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STANDARD NONCOMMUTING AND COMMUTING DILATIONS
OF COMMUTING TUPLES

B. V. RAJARAMA BHAT, TIRTHANKAR BHATTACHARYYA, AND SANTANU DEY

Abstract. We introduce a notion called ‘maximal commuting piece’ for tuples
of Hilbert space operators. Given a commuting tuple of operators forming
a row contraction, there are two commonly used dilations in multivariable
operator theory. First there is the minimal isometric dilation consisting of
isometries with orthogonal ranges, and hence it is a noncommuting tuple.
There is also a commuting dilation related with a standard commuting tuple
on boson Fock space. We show that this commuting dilation is the maximal
commuting piece of the minimal isometric dilation. We use this result to
classify all representations of the Cuntz algebra On coming from dilations of
commuting tuples.

1. Introduction

It is a well-known result due to Sz.-Nagy [28] that every contraction on a Hilbert
space dilates to an isometry. There is a very natural generalization of this result to
a class of operator tuples defined as follows.

Definition 1. A contractive n-tuple, or a row contraction, is an n-tuple T =
(T1, . . . , Tn) of bounded operators on a Hilbert space H such that T1T

∗
1 + · · · +

TnT
∗
n ≤ I.

Such tuples are known as row contractions, as the condition is equivalent to
having the operator (T1, . . . , Tn) from H⊕· · ·⊕H (n times) to H be a contraction.
It is possible to dilate contractive tuples to tuples of isometries with orthogonal
ranges. Moreover, such a dilation is unique up to unitary equivalence, under a
natural minimality condition just as in the one-variable case. This dilation, which
we call the minimal isometric dilation or the standard noncommuting dilation, has
been explored by many authors. Some ideas along this direction can already be
seen in the early paper [13] of Davis. In more concrete form this dilation can be
seen in the papers of Bunce [11] and Frazho [17], [18]. A very extensive study of
this notion has been carried out by Popescu in a series of papers ([21]-[25], [2], [3]),
and he has neat generalizations of many results from the one-variable situation. We
borrow many of his ideas, particularly from his paper on the Poisson transform [24],
and we also make use of the explicit structure of the ‘minimal isometric dilation’
he obtains in [21].

Now suppose the tuple under consideration is a commuting tuple in the sense
that TiTj = TjTi for all 1 ≤ i, j ≤ n. Then it is natural to wish for a dilation
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consisting of mutually commuting isometries. Unfortunately, such a dilation does
not exist in general for n ≥ 3 [20]. However, there is a dilation of commuting
contractive tuples that has been studied and popularized recently by Arveson [5].
This particular dilation has also been looked at by Popescu [24], and much earlier
by Drury [16] in his study of the von Neumann inequality for tuples. Similar ideas
have been explored by Agler [1], Athavale [7] and others for different classes of
operators using various reproducing kernels. We call this dilation of Drury, Arveson
and Popescu the standard commuting dilation of contractive commuting tuples.
This dilation consists of a commuting tuple, but the constituent operators are not
isometries. Then a natural question arises: In what sense is this dilation canonical?
In Section 3, as our main result, we show that the standard commuting dilation
is the ‘maximal commuting tuple contained’ in the minimal isometric dilation. To
begin with, we make these words inside inverted commas precise by defining what
we mean by a ‘maximal commuting piece’ of a tuple of operators. We can explore
how the standard commuting dilation of the maximal commuting piece sits inside
the minimal isometric dilation of the original tuple, and whether it is the maximal
commuting piece of the minimal isometric dilation, etc. We have been able to carry
out this study for purely contractive tuples in Section 2.

Any tuple (W1, . . . ,Wn) of isometries with orthogonal ranges satisfying
∑
WiW

∗
i

= I gives us a concrete representation of the familiar Cuntz algebra [12]. Recently,
there has been a lot of effort to study such representations in connection with
wavelet theory, see for instance the papers [9], [10] of Bratteli and Jorgensen. If we
start with a contractive tuple (T1, . . . , Tn) satisfying

∑
TiT

∗
i = I and consider the

minimal isometric dilation, we actually have a representation of the Cuntz algebra.
This was proved by Popescu in [21]. Very interesting results on classification of
these representations up to unitary equivalence in terms of invariants determined
by (T1, . . . , Tn) have been obtained by Davidson, Kribs, and Shpigel [14], where
the operators Ti act on a finite dimensional space. It is natural to ask what rep-
resentations of the Cuntz algebra can one get by dilating contractive tuples which
are also commuting. Surprisingly, they are very few and are all determined by the
GNS representations of the so-called Cuntz states. This result we obtain in Section
4, as an application of the main result. Unlike the work of Davidson et al., we need
not restrict the operators Ti to be acting on finite dimensional spaces.

All the Hilbert spaces we consider will be complex and separable. For a subspace
H of a Hilbert space, PH will denote the orthogonal projection onto H. For fixed
n ≥ 2, we need two standard n-tuples of operators, denoted by V and S, acting on
Fock spaces. For any Hilbert space K, we have the full Fock space over K denoted
by Γ(K) and the boson (or symmetric) Fock space over K denoted by Γs(K), defined
as

Γ(K) = C⊕K ⊕K⊗2 ⊕ · · · ⊕ K⊗m ⊕ · · · ,

Γs(K) = C⊕K ⊕K©s2 ⊕ · · · ⊕ K©sm ⊕ · · · ,

where K©sm denotes the m-fold symmetric tensor product. We will consider the
boson Fock space as a subspace of the full Fock space in the natural way. We
denote the vacuum vector 1⊕ 0⊕ · · · (in either of these Fock spaces) by ω. Let Cn
be the n-dimensional complex Euclidian space with the usual inner product, and
Γ(Cn) the full Fock space over Cn. Let {e1, . . . , en} be the standard orthonormal
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basis of Cn. Then the (left) creation operators Vi on Γ(Cn) are defined by

Vix = ei ⊗ x,
where 1 ≤ i ≤ n and x ∈ Γ(Cn) (of course, here ei ⊗ ω is interpreted as ei). It
is obvious that the tuple V = (V1, . . . , Vn) consists of isometries with orthogonal
ranges, and it is contractive; in fact,

∑
ViV

∗
i = I − E0, where E0 is the projection

onto the vacuum space. Let S = (S1, . . . , Sn) be the tuple of operators on Γs(Cn),
where Si is the compression of Vi to Γs(Cn):

Si = PΓs(Cn)Vi|Γs(Cn).

Clearly each V ∗i leaves Γs(Cn) invariant. Therefore, S∗i x = V ∗i x, for x ∈ Γs(Cn).
Then it is easy to see that (S1, . . . , Sn) is also a contractive tuple satisfying

∑
SiS

∗
i

= Is−Es0 (where now Is, Es0 are respectively the identity and the projection onto the
vacuum space in Γs(Cn)). Moreover, a simple computation shows that SiSj = SjSi
for all 1 ≤ i, j ≤ n.

