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Generalized Shmushkevich Method: Proof of Basic Results*
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We here derive certain orthogonality properties of the Clebsch-Gordan (CGY coefficients of an
arbitrary compact group G. Our discussion recognizes the fact that the irreducible representations
(IR’s) of @ need not be equivalent to their complex conjugates and that the same IR can appear more
than once in the reduction of the direct product of two IR’s of @G. The Properties obtained allow the
development of g generalized Shmushkevich method for directly writing down consequences of the
invariance of particle interactions under . The discussion given is sufficiently genersl to apply to
the currently interesting cases of 8U; and @,.

.

L. INTRODUCTION the theories*® which use SU; and @, as invariance

THE aim of this work is to exhibit the proofs groups of the strong interactions, it is desirable to
of certain facts concerning compact groups and possess g generalization of Shmushkevich’s method
their Clebsch-Gordan (CG)  coefficients which for these theories. Provided Wwe assume that those
are used in the development of the generalized properties of CG coefficients of R, which were used
Shmushkevich method  for writing down con- in the justification of the method for B, generalize
Séquences of the invariance of the strong inter- to SU, and Gs, we can proceed directly to the
actions with respect to & given compact group. development of the generalized Shmushkevich
We commence with an explanation of this method. methods for SU, and @,. Several illustrations have
Shmushkevich! originally described the method already been given of how consequences of SU, and
now known as Shmushkevich’s method in connection @, invariance may be written down by the method:

with the charge-independent theory of the strong  relationships between decay weights for the decays

various elementary-particle reactions that exist ag meson-baryon scattering cross sections that exist as
a result of the assumption of charge independence & result of 8U, invariance.® ’ '
or invariance with respect to the isospin rotation The two broperties of CQ coefficients of R.®
group, R,. Simple expositions of it with examples used in the justification of Shmushkevich’s method
may be found in recent books on elementary-  for R, are the following®;"

particle physics.” Tts notable characteristics are its 1) Orthogonah'ty
economy, particularly in complicated physica] con- R 2 ’
texts, and the fact that it proceeds without the ’"XZ"': i ) C e’ )
use of (and therefore without the need for know- » = 8(1")8(mm’); - - (L.1)
ledge of) numerical values of CG coefficients of B;. p .10 ,
Formal proof® of the results which underlie the (2) Modified orthogonahty

method depends only on certain general properties mZ C(iijeg; Mumam)C (55,5, mimym)

of CG coeflicients of Rs, to be noted below. = [ + 1) /@j, + 1)] 8(ia50) 8(mym) (1.2)
In view of the great interest currently surrounding ] ! i e N )
The modified orthogonahty rule arises from the

!
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GENERALIZED SHMUSHKEVICH METHOD

ordinary orthogonality rule by means of the sym-
metry property

Clfod; mymam) = (=)"*""[(2§ + 1)/@j, + I

X C(jjejr; —m my —my). (1.3)
In this paper, we define CG coefficients for an
arbitrary compact group, and establish that results
analogous to Egs. (1.1) and (1.2) obtain, so that
a generalized Shmushkevich method may indeed
justifiably be used to write down consequences of
invariance with respect to any compaet group, in
particular with respect to SU; or G, That an
orthogonality rule like (1.1) obtains is to be expected.
It is not obvious although true, however, that a
natural generalization of (1.2) exists. Indeed the
opposite might be expected since a natural general-
ization of (1.3) does not exist—e.g., (1.3) for R,
has to be replaced by a complicated crossing relation
for an arbitrary compact group. The reason for this
stems from the fact that the representation theory
of R, is simpler than that of an arbitrary compact
group in two important respects. These are as
follows:

(A) An irreducible representation of an arbitrary
compact group need not be equivalent to its complex
conjugate.

(B) The direct product of two irreducible rep-
resentations of an arbitrary compact group may
contain the same irreducible representation more
than once in its reduction.

