must be at least two terms present). Here the pr are any set of classical probabilities. The ρr do not
have to be pairwise orthogonal. A mixed ρ can be expanded in this form in infinitely many ways, and each expansion
represents a distinct physical way in which an ensemble of kinematically identical systems, characterised as a whole
by ρ, can be synthesised. Given the particular expansion (4.1), we can imagine an ensemble of a very large number of
systems, a fraction pr of which form a sub ensemble in the pure state ρr. The average of the results of measurements
of any hermitian observable θ over the entire ensemble is given by

< θ >=
∑

r

prTr(ρrθ) = Tr(ρθ). (4.2)

In the final result only ρ appears, not the particular way in which the ensemble was physically prepared. This expresses
the physical fact that the average of measurements over any one of these ensemble realisations of ρ is always the same.
Of course, Tr(ρθ) need not be any one of the eigenvalues of θ; even each individual Tr(ρrθ) need not be an eigenvalue
of θ.

Among the infinitely many realisations (4.1) of ρ is of course a special or canonical one. This corresponds to the
spectral resolution of ρ when the pr are the non zero eigenvalues κa of ρ (assumed non degenerate for simplicity),
and the ρa are the corresponding mutually orthogonal pure state projections. ( In this case, the number of terms
in eq.(4.1) cannot exceed dim H = n). Our result (3.50) for mixed state GP’s suggests that we use this canonical
ensemble realisation of ρ.

We now go back to the rank two case and use the canonical decomposition (3.3). The measurement of GP’s is not
like the measurement of some hermitian operator observable belonging to the system under consideration. Let us

nevertheless imagine that we have an ensemble of systems, a fraction κ1 of which are in the pure state ρ1 = ψ†
1ψ1,

and the remaining fraction κ2 are in the orthogonal pure state ρ2 = ψ†
2ψ2. As ρ undergoes unitary cyclic evolution,

so do each of ρ1 and ρ2, but these latter are pure state evolutions. We assume an experimental arrangement has
been set up which is capable of measuring these two pure state GP’s. Then the ensemble average of the results of
these measurements is exactly what appears in eq.(3.50) on the left hand side, which need not be the same as either
of the two individual GP ′s ( or indeed any GP). However this ensemble averaged GP is what is reproduced by the
symplectic area calculation on R(2), using the canonical KKS two-form Ω.

This ’minimalist’ interpretation works only with the canonical ensemble realisation of ρ, and involves an average

of phases, not of unimodular phase factors exp(iϕ
(a)
geom[C]). This implies that the experimental measurements of

the ϕ
(a)
geom[C] must not be just modulo 2π, but must keep careful track of the gradually accumulating value of each

ϕ
(a)
geom[C] as the cyclic evolution is experienced.
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5. THE RELATION OF GEOMETRIC PHASE TO NULL PHASE CURVES FOR MIXED STATES

In this Section we would like to generalize some earlier results on Berry’s phase for pure states [14]. In particular,
we would like to show how geometric phase(s), for both cyclic and noncyclic evolutions, can be directly obtained as
a surface integral of the KKS symplectic two-form once a suitable class of curves, the null phase curves, has been
defined. For definiteness, we will consider again the case of rank two density matrices, but the results can be easily
generalized to the higher rank situation which will be briefly described in the last Section.

Let us start by recalling some of the geometrical structures we have studied in the preceding sections. We have

seen that, for each κ = (κ1, κ2), κ1 + κ2 = 1, the space R(2)
κ can be identified with the adjoint orbit under the

U(n) action of a given rank-two density matrix ρ(0) = κ1ρ
(0)
1 + κ2ρ

(0)
2 . This orbit is, in turn, isomorphic to the coset

space U(n)/U(1) × U(1) × U(n − 2), via a κ-dependent map which fixes the two U(1)’s as being generated by ρ
(0)
j

, j = 1, 2. On each orbit {ρ = Uρ(0)U−1 = κ1Uρ
(0)
1 U−1 + κ2Uρ

(0)
2 U−1 |U ∈ U(n)}, the KKS symplectic form is

given by Ωρ = Tr(ρ dU † ∧ dU) and its pull-back to the full U(n) as well as to the bundle space B(2) is exact, with
π⋆κΩρ = dAρ, Aρ = κ1A1 + κ2A2 = Tr(ρU †dU). We notice that both Ωρ and Aρ depend explicitly on κ i.e. they
are specific to the chosen orbit, on which we confine the evolution to define geometric phases. For this reason, in the
following we drop the subscript κ.