For operator tuples (T1, . . . , Tn), quite often we need to consider products of the
form Tα1Tα2 · · · Tαm , where each αk ∈ {1, 2, . . . , n}. So it is convenient to have a
notation for such products. Let Λ denote the set {1, 2, . . . , n} and Λm denote the
m-fold cartesian product of Λ for m ≥ 1. Given α = (α1, . . . , αm) in Λm, Tα will
mean the operator Tα1Tα2 · · ·Tαm . Let Λ̃ denote

⋃∞
n=0 Λn, where Λ0 is just the set

{0} by convention, and by T 0 we would mean the identity operator of the Hilbert
space where the operators Ti are acting. In a similar fashion, for α ∈ Λ̃, eα will
denote the vector eα1 ⊗ eα2 ⊗ · · · ⊗ eαm in the full Fock space Γ(Cn), and e0 is the
vacuum ω.

2. Maximal commuting piece and dilation

Definition 2. Let H,L be two Hilbert spaces such that H is a closed subspace of
L. Suppose T ,R are n-tuples of bounded operators on H, L respectively. Then R
is called a dilation of T if

R∗i u = T ∗i u

for all u ∈ H, 1 ≤ i ≤ n. In such a case T is called a piece of R. If further T is a
commuting tuple (i.e., TiTj = TjTi for all i, j), then it is called a commuting piece
of R. A dilation R of T is said to be a minimal dilation if span{Rαh : α ∈ Λ̃, h ∈
H} = L.

In this definition we note that if R is a dilation of T , then H is a co-invariant
subspace of R, that is, all R∗i leave it invariant. It is standard (see [19]) to call
(R∗1, . . . , R

∗
n) an extension of (T ∗1 , . . . , T

∗
n) and (T ∗1 , . . . , T

∗
n) a part of (R∗1, . . . , R

∗
n).

In such a situation it is easy to see that for any α, β ∈ Λ̃, Tα(T β)∗ is the compression
of Rα(Rβ)∗ to H, that is,

(1) Tα(T β)∗ = PHR
α(Rβ)∗|H.

We may extend this relation to any polynomials p, q in n noncommuting variables,
to get

p(T )(q(T ))∗ = PHp(R)(q(R))∗|H.
Usually property (2.1) is all that one demands of a dilation. But we have imposed
a condition of co-invariance in Definition 2, as it is very convenient to have it this
way for our purposes.
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Now we look at commuting pieces of tuples. Let R be a n-tuple of bounded
operators on a Hilbert space L. Consider

C(R) = {M :M is a co-invariant subspace for each Ri,

R∗iR
∗
jh = R∗jR

∗
i h, ∀h ∈ M, ∀i, j}.

So C(R) consists of all co-invariant subspaces of an n-tuple of operators R such that
the compressions form a commuting tuple. It is a complete lattice, in the sense that
arbitrary intersections and span closures of arbitrary unions of such spaces are again
in this collection. Therefore it has a maximal element. We denote it by Lc(R) (or
by Lc when the tuple under consideration is clear).

Definition 3. Suppose R = (R1, · · · , Rn) is an n-tuple of operators on a Hilbert
space L. Then the maximal commuting piece of R is defined as the commuting
piece Rc = (Rc1, . . . , R

c
n) obtained by compressing R to the maximal element Lc(R)

of C(R). The maximal commuting piece is said to be trivial if the space Lc(R) is
just the zero space.

It is quite easy to get tuples with trivial commuting piece, as tuples with no
nontrivial co-invariant subspaces have this property. Of course, our main interest
lies in tuples with nontrivial commuting pieces. The following result is quite useful
in determining the maximal commuting piece.

Proposition 4. Let R be an n-tuple of bounded operators on a Hilbert space L.
Let Kij = span{Rα(RiRj − RjRi)h : h ∈ L, α ∈ Λ̃} for all 1 ≤ i, j ≤ n, and
K = span{

⋃n
i,j=1Kij}. Then Lc(R) = K⊥. In other words, Lc(R) = {h ∈ L :

(R∗iR
∗
j −R∗jR∗i )(Rα)∗h = 0, ∀1 ≤ i, j ≤ n, α ∈ Λ̃}.

Proof. First, K⊥ is obviously a co-invariant subspace of R, as each Ri leaves K
invariant. Now for i, j ∈ {1, 2, . . . , n}, and h1 ∈ Lc, h2 ∈ L,

〈(R∗iR∗j −R∗jR∗i )h1, h2〉 = 〈h1, (RjRi −RiRj)h2〉 = 0.

So we get (R∗iR
∗
j − R∗jR∗i )h1 = 0. Now if M is an element of C(R), take i, j ∈

{1, . . . , n}, α ∈ Λ̃, h1 ∈M, h ∈ L. We have

〈h1, R
α(RiRj −RjRi)h〉 = 〈(R∗jR∗i −R∗iR∗j )(Rα)∗h1, h〉 = 0,

as (Rα)∗h1 ∈ M. Hence M is contained in K⊥. Now the last statement is easy to
see. �

Corollary 5. Suppose R, T are n-tuples of operators on two Hilbert spaces L,M.
Then the maximal commuting piece of (R1 ⊕ T1, . . . , Rn ⊕ Tn) acting on L ⊕M
is (Rc1 ⊕ T c1 , . . . , Rcn ⊕ T cn) acting on Lc ⊕Mc. The maximal commuting piece of
(R1 ⊗ I, . . . , Rn ⊗ I) acting on L ⊗M is (Rc1 ⊗ I, . . . , Rcn ⊗ I) acting on Lc ⊗M.

Proof. Clear from Proposition 4. �

Proposition 6. Let V = (V1, . . . , Vn) and S = (S1, . . . , Sn) be standard contractive
tuples on the full Fock space Γ(Cn) and the boson Fock space Γs(Cn) respectively.
Then the maximal commuting piece of V is S.

Proof. As we have already noted in the Introduction, S is a commuting piece of
V . To show maximality we make use of Proposition 4. Suppose x ∈ Γ(Cn) and
〈x, V α(ViVj − VjVi)y〉 = 0 for all α ∈ Λ̃, 1 ≤ i, j ≤ n and y ∈ Γ(Cn). We wish
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to show that x ∈ Γs(Cn). Suppose xm is the m-particle component of x, that is,
x =

⊕
m≥0 xm with xm ∈ (Cn)⊗

m

for m ≥ 0. For m ≥ 2 and any permutation σ of
{1, 2, . . . ,m} we need to show that the unitary Uσ : (Cn)⊗

m → (Cn)⊗
m

, defined by

Uσ(u1 ⊗ · · · ⊗ um) = uσ−1(1) ⊗ · · · ⊗ uσ−1(m),

leaves xm fixed. Since the group of permutations of {1, 2, . . . ,m} is generated
by permutations {(1, 2), . . . , (m − 1,m)} it is enough to verify Uσ(xm) = xm for
permutations σ of the form (i, i+1). So fix m and i with m ≥ 2 and 1 ≤ i ≤ (m−1).
We have

〈
⊕
p

xp, V
α(VkVl − VlVk)y〉 = 0,

for every y ∈ Γ(Cn), 1 ≤ k, l ≤ n. As α is arbitrary, this means that

〈xm, z ⊗ (ek ⊗ el − el ⊗ ek)⊗ w〉 = 0

for any z ∈ (Cn)⊗
(i−1)

, w ∈ (Cn)⊗
(m−i−1)

. This clearly implies Uσ(xm) = xm, for
σ = (i, i+ 1). �

Now let us see how the maximal commuting piece behaves with respect to the
operation of taking dilations. Before considering specific dilations, we have the
following general statement.