For R, neither (A) nor (B) can occur. Since for
SU; both (A) and (B) can occur' and do in prac-
tically interesting cases, the relevance of the present
discussion becomes clear.

Among previous literature on the subject, we
note that Wigner'* has discussed CG coefficients
of finite groups which do not allow either (A) or

1 In the currently popular form of unitary symmetry
theory+12 the baryons, pseudoscalar and vector mesons,
are classified according to the octet or IR (1, 1) of SUs, and
the spin-} baryon resonances are classified according to the
decuplet or IR (3,0). The direct product of two octets con-
tains an octet twice—a fact which reflects the possibility of
constructing two independent Yukawa-type meson—baryon
interactions. The IR (3,0) is not equivalent to its complex
conjugate, but to the complex conjugate of the IR (0,3). The
notation used here for IR’s of SU; is explained in Ref. 13.

128, L. Glashow and J. J. Sakurai, Nuovo Cimento 26,
622 (1962).

13 A, J. Macfarlane, E. C. G. Sudarshan, and C. Dulle-
mond, Nuovo Cimento 30, 845 (1963).

1+ B, P. Wigner, Am. J. Math 63, 57 (1941), and “On
the Matrices Which Reduce the Kronecker Product of
Representations of Simply Reducible Groups” (unpublished).
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(B), and that Sharp' has discussed the same
problem for compact groups and also for compact
groups for which (A) but not (B) can occur. On
the other hand, Hamermesh'® has discussed groups
which allow (B) but not (A). We here use the
notation used by Hamermesh and refer to his book
for many of the general properties of irreducible
representations of groups used in the ensuing sections.

The material of the paper is presented as follows.
In Sec. 2, we mention various facts regarding the
representation theory of an arbitrary compact group
and define its CG coefficients. In Sec. 3, we derive
the desired generalizations of Eqs. (1.1) and (1.2).
Sec. 4 contains an illustrative example.

2. SIMPLE PROPERTIES OF IR’s
AND CG COEFFICIENTS

We consider an arbitrary compact group G with
general element R. Since G is compact, each of the
IR’s is of finite dimension and equivalent to a
unitary IR. Thus we may confine attention to
unitary IR’s of @, ie., to D*(R) which satisfy

D*R)' = D*(R)™. (2.1)

Here we use as a labeling of the IR’s of @ a single
lower-case Greek letter gz, », p --- , which may
in fact stand for several labels. For example, we
may write

= (/1'1;11'2) "'”Z)

in the case of the IR of highest weight u of I compo-
nents if G is of rank [.

We do not assume that the IR D*(R) is equivalent
to its complex conjugate D*(R)* which is still
however an IR of G, but set

DBy = JW', "' DR W, m),  (2.2)

where J is unitary and independent of R.” We
shall apply primes to lower-case Greek letters
always exactly in this sense and never at all to
other letters. It is obvious that passage from D*(R)
to D*'(R) is an involution, so that D*'(R) = D*(R).
Also,

J(p, ') = ‘7(“,; »), 2.3)

where the tilde denotes transposition. We may
summarize the situation by saying that the set
{++m v p -} of all IR’s of @ is the same as the
set {--- u, ¥/, p’ -}, possibly in a different order.

15 W. T. Sharp, “Racah Algebra and the Contraction of
Groups,” CRT-935, Chalk River, Canada, 1960.

16 M. Hamermesh, Group Theory (Addison Wesley Pub-
lishing Company, Inc., Reading, Massachusetts, 1962). See
especially Chap. 5 and Seec. 7-14.