We consider continuous parametrized curves C ∈ B(2) and their projections to C = π(C) ⊂ R(2):

C = {(ψ1(s) ψ2(s)) ∈ B(2) | s ∈ [s1, s2]} (5.1)

C = {ρ(s) = κ1ρ1(s) + κ2ρ2(s) ∈ R(2) | s ∈ [s1, s2]} (5.2)

with the following smoothness conditions:
the curves C, C, are said to be class I curves iff ψj(s), ρj(s) are continuous, piecewise differentiable and

(ψj(s1), ψj(s2)) 6= 0, j = 1, 2; (5.3)

the curves C, C, are said to be class II curves iff ψj(s), ρj(s) are continuous, once differentiable and

(ψj(s), ψj(s
′)) 6= 0, j = 1, 2, for any s, s′ ∈ [s1, s2]. (5.4)

In addition, a curve C, C of class II is said to be a null phase curve (NPC) iff

Tr(ρj(s)ρj(s
′)ρj(s

′′)) = real positive ⇔ Tr(ρj(s)[ρj(s
′), ρj(s

′′)]) = 0, j = 1, 2, for any s, s′, s′′ ∈ [s1, s2]. (5.5)

We can understand this definition also from a more geometrical point of view. Let us consider the subset of couples
of vectors (ψ1 ψ2) ∈ B(2) such that ψj (j = 1, 2) belongs to the real linear hull obtained by forming all real linear
combinations of any number of vectors ψj(s

′) (renormalized if necessary). This collection of couples is associated to a

real subspace of H(2) = {(ψ1 ψ2) |ψj ∈ H} which, because of (5.5), is π⋆Ω isotropic. We are thus led to characterize
a NPC via such associated subspaces.

Given a class II curve C = {ρ(s) = κ1ρ1(s) + κ2ρ2(s)} ∈ R(2), we can define its Pancharatnam lift to a curve
C0 = {(ψ0

1(s) ψ
0
2(s))} ∈ B(2) such that, for each component:

(ψ0
j (s), ψ

0
j (s

′)) = real positive for any s, s′ ∈ [s1, s2], (5.6)

in a way similar to the construction obtained in [14] for the pure state case. Choosing any reference point
(ψ0

1(s0) ψ
0
2(s0)) ∈ B(2), this lift is explicitly determined by setting, for j = 1, 2:

ψ0
j (s) = Nj(s)ρj(s)ψ

0
j (s0), (5.7)

Nj(s) = |(ψ0
j (s0), ψj(s))|−1 = [Tr(ρ0

jρj)]
−1/2. (5.8)

As a consequence of (5.6), any two points of C0 are in phase in the Pancharatnam sense and the curve C0 is
horizontal:

arg(ψ0
j (s1), ψ

0
j (s2)) = 0,

∫

C0

Aj = 0, (5.9)
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where Aj = −iψ†
jdψj . It is then not difficult to check that, for a general lift C = {(eiα1(s)ψ0

1(s) e
iα2(s)ψ0

2(s))} of C

obtained from C0 by a smooth local U(1) × U(1) phase transformation, one has:

∫

C

Aj =

∫ s2

s1

ds
dαj(s)

ds
= αj(s2) − αj(s1) = arg(ψj(s1), ψj(s2)). (5.10)

We are now ready to define the geometric phase (GP) associated to any class I curve C = {ρ(s)} from ρ(s1) to
ρ(s2). Let C′ be any NPC from ρ(s2) to ρ(s1) so that C ∪C′ is a class I closed loop. Then, if S is a two-dimensional
surface such that ∂S = C ∪C′, the GP associated to C is defined to be given by:

ϕg[C] = −
∫

S

Ω. (5.11)

With some algebra, one can easily show that the integral (5.11) is indeed independent of the choice of the NPC C′

and that the geometric phase associated to any NPC vanishes. Also the kinematic definition of the GP is recovered:
if C is any lift of C, from (ψ1(s1) ψ2(s1)) to (ψ1(s2) ψ2(s2)), one has

ϕg[C] ≡ −
∫

S

Ω = −
∮

C∪C′

A = −
∫

C

A−
∫

C′

A =

= arg(ψ1(s1), ψ1(s2)) + arg(ψ2(s1), ψ2(s2)) −
∫

C

A. (5.12)

There are additional properties of GP’s that are worth mentioning and that can be recovered from definition (5.11)
and from the property (5.10) of NPC’s. Suppose first that C12, C23, C31 are projections of the NPC’s C12, C23, C31 from
(ψ1(s1) ψ2(s1)) to (ψ1(s2) ψ2(s2)), from (ψ1(s2) ψ2(s2)) to (ψ1(s3) ψ2(s3)) and from (ψ1(s3) ψ2(s3)) to (ψ1(s1) ψ2(s1))
respectively. Since both C12 ∪ C23 ∪ C31 and C12 ∪ C23 ∪ C31 are closed loops, we have

ϕg[C12 ∪ C23 ∪ C31] = −
∮

C12∪C23∪C31

A = −
∮

C12

A−
∮

C23

A−
∮

C31

A

= −κ1 argTr(ρ1(s1)ρ1(s2)ρ1(s3)) − κ2 argTr(ρ2(s1)ρ2(s2)ρ2(s3)). (5.13)