Proposition 7. Suppose T ,R are n-tuples of bounded operators on H, L, with
H ⊆ L, such that R is a dilation of T . Then Hc(T ) = Lc(R) ∩ H and Rc is a
dilation of T c.

Proof. We have R∗i h = T ∗i h, for h ∈ H. Therefore, (R∗iR
∗
j − R∗jR

∗
i )(R

α)∗h =
(T ∗i T

∗
j −T ∗j T ∗i )(Tα)∗h for h ∈ H, 1 ≤ i, j ≤ n, and α ∈ Λ̃. Now the first part of the

result is clear from Proposition 4. Further, for h ∈ Lc(R) we have R∗i h = (Rci )
∗h,

and so for h ∈ Hc(T ) = Lc(R) ∩ H we have (Rci )
∗h = R∗i h = T ∗i h = (T ci )∗h. This

proves the claim. �

Definition 8. Let T = (T1, . . . , Tn) be a contractive tuple on a Hilbert space H.
The operator ∆T = [I − (T1T

∗
1 + · · · + TnT

∗
n)]

1
2 is called the defect operator of T

and the subspace ∆T (H) is called the defect space of T . The tuple T is said to be
pure if

∑
α∈Λm T

α(Tα)∗ converges to zero in the strong operator topology as m
tends to infinity.

Suppose
∑
TiT

∗
i = I; then it is easy to see that

∑
α∈Λm T

α(Tα)∗ = I for all m,
and there is no way this sequence can converge to zero. So in the pure case the
defect operator and the defect spaces are nontrivial.

First we restrict our attention to pure tuples. The reason for this is that it is
very easy to write down standard dilations for pure tuples. So let H be a complex,
separable Hilbert space and let T be a pure contractive tuple on H. Take H̃ =
Γ(Cn)⊗∆T (H), and define an operator A : H → H̃ by

(2) Ah =
∑
α

eα ⊗∆T (Tα)∗h,

where the sum is taken over all α ∈ Λ̃. It is well-known ([24], [2]), and also easily
verifiable using the pureness of T , that A is an isometry with

A∗(eα ⊗ h) = Tα∆Th for α ∈ Λ̃, h ∈ ∆T (H).
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Now H is considered as a subspace of H̃ by identifying vectors h ∈ H with Ah ∈
H̃. Then by noting that each V ∗i ⊗ I leaves the range of A invariant and Tα =
A∗(V α ⊗ I)A for all α ∈ Λ̃, it is seen that the tuple Ṽ = (V1 ⊗ I, . . . , Vn ⊗ I) of
operators on H̃ is a realization of the minimal isometric dilation of T . Now if T
is a commuting tuple, it is easy to see that the range of A is contained in H̃s =
Γs(Cn) ⊗∆T (H). In other words, now H can be considered as a subspace of H̃s.
Moreover, S̃ = (S1⊗ I, . . . , Sn⊗ I), as a tuple of operators in H̃s is a realization of
the standard commuting dilation of (T1, . . . , Tn). More abstractly, if T is commuting
and pure, the standard commuting dilation of it is got by embeddingH isometrically
in Γs(Cn) ⊗ K, for some Hilbert space K, such that (S1 ⊗ IK, . . . , Sn ⊗ IK) is a
dilation of T and span {(Sα ⊗ IK)h : h ∈ H, α ∈ Λ̃} = Γs(Cn)⊗K. Up to unitary
equivalence there is a unique such dilation, and dim(K) = rank(∆T ).

Theorem 9. Let T be a pure contractive tuple on a Hilbert space H. Then the
maximal commuting piece Ṽ

c
of the minimal isometric dilation Ṽ of T is a realiza-

tion of the standard commuting dilation of T c if and only if ∆T (H) = ∆T (Hc(T )).
In such a case rank(∆T ) = rank(∆T c) = rank(∆Ṽ ) = rank(∆Ṽ

c).

Proof. We denote Hc(T ),∆T (H) and ∆T (Hc(T )) by Hc,M, and Mc respectively.
It is obvious that T c is also a pure contractive tuple. We already know from
Proposition 7 that Ṽ

c
= (S ⊗ IM) on Γs(Cn) ⊗M is a dilation of T c. It is the

standard dilation if and only if L := span{(Sα ⊗ IM)Ah : h ∈ Hc, α ∈ Λ̃} is equal
to Γs(Cn)⊗M, where A : H → H̃ is the isometry defined by (2.2).

From the definition of A, using the commutativity of the operators Ti, it is clear
that for h ∈ Hc, Ah ∈ Γs(Cn)⊗Mc. Hence L ⊆ Γs(Cn)⊗Mc. Further, as (S⊗IM) is
a dilation, (S∗i ⊗ IM) leaves A(Hc) invariant. Therefore, ((I −

∑
SiS

∗
i )⊗ IM)Ah ∈

L for h ∈ Hc. But, (I −
∑
SiS

∗
i ) being the projection onto the vacuum space,

((I −
∑
SiS

∗
i )⊗ IM)Ah = ω ⊗∆Th. As {Sαω, α ∈ Λ̃} spans whole of Γs(Cn), we

get that Γs(Cn)⊗Mc ⊆ L. Hence L = Γs(Cn)⊗Mc, and we have proved the first
claim.

Now suppose Ṽ
c

is a realization of the standard commuting dilation of T c.
This in particular means that rank(∆T c) = rank(∆Ṽ

c). Also as Ṽ is the mini-
mal isometric dilation of T , rank(∆T ) = rank(∆Ṽ ). Further as Ṽ

c
= (S ⊗ IM),

rank(∆Ṽ
c) = dim(M) = rank(∆T ). �

We may ask whether the equality of ranks in this theorem is good enough to
make a converse statement. To answer this we make use of the following simple
lemma.

Lemma 10. Suppose

M =
[
A B∗

B C

]
is a bounded positive operator on some Hilbert space. Then

rank(A) = rank
([

A
B

])
.

Proof. Without loss of generality we can assume that M is a contraction. Then
it is a folklore theorem that there exists a contraction D such that B = C

1
2DA

1
2 .
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Now [
A
B

]
=
[

A
1
2

C
1
2D

] [
A

1
2
]
,

and hence rank([ AB ]) ≤ rank(A
1
2 ). But A being positive, rank(A) = rank(A

1
2 ).