17 The matrix J plays a role for the general compact group
analogous to that played by the “1 — j symbol” for R;.
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We go on to consider the direct product
D"R) ® D'(R) 2.4)

of a pair of IR’s of G. Since @ is compact, we know
that this is equivalent to a direct sum of IR’s of
G, possibly containing several IR’s more than once.
We may use

D*R)® D'R) =2 3., wp)D"(R)  (2.5)

to define (urp) as the number of times D*(R) occurs
as a direct summand in the reduction of (2.4).
Allowed values of (uvp) are 0, 1,2 --. . We have

(wp) = (vup). (2.6)
If D*(R) has character x*(R), Eq. (2.5) implies

X'BX'R) = 2, woi’(R). 2.7
We may use the orthogonality relation for characters

[ @)@ R = A0, @.8)

where A is a normalization constant and the integra-
tion is the usual left- and right-invariant integration
over the group manifold of G, to give

wa) = 47 [ YR RY®)* B @9

Hence using the consequence

X(RY* = x*'(R) (2.10)
of Eq. (2.2), we may deduce the important result _
(wp) = (o'v'). 2.11)

We now define the CG coefficients of G for the
direct product (2.4) and show that they are the
elements of the unitary matrix which generates the
similarity transformation that brings the direct sum
on the left side of (2.5) into equivalence with the
right side. If n, is the dimension of D*(R), suppose
¥*; with j standing for a set of labels which take
on n, distinct sets of values is an orthonormal basis
in the representation space of the IR p. Under R,
we have _

¥ — Oy = VL DR, 2.12)

R

Here we are using summation convention for Latin
indices but not Greek ones. Similarly, ¢¥’, is an
orthonormal basis for the representation space of
the IR », so that the products ¢*": are the basis
functions for the product (2.4). Reduction of this
product into a direct sum of IR’s D*(R), various p,
involves a unitary change of basis wherein we replace
the products ¥*;¥": by sets of basis functions ¢,

which transform according to D’(R),
v ~R—> O0z¥": = V' uD°(R) ;- (2.13)

Since (urp) > 1 is possible for a given p appear-
ing in the reduction, there can be more than one
independent set of n, basis functions ¢*;. To distin-
guish these we add a Latin capital label (to which
summation convention does not apply) to the basis
functions, e.g., ¢*“;, there being (urp) allowed
(sets of) values for the (perhaps composite).label A.
We demand that basis functions. ¢**, for different
A be orthogonal. Also we arrange'® to have

\VAl ;) OR‘V)AI = ’sVAmDp(R)mh (214)

with D’(R),. independent of A. We may define
¥**, explicitly by setting '

Vo= Vg, vk | pAD, (2.15)

(u, vk | pAD) (2.16)

is the generalized CG coefficient of G for the product
(2.4). We may also give an inverse to Eq. (2.15) in
the form

Vil = 2, VAl | kg, vk),  (2.17)

pA

where

where the quantities
(pAL | pj, vk)
are elements of the matrix inverse to that with the
CG coefficients (2.16) as elements, i.e.,"
(uj, vk | pAD(eBm | uj, vk)
= §(pa)s(AB)s(Im), (2.18)

‘; (g, vk | pAD(pAL | pp, vq) = 8(ip)i(kg).. (2.19)

We can now exhibit that the CG coefficients (2.16)
are the elements of the

nn, = 3, (won, (2.20)

-dimensional matrix of the similarity transformation
which brings the direct sum on the right of Eq. (2.5)
Into equivalence with the direct product on the left.
We apply Ox to (2.17), use (2.15) and caneel the
product basis functions, as they are linearly in-
dependent, obtaining

D*R),;D"(R)u
= XA: (up, vq | pADD (R)1m(pAm | pj, vk), (2.21)

which demonstrates the equivalence.

18 Ref. 16, p. 150.
18 Ref. 16, p. 149.
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We should stress the fact that there is a great
deal of arbitrariness® in the definition of the CG
coefficient of @ for the product (2.4) if for given p,
(urp) > 1, so that there are several orthogonal sets
of basis functions ¥**;. This is because we can make
unitary transformations with respect to A for fixed
p without disturbing the explicit reduction of the
product (2.4) or the orthogonality of the sets ¢**;
with different A. Fortunately, we do not have to
dwell on this arbitrariness in our work.

We now proceed to obtain analogs of Eqgs. (1.1)-
(1.3) in terms of the quantities (2.16).