More generally, for any class I curves C12, C23, C31 which are projections of C12, C23, C31 we can prove the relation:

ϕg[C12∪C23∪C31] = ϕg[C12]+ϕg[C23]+ϕg[C31]−κ1arg Tr(ρ1(s1)ρ1(s2)ρ1(s3))−κ2arg Tr(ρ2(s1)ρ2(s2)ρ2(s3)), (5.14)

showing the lack of additivity of the GP.
Let us now consider a connected, simply connected smooth submanifold M ∈ R(2)with dimension m ≥ 2 in the real

sense and let us denote with ιM : M →֒ R(2) the corresponding inclusion map. By using eq. (5.14) above, one can
show that if M is a Null Phase Manifold (NPM), i.e a submanifold such that every once-differentiable curve C ⊂ M
is a NPC, then:

M is isotropic: ΩM ≡ ι⋆MΩ = 0; (5.15)

for any ρ = π((ψ1 ψ2)), ρ
′ = π((ψ′

1 ψ
′
2)), ρ

′′ = π((ψ′′
1 ψ′′

2 )) ∈M,

Tr(ρ1ρ
′
1ρ

′′
1),Tr(ρ2ρ

′
2ρ

′′
2 ) are real positive. (5.16)

Let us first concentrate on (5.15), which shows that isotropy is a necessary condition for M to be a NPM. We will
see now that it is not a sufficient one. To examine this point, let us suppose that M is such that Tr(ρ1ρ

′
1) > 0,

Tr(ρ2ρ
′
2) > 0 for any ρ = κ1ρ1 +κ2ρ2, ρ

′ = κ1ρ
′
1 +κ2ρ

′
2. In the spirit of the Pancharatnam lift defined in eq. (5.6), we

can construct a lift of M to a submanifold M0 ∈ B(2) as follows. Given a point ρ ∈M , its lifted point (ψ1 ψ2) ∈ B(2)

is given by the choice:

ψ1 =
ρ1ψ

0
1

√

Tr(ρ0
1ρ

1)
, ψ2 =

ρ2ψ
0
2

√

Tr(ρ0
2ρ

2)
. (5.17)

where ρ0, (ψ0
1 ψ

0
2) are fiducial points in M , M0 respectively, and π((ψ0

1 ψ
0
2)) = ρ0. This lift is characterized by the

fact that any point (ψ1 ψ2) ∈M0 is in phase with (ψ0
1 ψ

0
2) in the Pancharatnam sense:

(ψ0
1 , ψ1), (ψ

0
2 , ψ2) > 0. (5.18)
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In general, however, two generic points (ψ1 ψ2), (ψ1′ ψ′
2) ∈M0 are not in phase since:

(ψ′
j , ψj) = Tr(ρ0

jρ
′
jρj), j = 1, 2. (5.19)

If now we suppose M to be isotropic, one can easily prove that, for any two class I curves in M from ρ(s1) to ρ(s2),
say C12 and C′

12, one has:

ϕg[C12] = ϕg[C
′
12], (5.20)

i.e., denoting with C12, C′
12 the corresponding lifts in M0:

∫

C12

A =

∫

C′

12

A. (5.21)

This means that the pull-back of A from B(2) to M0 is exact. Thus, setting ιM0
: M0 →֒ B(2), we have the result:

ΩM = 0 ⇔ ι⋆M0
A = df. (5.22)

If in addition M is a NPM we have the stronger result:

ι⋆M0
A = 0, (5.23)

which follows from the fact that now (ψ′
j , ψj) > 0, j = 1, 2, for any two points in M0. This result gives the extent to

which the NPM property goes beyond isotropy.
To find a sufficient condition for M to be a NPM one has to consider (5.16). One can finally assert the following

inverse result [14]: if M is such that for any three points ρ = π((ψ1 ψ2)), ρ
′ = π((ψ′

1 ψ
′
2)), ρ

′′ = π((ψ′′
1 ψ′′

2 )), the
quantities Tr(ρ1ρ

′
1ρ

′′
1 ),Tr(ρ2ρ

′
2ρ

′′
2 ) are real positive, then:

Tr(ρ1ρ
′
1), Tr(ρ2ρ

′
2) > 0; (5.24)

M is an NPM; (5.25)

M is isotropic. (5.26)

Notice that these three statements are not independent, since the third is implied by the second.