Therefore rank([ AB ]) ≤ rank(A) ≤ rank([ AB ]). �
Remark 11. Let T be a pure contractive tuple on a Hilbert space H with minimal
isometric dilation Ṽ . If rank ∆T and rank ∆T c are finite and equal, then Ṽ

c
is a

realization of the standard commuting dilation of T c.

Proof. In view of Theorem 9 we need to show that ∆T (H) = ∆T (Hc(T )). Since
∆T (H) ⊇ ∆T (Hc(T )), and these spaces are now finite dimensional, it suffices
to show that their dimensions are equal, or rank(∆T ) = rank(∆TPHc). Clearly
rank(∆T ) ≥ rank(∆TPHc). Also by assumption, rank(∆T ) = rank(∆T c). By pos-
itivity rank(∆T c) = rank(∆2

T c). And then by the previous lemma rank(∆2
T c) =

rank(PHc(∆2
T )PHc) = rank(∆2

TPHc) ≤ rank(∆TPHc). �

If both the ranks are infinite, we cannot ensure that ∆T (H) = ∆T (Hc(T )), as
seen by the following example.

Example 12. Let R = (R1, R2) be a commuting pure contractive 2-tuple on an
infinite dimensional Hilbert space H0 (We can even take R1, R2 as scalars) such
that ∆R(H0) is infinite dimensional. Take H = H0⊕C2, and let T1, T2 be operators
on H defined by

T1 =

 R1

0 t1
0 0

 , T2 =

 R2

0 0
t2 0

 ,
where t1, t2 are any two scalars, 0 < t1, t2 < 1. Then T = (T1, T2) is a pure
contractive tuple. Making use of Corollary 5,Hc(T ) = H0 (thought of as a subspace
of H in the natural way) and the maximal commuting piece of T is (R1, R2), and
therefore rank(∆T c) = rank(∆T ) =∞. But ∆T (H) = ∆R(H0)⊕ C2.

We do not know how to extend Theorem 9 to contractive tuples which are not
necessarily pure.

3. Commuting tuples

In this section we wish to consider commutative contractive tuples. Let us begin
by describing how one obtains two standard dilations for such tuples.

Recall standard tuples V and S on Fock spaces Γ(Cn) and Γs(Cn), respectively,
introduced in the Introduction. Let C∗(V ) and C∗(S) be unital C∗ algebras gen-
erated by them. For any α, β ∈ Λ̃, V α(I −

∑
ViV

∗
i )(V β)∗ is the rank one operator

x 7→ 〈eβ , x〉eα formed by basis vectors eα, eβ. So C∗(V ) contains all compact op-
erators. In a similar way we see that C∗(S) also contains all compact operators
of Γs(Cn). As V ∗i Vj = δijI, it is easy to see that C∗(V ) = span{V α(V β)∗ :
α, β ∈ Λ̃}. By explicit computation we see that the commutators [S∗i , Sj] are com-
pact for all i, j (see [5], Proposition 5.3, or [8]). Therefore we can also obtain
C∗(S) = span{Sα(Sβ)∗ : α, β ∈ Λ̃}.

Suppose T is a contractive tuple on a Hilbert space H. We obtain a certain
completely positive map (Popescu’s Poisson transform) from C∗(V ) to B(H), as
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follows. For 0 < r < 1 the tuple rT = (rT1, . . . , rTn) is clearly a pure contraction.
So by (2.2) we have an isometry Ar : H → Γ(Cn)⊗∆r(H) defined by

Arh =
∑
α

eα ⊗∆r((rT )α)∗h, h ∈ H,

where ∆r = (I−r2
∑
TiT

∗
i )

1
2 . So for every 0 < r < 1 we have a completely positive

map ψr : C∗(V )→ B(H) defined by

ψr(X) = A∗r(X ⊗ I)Ar, X ∈ C∗(V ).

By taking the limit as r increases to 1 (see [24] or [2] for details), we obtain a unital
completely positive map ψ from C∗(V ) to B(H) satisfying

ψ(V α(V β)∗) = Tα(T β)∗ for α, β ∈ Λ̃.

As C∗(V ) = span{V α(V β)∗ : α, β ∈ Λ̃}, ψ is the unique such completely positive
map. Now consider the minimal Stinespring dilation of ψ. So we have a Hilbert
space H̃ containing H, and a unital ∗-homomorphism π : C∗(V )→ B(H̃), such that

ψ(X) = PHπ(X)|H ∀X ∈ C∗(V ),

and span{π(X)h : X ∈ C∗(V ), h ∈ H} = H̃. Taking Ṽ = (Ṽ1, . . . , Ṽn) = (π(V1),
. . . , π(Vn)), one verifies that each ˜(Vi)

∗
leaves H invariant and Ṽ is the unique

minimal isometric dilation of T .
In a similar fashion, if T is commuting, by considering C∗(S) instead of C∗(V ),

and restricting Ar in the range to Γs(Cn), and taking limits as before (see [5],
[24], [2]), we obtain the unique unital completely positive map φ : C∗(S) → B(H)
satisfying

φ(Sα(Sβ)∗) = Tα(T β)∗, α, β ∈ Λ̃.
Consider the minimal Stinespring dilation of φ. Here we have a Hilbert space H1

containing H and a unital ∗-homomorphism π1 : C∗(S)→ B(H1) such that

φ(X) = PHπ1(X)|H ∀X ∈ C∗(S),

and span{π1(X)h : X ∈ C∗(S), h ∈ H} = H1. Taking S̃ = (S̃1, . . . , S̃n) =
(π1(S1), . . . , π1(Sn)), we see that S̃ is the standard commuting dilation of T by
definition (it is not difficult to verify that it is a minimal dilation in the sense of our
Definition 2). As minimal Stinespring dilation is unique up to unitary equivalence,
standard commuting dilation is also unique up to unitary equivalence.

Theorem 13 (Main Theorem). Suppose T is a commuting contractive tuple on
a Hilbert space H. Then the maximal commuting piece of the minimal isometric
dilation of T is a realization of the standard commuting dilation of T .

Our approach to proving this theorem is as follows. First we consider the stan-
dard commuting dilation of T on a Hilbert space H1 as described above. Now the
standard tuple S is also a contractive tuple. So we have a unique unital completely
positive map η : C∗(V )→ C∗(S) satisfying

η(V α(V β)∗) = Sα(Sβ)∗, α, β ∈ Λ̃.

Now clearly ψ = φ ◦ η. Consider the minimal Stinespring dilation of the composed
map π1 ◦ η : C∗(V ) → B(H1). Here we obtain a Hilbert space H2 containing H1

and a unital ∗-homomorphism π2 : C∗(V )→ B(H2) such that

π1 ◦ η(X) = PH1π2(X)|H1 , ∀X ∈ C∗(V ),
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and span{π2(X)h : X ∈ C∗(V ), h ∈ H1} = H2. Now we have a commuting diagram
as follows:

C∗(V ) −→ C∗(S) −→ B(H)

B(H1)

B(H2)

�
�
�
�
�
�
�
�>

�
�> ↓

↓

η φ

π1

π2

where the down arrows are compression maps, the horizontal arrows are unital
completely positive maps and the diagonal arrows are unital ∗-homomorphisms.