3. GENERALIZATION OF EQS. (1.1)=(1.3).

The generalization of (1.1) is immediate. As the
matrix of CG coeficients is unitary, we have

i, ok | pAD* = AL i, ), (D)
$0 that (2.18) becomes
(uj, vk I pAD g, vk l aBm)*
= 8(po) 8(AB)s(Im), 3.2)

which is the redufred generalization of (1.1). .
To generalize (1 3), we need a lemma.

" Lemma. The direct-product representation
D*(R) ¥ D" (R) contains the identity representation
O only if » = 4/, and then only once.

The correspondmg normalized wavefunction is

PO = TG, Wt (33)

The first part of the lemma follows (2.9) and
(2.8) on setting p = 0 and x*(R) = 1. To verify
the statement that the ¢ as given by (3.3) is the
correct invariant basis function, we use Egs. (2.1),
(2.2), and (2.14) as well as the fact that J(u, u')
is unitary, in the following way:

PO = T, w)
: - J(u, 1) ;e D*(R) i D (R) 1" ™

= J(ﬂ’; l")k:‘D“(R)miJ(ﬂ,; p’)ln

X D*RY* o (4, 1) ot s
D*(R) iy D*RY* o (1, 1)mi Vs
= J(ﬂ; P',)nl un‘p“'l = Kl’(O)-

Il

20 Ref. 16, p. 261.

\ F1c. 1. The (w) p’ — p o’ — 0 coupling.

F16. 2. The p (»p') — p ' — 0 coupling.

The normalization of ¢‘” follows from the unitarity
of J (g, u"). Thus the proof of the lemma, is complete.

Suppose now we have three sets of basis functions
Vi, ¥ and ¢*', together with their associated
matrices D*(R), D’(R), D* (R). We seek combina-
tions of the product functions y¥*"w*", that are
invariant under @. In -general, a whole subspace
of such combinations exists. We can build a basis
for this subspace in the following manner. From
the lemma it is clear that in an -invariant linear
combination of products, whatever multiplies the
¥*';, must be a quantity of the type ¢*,,.. That is,
we must first combine the products ¥*#¥": to a
wavefunction of type p, and then combine that with
the ¥*'; to get an invariant. Thus we arrive at a
set of (;,wp) orthonormal 1nvar1ant states labeled by
a letter 4,

4 = J(o, p")miui, vk | pAm)xl/"ﬂl/'kzl/”'z. <3.4>

These states form an orthonormal basis for the
manifold of invariant states in the triple-product
space. We may represent’ Eq (3.4) schematically
as in Fig. 1.

It is clear however that we must obtain the same
manifold if we start by coupling the ¢*'; and ¢’
to -form states of type ¢*'°,, and then combine
these with y*; to form invariant states ¢°B In this
way, we get

M) = J(u, u")imd o', i 1u'Bm)¢*’ W (3.5)

This may be represented as in Fig. 2. Since ¢°*
and ¢°” span the same subspace of the trlple-product
space, there is a ‘unitary transformatlon connecting
them, so that we have -

= ZB M CLVP)AB¢OB . 3.6)

We now insert (3.4) and (3.5) into (3.6) and obtain,
after dropping the linearly independent product
functions, the relationship®

n) (o, 0")milui, vk | pAm)

= 5 M(wp)asm,) VW, )i (o'l vk | WBn). (3.7)
In the absence of multiplicities, i.e., when (;wp)‘ =
mwmg Hamermesh, (Ref. 16, Sec, 7-14), we may
show that the arbitrariness in the definition of CG coeﬁiments

of @ may be disposed of in such a way that M (;I.Vp)
We can however proceed without effecting this.

}

G
(r

= ® 2o

(IR

&+ o O

PRI ¥ VIR

w“
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(o've’) = 1, Eq. (3.7) reduces to
(np)—%'](p: pl)ml(:"‘j} Vk | pm)
= (nu)_%‘](“/) l-‘)ni(Pll; vk l I-"In)' (38)

Equations (3.8) and (3.7)*! exhibit how a crossing
relation replaces the simple symmetry property (1.3)
when IR’s are no longer all equivalent to their
complex conjugates and when (urp) > 1 is allowed.