6. CONCLUDING REMARKS

We have set up what may be called a ’minimalist’ interpretation for the meaning to be given to the phrase ’mixed
state GP’, limiting ourselves for clarity to the case of unitary cyclic evolutions. We have been guided by the structures
of, and relationships among, certain PFB’s which arise naturally in this context. They all flow out of the unitary
group G = U(n) acting on the n-dimensional Hilbert space of a quantum system. Our aim has been to bring into focus
the role of the KKS symplectic structure existing on each (co)adjoint orbit in G. In the final results, as often stated,
explicit dependences on n actually drop out. This is because in these results only the codimensions are relevant.

We considered the case of rank two density matrices ρ, with the two non zero eigenvalues obeying 0 < κ2 < κ1 < 1.
It can be seen fairly easily that the framework set up in this paper, involving three PFB’s in sequence and the use
to which each is put, can be faithfully repeated for higher rank ( but still non degenerate for non zero eigenvalues )
density matrices. The main features for rank k, 0 < k < n, would be that the non zero eigenvalues of ρ would obey

0 < κk < κk−1 < · · · < κ2 < κ1 < 1,

k
∑

a=1

κa = 1. (6.1)

Then ρ has the decomposition

ρ =

k
∑

a=1

κaψaψ
†
a, (ψa, ψb) = δab. (6.2)

The stability groups H0 and H in this situation would be H0 = U(n− k) acting on dimensions (k + 1), (k+ 2), · · · , n
of H; H = U(1)×U(1)× · · · ×U(1)×H0, with k U(1) factors. Correspondingly at the vector and operator levels we
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have to deal with the spaces

B(k) = {Ψ = (ψ1 ψ2 · · ·ψk)|ψa ∈ B, (ψa, ψb) = δab}
= G/H0,

R(k) = {ρ =

k
∑

a=1

κaρa|ρa = ψaψ
†
a ∈ R}

= G/H

= B(k)/U(1) × U(1) × · · · × U(1). (6.3)

These spaces are of real dimensions k(2n− k) and k(2n− k− 1) respectively, and the latter is always even, with R(k)

being a (co)adjoint orbit in G.
The sequence of three PFB’s is now (G,B(k), ··, H0), (G,R(k), ··, H) and (B(k),R(k), ··, U(1) × U(1) × · · · × U(1)).

On the last we obtain, following the set up given earlier, the connection one-form

ω(3) =

k
∑

a=1

A(a)Qa,

A(a) = −iψ†
adψa. (6.4)

This serves to define the concept of horizontal lifts of a curve C ⊂ R(k) to C ⊂ B(k). The KKS symplectic two-form
Ω on R(k) is however unique, and its relation to the above A(a) is

k
∑

a=1

κadA
(a) = π∗Ω. (6.5)

The general interpretation follows lines similar to what is described in Sections 4 and 5 . As the holonomy group is
U(1)×U(1)× · · ·×U(1) (k factors), a cyclic evolution of such mixed states naturally involves k separate U(1) phases

or k separate pure state GP’s ϕ
(a)
geom[C]. What the KKS structure does is to relate a particular linear combination of

these to a two dimensional symplectic area integral in R(k).
For emphasis, we may restate our results in the following intuitive manner. Consider the case of rank n (maxi-

mal rank) non degenerate density matrices ρ, belonging to R(n) and with eigenvalues arranged in decreasing order
κ1, κ2, · · · , κn. Such a ρ determines an orthonormal basis or frame in Hilbert space upto n phases, namely upto an
element of U(1)×· · ·×U(1) (n factors). Given a closed trajectory ( cyclic unitary evolution) of the density martrix in
R(n), the different possible unitary evolutions which will carry the density matrix along the given trajectory will differ
from one another at each point by independentU(1)× · · · ×U(1) phases. The U(1)× · · ·×U(1) relative phases at the
level of B(n) between the final and the initial frames have two parts: a dynamical part depending on the particular
unitary evolution chosen, and one that depends only on the closed trajectory in R(n). Then the available invariant
or geometric quantities that remain are an n-tuple of U(1) abelian phases. Any function of these is also a geometric
invariant. Our analysis of the canonical KKS symplectic structure on R(n) singles out a particular such function as
having a preferred significance.

The considerations of [7] have certain points of similarity with the above. The concept of horizontal lift of an
evolution in R(k) to one in B(k) is similar; in our treatment explicit use is made of the third PFB (B(k), R(k), · · · , U(1)×
· · · × U(1)) and the connection ω(3) of eq.(6.4) thereon. However, while our framework of three PFB’s seems to play
no explicit role in ref [7], the use of the KKS symplectic structure on R(k) above gives a satisfying underpinning to
arrive at the weighted sum of geometric phases tied to the spectral decomposition of ρ.

The concept of off-diagonal GP’s for multi (n) level quantum systems has been recently introduced and studied in
the literature [17], [18]. Here too for such systems we have n individual pure state GP’s defined for generic unitary
cyclic evolution, and in addition several algebraically independent Bargmann invariants (of order four) also enter the
picture. The spirit of the present paper has some points of similarity with off-diagonal GP ideas.