Taking V̂ = (V̂1, . . . , V̂n) = (π2(V1), . . . , π2(Vn)), we need to show that (i) V̂
is the minimal isometric dilation of T , and (ii) S̃ = (π1(S1), . . . , π1(Sn)) is the
maximal commuting piece of V̂ . Due to uniqueness up to unitary equivalence of
the minimal Stinespring dilation, we have (i) if we can show that π2 is a minimal
dilation of ψ = φ ◦ η. For proving this we actually make use of (ii). First we prove
(ii) in a very special case.

Definition 14. An n-tuple T = (T1, . . . , Tn) of operators on a Hilbert space H is
called a spherical unitary if it is commuting, each Ti is normal, and T1T

∗
1 + · · · +

TnT
∗
n = I.

Actually, if H is a finite dimensional Hilbert space and T is a commuting tuple
on H satisfying

∑
TiT

∗
i = I, then it is automatically a spherical unitary, that is,

each Ti is normal. This is the case because here a standard commuting dilation of
T is a tuple of normal operators, and hence each T ∗i is subnormal (or see [6] for
this result), and all finite dimensional subnormal operators are normal (see [19]).

Note that if T is a spherical unitary, we have

φ(Sα(I −
∑

SiS
∗
i )(Sβ)∗) = Tα(I −

∑
TiT

∗
i )(T β)∗ = 0

for any α, β ∈ Λ̃. This forces φ(X) = 0 for any compact operator X in C∗(S).
Now, as the commutators [S∗i , Sj ] are all compact, we see that φ is a unital ∗-
homomorphism. So the minimal Stinespring dilation of φ is itself. So the following
result yields Theorem 13 for spherical unitaries.

Theorem 15. Let T be a spherical unitary on a Hilbert space H. Then the maximal
commuting piece of the minimal isometric dilation of T is T .

As proof of this theorem involves some lengthy computations, we prefer to post-
pone it. But assuming this, we prove the Main Theorem.

Proof of Theorem 13. As C∗(S) contains the ideal of all compact operators, by
standard C∗-algebra theory we have a direct sum decomposition of π1 as follows.
Take H1 = H1C ⊕ H1N , where H1C = span{π1(X)h : h ∈ H, X ∈ C∗(S) and X
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is compact} and H1N = H1 	 H1C . Clearly H1C is a reducing subspace for π1.
Therefore

π1(X) =
(
π1C(X)

π1N (X)

)
,

that is, π1 = π1C ⊕ π1N , where

π1C(X) = PH1Cπ1(X)PH1C , π1N (X) = PH1Nπ1(X)PH1N .

As observed by Arveson [5], π1C(X) is just the identity representation with some
multiplicity. More precisely, H1C can be factored as H1C = Γs(Cn) ⊗∆T (H), so
that π1C(X) = X⊗I; in particular π1C(Si) = Si⊗I. Also π1N (X) = 0 for compact
X . Therefore, taking Zi = π1N (Si), we see that Z = (Z1, . . . , Zn) is a spherical
unitary.

Now, π1 ◦ η = (π1C ◦ η) ⊕ (π1N ◦ η) and the minimal Stinespring dilation of a
direct sum of two completely positive maps is the direct sum of minimal Stinespring
dilations. So H2 decomposes as H2 = H2C ⊕H2N , where H2C ,H2N are orthogonal
reducing subspaces of π2, such that π2 also decomposes, say π2 = π2C ⊕ π2N , with

π1C ◦ η(X) = PH1Cπ2C(X)|H1C , π1N ◦ η(X) = PH1Nπ2N (X)|H1N ,

for X ∈ C∗(V ) with H2C = span{π2C(X)h : X ∈ C∗(V ), h ∈ H1C} and
H2N = span{π2N (X)h : X ∈ C∗(V ), h ∈ H1N}. It is also not difficult to see that
H2C = span{π2C(X)h : X ∈ C∗(V ), X compact, h ∈ H1C} and hence H2C factors
as H2C = Γ(Cn)⊗∆T (H) with π2C(Vi) = Vi ⊗ I. Also (π2N (V1), . . . , π2N (Vn)) is a
minimal isometric dilation of the spherical isometry (Z1, . . . , Zn). Now by Propo-
sition 6, Theorem 15 and Corollary 5, we get that (π1(S1), . . . , π1(Sn)) acting on
H1 is the maximal commuting piece of (π2(V1), . . . , π2(Vn)).

All that remains to show is that π2 is the minimal Stinespring dilation of φ ◦ η.
Suppose this is not the case. Then we get a reducing subspace H20 for π2 by
taking H20 = span{π2(X)h : X ∈ C∗(V ), h ∈ H}. Take H21 = H2 	 H20 and
correspondingly decompose π2 as π2 = π20 ⊕ π21,

π2(X) =
(
π20(X)

π21(X)

)
.

Note that we already have H ⊆ H20. We claim that H2 ⊆ H20. First, as H1 is
the space where the maximal commuting piece of (π2(V1), . . . , π2(Vn)) = (π20(V1)⊕
π21(V1), . . . , π20(Vn)⊕π21(Vn)) acts, by the first part of Corollary 5, H1 decomposes
as H1 = H10 ⊕ H11 for some subspaces H10 ⊆ H20 and H11 ⊆ H21. So, for
X ∈ C∗(V ), PH1π2(X)PH1 has the form (see the diagram)

PH1π2(X)PH1 =


π10 ◦ η(X) 0

0 0
π11 ◦ η(X) 0

0 0

 ,

where π10, π11 are compressions of π1 to H10, H11 respectively. As the mapping
η from C∗(V ) to C∗(S) is clearly surjective, it follows that H10,H11 are reducing
subspaces for π1. Now as H is contained in H20, in view of the minimality of π1

as a Stinespring dilation, H1 ⊆ H20. But then the minimality of π2 shows that
H2 ⊆ H20. Therefore, H2 = H20. �

Proof of Theorem 15. Here we need a different presentation of the minimal isomet-
ric dilation. This is known as the Schäffer construction [27] in the one-variable
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case, and [21] is a good reference for the multivariate case. Here we decompose the
dilation space H̃ as H̃ = H ⊕ (Γ(Cn) ⊗ D), where D is the closure of the range of
the operator

D : H⊕ · · · ⊕ H︸ ︷︷ ︸
n copies

→ H⊕ · · · ⊕ H︸ ︷︷ ︸
n copies

and D is the positive square root of

D2 = [δijI − T ∗i Tj ]n×n.

Whenever it is convenient for us, we identify H⊕ · · · ⊕ H︸ ︷︷ ︸
n copies

with Cn ⊗H, so that

(h1, . . . , hn) =
n∑
i=1

ei ⊗ hi.