It is now a simple matter to derive from (8.7)
the required generalization of Eq. (1.2). To do this,
we first obtain from Eq. (3.7)

(np)_§‘](py P/)qu()‘p7 Vk l qu)*

= 225 M) 5c(m) IOV, N1, vk | N Ds)*
(3.9)

by complex conjugation and relabeling. Then we
multiply corresponding sides of Eqs. (3.7) and (3.9)
and sum over k¥ and L First, we note that the
unitarity of J(p, p’) simplifies the left side to

(np)~l(#j) vk I pAm)O\p, vk ' pCm)*,

summation over k¥ and m implied here as always.
On the right side, we first use (3.2) to obtain a factor

8(u)) 8(BD)é(ns).

Now the M’s on the right refer to the same triples
of IR’s, and the J’s to the same pair of complex
conjugates of IR’s, so that their unitarity reduces
the right side to

(m) ™" 8(u)) (i) 8(AC).
We thus obtain
(ui, vk | pAm)(\p, vk | pCm)*
= (,/n,)8(u\) 8(ip) 8(AC)

as the required generalization of (1.2).

(3.10)

4. ILLUSTRATIVE EXAMPLE

Justification of the application of Shmushkevich’s
method to SU, is here provided in a simple case
on the basis of the work of the previous sections.

We use the notation (s, u;) for an IR of S Us,
the integers u, and p, being the components of its
highest weight. Basis states for any IR u = (11, o)
are obtained as simultaneous eigenstates of operators
which may be identified with I?, total isospin;
I, its z component; and Y, hypercharge. Thus in

MACFARLANE, 'MUKUNDA, AND SUDARSHAN

place of ¢*; we have |u,u,; I1,Y). Tt is customary***
to associate sets of particles of the same spins and
parities, “approximately” the same masses, and
appropriate I and ¥ with such IR’s of S Us in order
to set up a unitary symmetry theory. For the purpose
of illustration let us consider all the allowed decays
of a particle belonging to the IR p = (p, p.) into
two particles belonging to x and ». Such decays
have matrix elements

<”11I13Y1} VI2]22Y2| T lpII,Y)
= 204 WLILYy, vLIY, | pAILY)YpA|| T ||0).
(4.1)

In order to derive the results which correspond to
the Shmushkevich tables used in Refs. 6 and 8,
we must consider the following sums over the squared
moduli of matrix elements (4.1). These are Q(I1,Y),
the sum over I,, I,,, ¥, and I, I, Y, at fixed
I,1,Y;and R(I,, I,,, Y,), the sum over I, 1,7,
and I, I, Y at fixed I, 1, 7,
We get

QULY)

= 2 24 WL, Y, L1, Y, | PAILYXpAll T |p)
X 228 WL Yy, LI, Y, | oBILY)*(oB|| T || p)*

= AZB 8(AB)X oAl T ||pXpBI| T || py*

= 24 KeAll T ||0)P. “.2)

The sum set first in the first line is by definition
over Iy, I,, ¥y, Ip, I,,, ¥, at fixed I, I,, Y—just
that required to allow the use of Eq. (38.2). The
result (4.2)—Q(I1,Y) independent of I, I, and
Y—states the equality of the total widths for all
decays for different members of the unitary mul-
tiplet p.
Likewise, we get

R(II) Ilzy Yl) = (np/nu) EA KPAH T Hp>|27 (43)

the summation. involved in the derivation being, by
definition, just that required to allow the use of
Eq, (3.10). Thus R(I,, I,, Y,) is independent of
I,, I1,, and Y, which is just what has been called®
a Shmushkevich theorem for the decay situation.
No further information than is provided by Egs.
(3.2), (8.10) is required for the writing down of
Shmushkevich theorems for more complex situations.