In case we have degenerate mixed states, in the sense that some non zero eigenvalues of ρ have non trivial multiplicity,
we have to deal with non Abelian holonomy groups [19], rather than just products of U(1) factors. This would naturally
lead us to non Abelian GP’s, but the basic three-PFB scheme set up here would again be available.
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APPENDIX A: THE LIE ALGEBRA OF U(n)

The family of compact unitary groups U(n) plays an important role in our analysis. Mainly for notational conve-
nience we list the generators and commutation relations in the defining representation.

The definition of U(n) is

U(n) = {U = n× ncomplex matrix|U †U = 1n×n}. (A.1)

Regarding this as a group of complex rotations in an n-dimensional complex space, subgroups U(n − 1), U(n −
2), · · · , U(1) can easily be identified in various ways.

The generators of this defining representation of U(n) consist of all n × n hermitian matrices. These may be
separated into pure imaginary antisymmetric matrices Jjk = −Jkj , generating the SO(n) subgroup of U(n), and real
symmetric ’quadrupole’ matrices Qjk = Qkj ; here the indices j, k go over the range 1, 2, · · · , n. The definitions are

(Jjk)ℓm =
i√
2
(δjℓδkm − δjmδkℓ),

(Qjk)ℓm =
1√
2
(δjℓδkm + δjmδkℓ). (A.2)

Their commutation relations separate into three sets:

− i[Jjk, Jℓm] =
1√
2
(δkℓJjm − δjℓJkm + δkmJℓj − δjmJℓk),

−i[Jjk, Qℓm] =
1√
2
(δkℓQjm − δjℓQkm + δkmQjℓ − δjmQkℓ),

−i[Qjk, Qℓm] =
1√
2
(δkℓJmj + δjℓJmk + δkmJℓj + δjmJℓk). (A.3)

The numerical coefficients in eq.(A.2) have been chosen so that as far as possible these matrices are trace orthonor-
mal. We have:

Tr(JjkJℓm) = δjℓδkm − δjmδkl,

Tr(JjkQℓm) = 0,

Tr(QjkQℓm) = δjℓδkm + δjmδkl. (A.4)

Thus while distinct generators are definitely ’trace orthogonal’, each individual Jjk and each individual Qjk for j 6= k
have normalised traces in the above sense. The exceptional cases are the generators Q11, Q22, · · · , Qnn since for
j = k = ℓ = m we have a factor of 2 on the right hand side in the last of eqs.(A.4). To have a strictly trace
orthonormal basis for the Lie algebra U(n) of U(n) in the defining representation we therefore may take the basis to
be made up of

Jjk = −Jkj ,
Qjk = Qkj , j 6= k,

Qj =
√

2Qjj no sum on j. (A.5)

Each of the matrices Jjk and Qjk for j 6= k has no non vanishing diagonal matrix elements. On the other hand, each
Qj has a matrix element of unity at the jth place in the diagonal, while all other matrix elements vanish. Using the
basis (A.5) we can write a general element of U(n) as a real linear combination of the form:

X = xjQj +
1

2
xjkJjk +

1

2
x′jkQjk,

xjk = −xkj x′jk = x′kj for j 6= k. (A.6)

Then we have the trace formula

Tr(XY ) = xjyj +
1

2
xjkyjk +

1

2
x′jky

′
jk, (A.7)
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so each independent term appears with a coefficient of unity.
Regarding U(n) as the abstract Lie algebra of U(n) we may denote its basis elements corresponding to the above

matrices as

Qj → ej , Jjk → ejk = −ekj , Qjk → e′jk = e′kj for j 6= k. (A.8)

The Qj , or ej in a general situation, are the generators of the Abelian torus subgroup U(1) × U(1) × · · · × U(1) of
U(n), consisting of all diagonal matrices U .

APPENDIX B: PRINCIPAL FIBRE BUNDLES, ASSOCIATED BUNDLES,

COSET SPACES AND CONNECTIONS

For setting notations and as a ready reference for the reader, we here collect briefly the basic definitions and
properties of the structures named above [20]-[23].

Principal fibre bundles and connections

A principal fibre bundle (PFB) is a collection of four objects written as (P,M, π,H): P the total space; M
the base space; π the projection map P → M ; and H a Lie group, the structure group and typical fibre. P ,
M and H are all differentiable manifolds, with dim P = dim M + dim H . Points in them will be denoted by
p, p′, · · · , m,m′, · · · , h, h′, · · · , with π(p) = m, π(p′) = m′, · · ·. For each element h ∈ H there is a globally
well defined fibre-preserving diffeomorphisn ψh of P onto itself, which is free and transitive on each fibre. In a local
trivialization of the bundle, the portion π−1(Mα) ⊂ P lying ’on top of’ some open subset Mα ⊂ M ’looks like’ the
Cartesian product Mα ×H . We express this with the compact notation