Then

(1) D(h1, . . . , hn) = D(
n∑
i=1

ei ⊗ hi) =
n∑
i=1

ei ⊗ (hi −
n∑
j=1

T ∗i Tjhj).

And the minimal isometric dilation Ṽi has the form

(2) Ṽi(h⊕
∑
α∈Λ̃

eα ⊗ dα) = Tih⊕D(ei ⊗ h)⊕ ei ⊗ (
∑
α∈Λ̃

eα ⊗ dα)

for h ∈ H, dα ∈ D for α ∈ Λ̃, and 1 ≤ i ≤ n (Cnω⊗D has been identified with D).
In the present case, as

∑
TiT

∗
i = I, by direct computation D2 is seen to be

a projection. So, D, which is the positive square root of D2, is equal to D2.
Also, by the Fuglede-Putnam theorem ([19], [26]), {T1, . . . , Tn, T

∗
1 , . . . , T

∗
n} forms a

commuting family of operators. Then we get

D(h1, . . . , hn) =
n∑

i,j=1

ei ⊗ Tj(T ∗j hi − T ∗i hj) =
n∑

i,j=1

ei ⊗ Tj(hij),(3)

where hij = T ∗j hi − T ∗i hj for 1 ≤ i, j ≤ n. Note that hii = 0 and hji = −hij.
Now we apply Proposition 4 to the tuple Ṽ acting on H̃. Suppose

y ∈ H⊥ ∩ H̃c(Ṽ ).

We wish to show that y = 0. We assume y 6= 0 and arrive at a contradiction. One
can decompose y as y = 0 ⊕

∑
α∈Λ̃ e

α ⊗ yα, with yα ∈ D. If for some α, yα 6= 0,
then 〈ω⊗ yα, (Ṽ

α
)∗y〉 = 〈eα ⊗ yα, y〉 = 〈yα, yα〉 6= 0. Since each (Ṽi)∗ leaves H̃c(Ṽ )

invariant, (Ṽ
α

)∗y ∈ H̃c(Ṽ ). So without loss of generality we can assume ‖y0‖ = 1.
Taking ỹm =

∑
α∈Λm e

α ⊗ yα, we get y = 0 ⊕
⊕

m≥0(ỹm). As y0 ∈ D, y0 =
D(h1, . . . , hn), for some (h1, . . . , hn) (presently, D being a projection, its range is
closed). Set x̃0 = ỹ0 = y0, and for m ≥ 1,

x̃m =
n∑

i1,...,im−1,i,j=1

ei1 ⊗ · · · ⊗ eim−1 ⊗ ei ⊗D(ej ⊗ T ∗i1 . . . T
∗
im−1

hij).
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Clearly x̃m ∈ (Cn)⊗m ⊗ D for all m ∈ N. From the definition (3.2) of Ṽi, commu-
tativity of the operators Ti, and the fact that D is projection, we have

∑
1≤i<j≤n

(ṼiṼj − Ṽj Ṽi)hij

=
∑

1≤i<j≤n
(TiTjhij − TjTihij) +

∑
1≤i<j≤n

D(ei ⊗ Tjhij − ej ⊗ Tihij)

+
∑

1≤i<j≤n
(ei ⊗D(ej ⊗ hij)− ej ⊗D(ei ⊗ hij))

= D{
∑

1≤i<j≤n
(ei ⊗ Tjhij − ej ⊗ Tihij)}+

n∑
i,j=1

ei ⊗D(ej ⊗ hij)

= D(
n∑

i,j=1

ei ⊗ Tjhij) +
n∑

i,j=1

ei ⊗D(ej ⊗ hij)

= D2(h1, . . . , hn) +
n∑

i,j=1

ei ⊗D(ej ⊗ hij)

= x̃0 + x̃1.

Therefore 〈y, x̃0 + x̃1〉 = 0 by Proposition 4. Now for m ≥ 2

n∑
i1,...,im−1=1

Ṽi1 . . . Ṽim−1 (
n∑

i,j=1

(ṼiṼj − Ṽj Ṽi)T ∗i1 . . . T
∗
im−2

T ∗j him−1i)

=
n∑

i1,...,im−1=1

Ṽi1 . . . Ṽim−1 [
n∑

i,j=1

D(ei ⊗ TjT ∗i1 . . . T
∗
im−2

T ∗j him−1i

− ej ⊗ TiT ∗i1 . . . T
∗
im−2

T ∗j him−1i)

+
n∑

i,j=1

{ei ⊗D(ej ⊗ T ∗i1 . . . T
∗
im−2

T ∗j him−1i)

− ej ⊗D(ei ⊗ T ∗i1 . . . T
∗
im−2

T ∗j him−1i)}]

=
n∑

i1,...,im−1=1

ei1 ⊗ · · · ⊗ eim−1

⊗[D(
n∑

i,j=1

ei ⊗ TjT ∗i1 . . . T
∗
im−2

T ∗j him−1i − ej ⊗ TiT ∗i1 . . . T
∗
im−2

T ∗j him−1i)

+{
n∑

i,j=1

ei ⊗D(ej ⊗ T ∗i1 . . . T
∗
im−2

T ∗j him−1i)

−
n∑

i,j=1

ei ⊗D(ej ⊗ T ∗i1 . . . T
∗
im−2

T ∗i him−1j)}]

(in the term above, i and j have been interchanged in the last summation)
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=
n∑

i1,...,im−1=1

ei1 ⊗ · · · ⊗ eim−1

⊗[D(
n∑
i=1

ei ⊗ T ∗i1 . . . T
∗
im−2

him−1i −
n∑

i,j=1

ej ⊗ TiT ∗i1 . . . T
∗
im−2

T ∗j him−1i)

+
n∑

i,j=1

ei ⊗D{ej ⊗ (T ∗i1 . . . T
∗
im−2

T ∗j him−1i − T ∗i1 . . . T
∗
im−2

T ∗i him−1j)}]

=
n∑

i1,...,im−1=1

ei1 ⊗ · · · ⊗ eim−1 ⊗
n∑
i=1

D(ei ⊗ T ∗i1 . . . T
∗
im−2

him−1i)

+
n∑

i1,...,im−1,i,j=1

ei1 ⊗ · · · ⊗ eim−1 ⊗ ei

⊗D(ej ⊗ T ∗i1 . . . T
∗
im−2

(T ∗j T
∗
i him−1 − T ∗j T ∗im−1

hi − T ∗i T ∗j him−1 + T ∗i T
∗
im−1

hj))

=
n∑

i1,...,im−2,i,j=1

ei1 ⊗ · · · ⊗ eim−2 ⊗ ei ⊗D(ej ⊗ T ∗i1 . . . T
∗
im−2

hij)

+
n∑

i1,...,im−1,i,j=1

ei1 ⊗ · · · ⊗ eim−1 ⊗ ei

⊗D(ej ⊗ T ∗i1 . . . T
∗
im−2

(−T ∗j T ∗im−1
hi + T ∗i T

∗
im−1

hj))

(in the term above, index im−1 has been replaced by i and i has been
replaced by j in the first summation)

=
n∑

i1,...,im−2,i,j=1

ei1 ⊗ · · · ⊗ eim−2 ⊗ ei ⊗D(ej ⊗ T ∗i1 . . . T
∗
im−2

hij)

−
n∑

i1,...,im−1,i,j=1

ei1 ⊗ · · · ⊗ eim−1 ⊗ ei ⊗D(ej ⊗ T ∗i1 . . . T
∗
im−1

hij)

= x̃m−1 − x̃m.

So, 〈y, x̃m−1 − x̃m〉 = 0.
Next, we would show that ‖x̃m+1‖ = ‖x̃0‖ = 1 for all m ∈ N. Indeed,

‖x̃m+1‖2 = 〈
n∑

i1,...,im,i,j=1

ei1 ⊗ · · · ⊗ eim ⊗ ei ⊗D(ej ⊗ T ∗i1 . . . T
∗
imhij),

n∑
i′1,...,i

′
m−1,i

′,j′=1

ei′1 ⊗ · · · ⊗ ei′m ⊗ ei′ ⊗D(ej′ ⊗ T ∗i′1 . . . T
∗
i′m
hi′j′)〉

=
n∑

i1,...,im,i=1

〈
n∑
j=1

D(ej ⊗ T ∗i1 . . . T
∗
imhij),

n∑
j′=1

D(ej′ ⊗ T ∗i1 . . . T
∗
imhij′ )〉

=
n∑

i1,...,im,i=1

〈D(
n∑
j=1

ej ⊗ T ∗i1 . . . T
∗
imhij),

n∑
j′=1

ej′ ⊗ T ∗i1 . . . T
∗
imhij′ 〉



1564 B. V. RAJARAMA BHAT, T. BHATTACHARYYA, AND S. DEY

=
n∑

i1,..,im,i=1

〈
n∑

l,k=1

el ⊗ Tk(T ∗kT
∗
i1 . . . T

∗
imhil − T

∗
l T
∗
i1 . . . T

∗
imhik),

n∑
j′=1

ej′ ⊗ T ∗i1 . . . T
∗
imhij′〉

=
n∑

i1,..,im,i,j=1

〈
n∑
k=1

Tk(T ∗kT
∗
i1 . . . T

∗
imhij − T

∗
j T
∗
i1 . . . T

∗
imhik), T ∗i1 . . . T

∗
imhij〉

=
n∑

i,j=1

〈
n∑
k=1

(TkT ∗khij − TkT ∗j hik), hij〉

=
n∑

i,j=1

〈
n∑
k=1

(TkT ∗kT
∗
j hi − TkT ∗kT ∗i hj − TkT ∗j T ∗khi + TkT

∗
j T
∗
i hk), T ∗j hi − T ∗i hj〉

=
n∑

i,j=1

〈
n∑
k=1

(TkT ∗j T
∗
i hk − TkT ∗kT ∗i hj), T ∗j hi − T ∗i hj〉

=
n∑

i,j=1

〈
n∑
k=1

(TkT ∗j T
∗
i hk)− T ∗i hj , T ∗j hi − T ∗i hj〉

=
n∑

i,j=1

〈Tj(
n∑
k=1

TkT
∗
j T
∗
i hk)− TjT ∗i hj , hi〉

−
n∑

i,j=1

〈Ti(
n∑
k=1

TkT
∗
j T
∗
i hk)− TiT ∗i hj , hj〉

=
n∑
i=1

〈
n∑
j=1

TjT
∗
j (

n∑
k=1

TkT
∗
i hk)−

n∑
j=1

TjT
∗
i hj , hi〉

−
n∑
j=1

〈
n∑
i=1

TiT
∗
i (

n∑
k=1

TkT
∗
j hk)−

n∑
i=1

TiT
∗
i hj , hj〉

=
n∑
i=1

〈(
n∑
k=1

TkT
∗
i hk)−

n∑
j=1

TjT
∗
i hj , hi〉 −

n∑
j=1

〈
n∑
k=1

TkT
∗
j hk − hj , hj〉

=
n∑
j=1

〈hj −
n∑
k=1

TkT
∗
j hk), hj〉 = 〈D(h1, . . . , hn), (h1, . . . , hn)〉 = ‖x̃0‖2 = 1.

As 〈y, x̃0 + x̃1〉 = 0 and 〈y, x̃m − x̃m+1〉 = 0 for m ∈ N, we get 〈y, x̃0 + x̃m+1〉 = 0
for m ∈ N. This implies 1 = 〈ỹ0, ỹ0〉 = 〈ỹ0, x̃0〉 = −〈ỹm+1, x̃m+1〉. By the Cauchy-
Schwarz inequality, 1 ≤ ‖ỹm+1‖‖x̃m+1‖ , i.e., 1 ≤ ‖ỹm+1‖ for m ∈ N. This is a
contradiction, as y = 0⊕

⊕
m≥0 ỹm is in the Hilbert space H̃. �

4. Representations of Cuntz algebras

For n ≥ 2, the Cuntz algebra On is the C∗-algebra generated by n-isometries
s = {s1, . . . , sn} satisfying the Cuntz relations: s∗i sj = δijI, 1 ≤ i, j ≤ n, and∑
sis
∗
i = I. It admits many unitarily inequivalent representations. Various classes

of representations of On have been constructed in [9], [10], [14]. Given a tuple of
contractions T = (T1, . . . , Tn) on a Hilbert space satisfying

∑
TiT

∗
i = I, we consider
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its minimal isometric dilation Ṽ = (Ṽ1, . . . , Ṽn). We know that the isometries Ṽi
satisfy Cuntz relations, and we obtain a representation πT of the Cuntz algebra On
by setting πT (si) = Ṽi. We wish to classify all representations of On we can obtain
by dilating commuting contractive tuples T .

Let Sn = C(∂Bn) be the C∗-algebra of all continuous complex valued functions
on the sphere ∂Bn = {(z1, . . . , zn) :

∑
|zi|2 = 1}. We have a distinguished tu-

ple z = (z1, . . . , zn) of elements in Sn consisting of co-ordinate functions. Given
any spherical unitary Z = (Z1, . . . , Zn) there is a unique representation of Sn
which maps zi to Zi. Now given any commuting n-tuple of operators T , satisfying∑
TiT

∗
i = I, we consider its standard commuting dilation S̃ = (S̃1, . . . , S̃n). Let

ρT be the representation of Sn obtained by taking ρT (zi) = S̃i.

Definition 16. Let π be a representation of On on a Hilbert space L with W =
(W1, . . . ,Wn) = (π(s1), . . . , π(sn)). The representation π is said to be spherical if
span{Wαh : h ∈ Lc(W ), α ∈ Λ̃} = L, where Lc(W ) is the space where the maximal
commuting piece W c of W acts as in Definition 3.