π(p) = m ∈Mα : p = (m,h)α, h ∈ H, (B.1)

h being uniquely determined by p. As h varies over H with m kept fixed, we obtain all points p ∈ π−1(m). In the
overlap of two such local trivializations we have a transition rule

π(p) = m ∈Mα ∩Mβ : p = (m,h)α = (m,h′)β :

h′ = tβα(m)h, tβα(m) ∈ H, (B.2)

with the transition group element appearing by convention on the left hand side. In the relevant overlaps these
transition functions obey

tαβ(m)−1 = tβα(m),

tαβ(m)tβγ(m) = tαγ(m). (B.3)

The globally well defined map ψh′ representing h′ ∈ H appears locally (by convention, so as not to ’interfere’ with
the transition rule (B.2)) as a right translation along fibres:

ψh′(m,h)α = (m,hh′−1)α. (B.4)

In this set up, we do not contemplate any action of H on M .
A connection on P is a one-form ω on P taking values in the Lie algebra H of H , and obeying two important

conditions spelt out below. We denote by ea the elements of a basis for H , so H = Sp{ea}. At each point p ∈ P , the
tangent space TpP contains a vertical subspace Vp corresponding to motions within the fibre induced by the (right)
actions ψh of elements h ∈ H . This leads to a natural isomorphism ρp : Vp → H with ρ−1

p : H → Vp. The first
condition on ω is that at each p, the contraction of vertical vectors with ωp should agree with ρp:

v ∈ Vp : ivωp = ρp(v) ∈ H , (B.5)

the second is the ’equivariance’ condition which controls the behaviour of ωp as p runs over a fibre:

h ∈ H : ψ∗
hω = D(h−1) ◦ ω, (B.6)
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where D(h) is the adjoint representation ofH onH , with matrices (Da
b(h)). One can show that in a local trivialization

of P over Mα ⊂M , ω necessarily has the form [23]:

m ∈Mα, p = (m,h)α : ωp = (Θ̂(0)a(h) −Da
b(h

−1)Ab(m))ea, A
a ∈ X ∗(Mα). (B.7)

Here Θ̂(0)a are the left-invariant Maurer-Cartan one-forms on H , adapted to the basis {ea} for H ; and each Aa is a
one-form defined locally over Mα. ( We omit the extra label α on these one-forms). If m is in the overlap Mα ∩Mβ

of the domains of two local trivializations of P , then the two expressions for ω involving Aa over Mα and A′a over
Mβ are related by the gauge transformation formula

A′a(m) = Da
b(tβα(m))(Ab(m) + Θ̂(0)b(tβα(m))). (B.8)

Any H-valued one-form ω on P obeying the two conditions (B.5,B.6), described locally as in (B.7) subject to the
transition rule (B.8), is an acceptable connection on P , there being no preferred one.

Sometimes for practical calculations it is convenient to work within some (unspecified) matrix representation U(h)
of H , with generators ea → −iJa. Then eqs.(B.7,B.8) have the convenient matrix forms

ωp = U(h)−1(id− JaA
a(m))U(h),

JaA
′a(m) = U(tβα(m))(JaA

a(m) − id)U(tβα(m))−1, (B.9)

while the Maurer-Cartan one-forms appearing in eqs.(B.7,B.8) are obtainable from

U(h)−1dU(h) = −iΘ̂(0)aJa. (B.10)

Given a connection ω on P , at any p ∈ P the horizontal subspace Hp ⊂ TpP is defined to be the null space of ωp:

X ∈ TpP : X ∈ Hp ⇔ iXωp = 0. (B.11)

Then TpP appears as the direct sum of vertical and horizontal subspaces:

TpP = Vp ⊕Hp, (B.12)

and the tangent map (π∗)p, which annihilates Vp, gives an one-to-one onto map of Hp to TmM in the base:

π(p) = m : (π∗)p : Vp → 0, Hp → TmM. (B.13)

The last item in this brief recapitulation of PFB structure is the concept of parallel transport, or horizontal lift of
a smooth curve in M upto P . Let C = {m(s)} ⊂ M be a smooth parametrised curve in the base. Then a smooth
parametrised curve C = {p(s)} ⊂ P is a horizontal lift of C (with respect to a given connection ω) if C projects onto
C and at each point its tangent vector is horizontal:

π(p(s)) = m(s),

X(s) = tangent to C at p(s) ∈ Hp(s). (B.14)

In local coordinates, say qµ for M and θa for H , along with an accompanying local trivialization of P , we get explicit
formulae suitable for computations. The entire set (qµ, θa) gives a local coordinate system for P . The Maurer-Cartan

one forms Θ̂(0)a and the one-forms Aa determining ω may be written as

Θ̂(0)a(h) = ξ̂ab (θ)dθ
b,

Aa(m) = Aaµ(q)dq
µ. (B.15)