Note that this definition means in particular that if π is spherical then the
maximal commuting pieceW c is nontrivial. We will see that it is actually a spherical
unitary. But this is not a justification for calling such representations spherical,
because this happens for any representation of On, as long as W c is nontrivial!
The actual justification of this definition is in Theorem 18.

Theorem 17. Let T = (T1, . . . , Tn) be a commuting tuple of operators on a Hilbert
space H, satisfying

∑
TiT

∗
i = I. Then the representation πT coming from the min-

imal isometric dilation of T is spherical. Suppose R = (R1, . . . , Rn) is another
commuting tuple, possibly on a different Hilbert space, satisfying

∑
RiR

∗
i = I.

Then the representations πT , πR of On are unitarily equivalent if and only if the
representations ρT , ρR of Sn are unitarily equivalent.

Proof. In view of Theorem 13, the maximal commuting piece of the minimal iso-
metric dilation Ṽ of T is a realization of the standard commuting dilation S̃ of
T . The first claim follows easily, as the space on which the standard commuting
dilation acts includes the original space H. So Ṽ is the minimal isometric dilation
of S̃. A similar statement holds for the tuple R. Now the theorem follows due to the
uniqueness up to equivalence of a minimal isometric dilation of contractive tuples,
and the unitary equivalence of maximal commuting pieces of unitarily equivalent
tuples. �

So this theorem reduces the classification problem for representations of On
arising out of general commuting tuples to that of representations of Sn. But Sn
being a commutative C∗-algebra, its representations are well-understood and is part
of standard C∗-algebra theory. We find the description of this theory as presented
in Arveson’s classic [4] most suitable for our purposes.

Given any point w = (w1, . . . wn) ∈ ∂Bn, we have a one-dimensional representa-
tion φw of Sn which maps f to f(w). Of course w is a spherical unitary as an op-
erator tuple on C. We can construct the minimal isometric dilation (Ww

1 , . . . ,W
w
n )

of this tuple as in the proof of Theorem 15 (Schäffer construction). We see that the
dilation space is

Hw = C⊕ (Γ(Cn)⊗ Cnw) ⊆ C⊕ (Γ(Cn)⊗ Cn),
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where Cnw is the subspace of vectors orthogonal to (w1, . . . , wn) in Cn. Further, the
operators Ww

i are given by

Ww
i (h⊕

∑
α

eα ⊗ dα) = wih⊕D(ei ⊗ h)⊕ ei ⊗ (
∑
α

eα ⊗ dα).

We denote the associated representation of On by ρw. This representation is known
to be irreducible, as it is nothing but the GNS representation of the so-called Cuntz
state on On (see [14], Example 5.1), given by

si1 · · · sims∗j1 · · · s
∗
jp 7→ wi1 · · ·wimwj1 · · ·wjp.

Now an arbitrary multiplicity-free representation of Sn can be described as fol-
lows (see [4]). Consider a finite Borel measure µ on ∂Bn. Then we get a represen-
tation of Sn on the Hilbert space L2(∂Bn, µ), which sends f ∈ Sn to the operator
‘multiplication by f ’. This representation can be thought of as a direct integral of
representations φw with respect to a measure µ. Now it is not hard to see that the
associated representation of On is simply the direct integral of representations ρw
with respect to µ and acts on

∫
⊕Hwµ(dw). Finally, an arbitrary representation of

Sn is a countable direct sum of such multiplicity-free representations. So we have
proved the following result.

Theorem 18. Every spherical representation of On is a direct integral of repre-
sentations ρw, w ∈ ∂Bn (GNS representations of Cuntz states).

Here we have not bothered to say when two such representations are equivalent.
But in view of Theorem 17, we can do it exactly as in ([4], pages 54-55), by keeping
track of multiplicities and equivalence classes of measures.

Theorem 19. Let π be a representation of On. Then:
(i) π decomposes uniquely as π = π0⊕π1, where π0 is spherical and (π1(s1), . . . ,

π1(sn)) has trivial maximal commuting piece (either π0 or π1 could also be absent).
(ii) The maximal commuting piece of (π(s1), . . . , π(sn)) either is trivial or it is

a spherical unitary.
(iii) If π is irreducible, then either the maximal commuting piece is trivial or

it is one-dimensional. In the second case, it is unitarily equivalent to the GNS
representation of a Cuntz state.

Proof. Suppose π is a representation of On on a Hilbert space L and

W = (π(s1), . . . , π(sn)).

Consider the space L0 generated by Lc(W ) as L0 = span{Wαh : h ∈ Lc(W ), α ∈
Λ̃}. Now eachW ∗i leaves Lc(W ) invariant, and clearlyOn = C∗{sα(sβ)∗ : α, β ∈ Λ̃}.
Then it follows that L0 is a reducing subspace for π. Taking L1 = (L0)⊥, we
decompose π as π0 ⊕ π1 with respect to L = L0 ⊕ L1. It is clear that this is a
decomposition as required by (i). Uniqueness of this decomposition and (ii) follow
easily, as a maximal commuting piece of a direct sum of tuples is a direct sum
of maximal commuting pieces (Corollary 5), and then (iii) follows from Theorem
18. �

Let us see what happens if we dilate commuting tuples T satisfying just
∑
TiT

∗
i ≤

I. In this case, as is well-known, the minimal isometric dilation decomposes as
((V1 ⊗ I)⊕W1, . . . , (Vn⊗ I)⊕Wn), where (V1, . . . , Vn) is the standard tuple of full
Fock space, and (W1, . . . ,Wn) are isometries satisfying Cuntz relations. If T is not
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pure, the term (W1, . . . ,Wn) is present and we get a representation ofOn. However,
as seen in the proof of Theorem 13, (W1, . . . ,Wn) is a minimal isometric dilation
of a spherical tuple (Z1, . . . , Zn) (the ‘spherical part’ of the standard commuting
dilation of T ), and hence the representation of On we get is still spherical.

On the other hand, it is easy to get examples of noncommuting tuples dilating
to representations of On which are not spherical. For instance, we can consider the
tuple R = (R1, R2) on C2 defined by

R1 =
[

0 1
0 0

]
, R2 =

[
0 0
1 0

]
.

Then as R1R
∗
1 +R2R

∗
2 = I, the minimal isometric dilation of (R1, R2) satisfies the

Cuntz relations. We can see that it has trivial commuting piece through a simple
application of Corollary 4.3 of [14].

Finally, we remark that if we are to consider the case n =∞, that is, if we have
infinite tuples {T1, T2, . . . , }, then the standard commuting tuple {S1, S2, . . . , } no
longer consists of essentially normal operators, as the commutators [S∗i , Si] have
infinite dimensional eigenspaces with nonzero eigenvalues. This is a serious obstacle
in extending the results of Sections 3 and 4 to infinite tuples. Taking a different
direction, many results have been now extended to the case of q-commuting tuples
(TjTi = qijTiTj with qij ∈ C) by S. Dey in [15].
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