Let us write the coordinates of points on C as qµ(s); for a horizontal lift C we must determine the additional coordinates
θa(s) such that condition (B.14) is obeyed. The tangents to C and C at corresponding points are

dqµ(s)

ds

∂

∂qµ
∈ Tm(s)M,

X(s) =
dqµ(s)

ds

∂

∂qµ
+

dθa(s)

ds

∂

∂θa
∈ Tp(s)P. (B.16)
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Then (B.14) becomes a system of first order ordinary differential equations for the coordinates θa(s) of a variable
element h(s) ∈ H :

ξ̂ab (θ(s))
dθb(s)

ds
= Da

b(h(s)
−1)Abµ(q(s))

dqµ(s)

ds
. (B.17)

In a general matrix representation this takes the form

d

ds
U(h(s)) = −iJaAaµ(q(s))

dqµ(s)

ds
U(h(s)). (B.18)

Thus each horizontal lift C of C is fully determined by the choice of an initial point p(s1) ∈ π−1(m(s1)) at s = s1,
say,i.e., the choice of an element h(s1) ∈ H . The solution to (B.18) is:

U(h(s)) = P

(

exp(−i
∫ s2

s1

ds′ Aaµ(q(s
′))
dqµ(s′)

ds′
Ja)

)

U(h(s1)), (B.19)

where P is the path-ordering symbol keeping variables with later parameter values to the left. Keeping C ⊂M fixed
and applying ψh0

, h0 ∈ H to a horizontal lift C of C leads to another horizontal lift ψh0
[C] in which h(s) → h(s)h−1

0

pointwise. This just amounts to changing the initial point h(s1) to h(s1)h
−1
0 .

In case C ⊂M is a closed loop with qµ(s2) = qµ(s1) for a final parameter value s2, the lift is in general not closed:
while the end points of C lie on the same fibre, they differ by a left translation by an element of H determined by the
loop C,

h(s2) = h[C]h(s1),

U(h[C]) = P

(

exp(−i
∮

C

ds Aaµ(q(s))
dqµ(s)

ds
Ja)

)

. (B.20)

These elements of the structure group H form the holonomy group, in general a subgroup of H , associated with the
connection ω.

Associated Bundles

To pass from the PFB (P,M, π,H) to an associated bundle (AB) we retain the base space M , replace the typical
fibre H by a differentiable manifold F as the new typical fibre, and simultaneously change the total space from P to
E. Thus the AB is written as a quartet (E,M, πE , F ), with πE a new projection map E →M . However it retains the
memory of the structure group H since we require that there be an action of H on F by a family of diffeomorphisms
{ϕh} respecting the composition law in H . Locally, E looks like the Cartesian product M × F , but this may not
be so globally. We ’use up’ the action of H on F in stating the transition rule connecting two overlapping local
trivializations of E, in the spirit of eq.(B.2):

e ∈ E, πE(e) = m ∈Mα ⊂M : e = (m, f)α, f ∈ F ;

m ∈Mα ∩Mβ : e = (m, f)α = (m, f ′)β ,

f ′ = ϕtβα(m)(f). (B.21)

The transition group elements tβα(m) are taken from the parent PFB (so implicitly the same open sets Mα,Mβ, · · ·
in M are used to locally trivialize the PFB and AB). There is now no ’other’ global fibre preserving H action on E,
in place of ψh in the PFB; and again no H action on M is contemplated.

Compared to a general fibre bundle (FB), which however we have not recalled here, an AB has more structure:
there is the group H acting on the typical fibre F , and transition formulae connecting overlapping local trivializations.

If now a connection ω is given on the parent PFB, it can be used to set up horizontal lifts in the AB. We limit
ourselves to a local coordinate description. With coordinates qµ for M and f r for F , we have coordinates (qµ, f r) for
E. Then, given the curve C = {qµ(s)} ⊂ M , a horizontal lift of it to E is a curve CE = {qµ(s), f r(s)} ⊂ E in which
the coordinates f r(s) of points in the new fibre may be read off from eq.(B.19) (after taking h(s1) to be the identity
in H):

f(s) = ϕh(s)(f(s1)),

U(h(s)) = P

(

exp(−i
∫ s

s1

ds′ Aaµ(q(s
′))
dqµ(s′)

ds′
Ja)

)

11. (B.22)
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In case F in the AB is a linear vector space with vectors Ψ,Ψ′, · · ·,and the diffeomorphisms ϕh are linear transfor-
mations on F with generators Ja, the AB is a vector bundle; and horizontal lifting is describable by a simple ordinary
first order matrix differential equation:

(
d

ds
+ iAaµ(q(s))

dqµ(s)

ds
Ja)Ψ(s) = 0,

Ψ(s+ δs) = exp
(

−iAaµ(q(s))Jaδqµ
)

Ψ(s),

δqµ =
dqµ(s)

ds
δs. (B.23)

We see that both the structure group H of a PFB and a connection ω given on it carry over to an AB set up as
described above.

Lie group on coset space as PFB

Next we consider the coset space G/H of a Lie group G with respect to a Lie subgroup H . We take G/H to be
the space of right cosets, and view G as a PFB over it as base. We wish to point out the particular new features that
are present in this case. For the quartet (P,M, π,H) of a general PFB, we now make the identifications P → Lie
group G, M → Coset space G/H , structure group and typical fibre H → subgroup H in G. The projection π maps
any g ∈ G to its right coset gH . So we denote such a PFB by (G,G/H, π,H). Several new features are immediately

recognized: the total space is a Lie group G, actions of G on itself by left and right translations, L
(0)
g and R

(0)
g , are

both available; the former translations L
(0)
g descend to a transitive G action on the base G/H by maps Lg. For the

globally well defined fibre preserving action of H on G by maps ψh we take R
(0)
h , a subset of R

(0)
g ; so R

(0)
g for g /∈ H

play no immediate role.
Local trivilializations and transition formulae are connected now to choices of local coset representatives. Over

some Mα ⊂M a local coset representative is a map

m ∈Mα → ℓα(m) ∈ G : π(ℓα(m)) = m. (B.24)

This determines a local trivialization of G over π−1(Mα):

π(g) = m ∈Mα ⇒ g = ℓα(m)h, h ∈ H, (B.25)

so we can view g as the pair (m,h)α:

g = ℓα(m)h⇔ g = (m,h)α. (B.26)

In the overlap of two such choices of local coset representatives we necessarily have

m ∈Mα ∩Mβ : ℓβ(m) = ℓα(m)tαβ(m), tαβ(m) ∈ H, (B.27)

so that

g = (m,h)α = (m′, h′)β ⇔ h′ = tβα(m)h. (B.28)

In this kind of PFB, there is a preferred connection. We have denoted a basis for H by {ea}. They obey Lie bracket
relations

[ea, eb] = Cab
cec, (B.29)

with Cab
c the structure constants of H . Now we add elements eµ to get a basis for G

G = Sp{ea, eµ}. (B.30)

We assume that the Lie brackets [ea, eµ] have the simple form

[ea, eµ] = Caµ
νeν , (B.31)

with no eb terms on the right. The remaining Lie bracket relations for G are

[eµ, eν ] = Cµν
aea + Cµν

λeλ. (B.32)
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The full set of left-invariant Maurer-Cartan one-forms on G consists of Θ̂(0)a(g), Θ̂(0)µ(g). It now turns out that a
preferred connection on (G,G/H, π,H) is given by

ω = Θ̂(0)a(g)ea, (B.33)

which is indeed H-valued. Here only a subset of the full set of Maurer-Cartan forms on G is used. This choice obeys
both the conditions demanded of a general connection on a PFB. If now one brings in a local coset representative
ℓα(m) and the accompanying local trivialization (B.26) of G, one indeed finds

g = ℓα(m)h = (m,h)α :

Θ̂(0)a(g) = Θ̂
(0)a
H (h) −DHab(h−1)Ab(m), (B.34)

where Aa are specific one-forms over Mα arising out of the structure constants Caµ
ν , Cµν

a, Cµν
λ. Here the Maurer-

Cartan forms and adjoint representation matrices belonging to H have been denoted with a subscript H to distinguish
them from objects belonging to G. Using (B.34) in (B.33) we see that the expected structure (B.7) for ω is indeed
present, so this is a preferred connection determined by G in relation to G/H and H .

Associate bundle to a coset PFB

Lastly we point out the special features that accompany a bundle (E,G/H, πE , F ) associated to a coset space PFB
(G,G/H, π,H). They share the same base G/H , while the total space and the typical fibre are E and F in place of G
and H respectively. As with a general AB, we have H acting on F via diffeomorphisms ϕh. The transition functions
{tαβ(m)} belonging to (G,G/H, π,H) are used for (E,G/H, πE , F ) as well. Compared to a general AB in which eq.
(B.21) holds, we now have the feature that the transition functions arise from coset representatives via eq.(B.27),
namely

tαβ(m) = ℓα(m)−1ℓβ(m), (B.35)

though the ℓα(m) themselves play no direct role in the AB. The left and right translations L
(0)
g , R

(0)
g of G also have

no role to play, though the present AB ‘remembers’ (if necessary) the transitive G action on the base G/H by maps
Lg. Finally the preferred connection on (G,G/H, π,H) given by eq.(B.33) leads to parallel transport and horizontal
lifting operations in (E,G/H, πE , F ) in a preferred manner, the details being of course given by eqs.(B.22,B.23).
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