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Kolmogorov’s existence theorem for Markov processes in C* algebras
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Abstract. Given a family of transition probability functions between measure spaces and an
initial distribution Kolmogorov’s existence theorem associates a unique Markov process on
the product space. Here a canonical non-commutative analogue of this result is established
for families of completely positive maps between C* algebras satisfying the Chapman-
Kolmogorov equations. This could be the starting point for a theory of quantum Markov
processes.
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1. Introduction

Let (X,,#)), i=0, 1,2,..; be Polish measurable spaces and let P(x;,dx,, ) be a
transition probability from (X,, #,) to (X, ,,#,.,) for each i. Given a probability
measure p on (X,, %) it follows from Kolmogorov’s extension theorem that there

exists a unique probability measure P, on the infinite product space (4 #) = RX,F)
' , i=0

such that, for every finite n, its projection or marginal distribution P} in XX, F))
i=0

is given by ,
PU(Ey x Ey X -+ X E)=

I p(dx,) Py (%o, d%, )P, (x,,d%,) -+ P, (x, _,dx,) (L.1)
E xE x:-xE .

for all E,e#,,i=0,1,2,...,n The probability space (Q, #, P,) describes the Markov

process with initial distribution u and transition probability P;(',) for transition from

a state at time i to a new state at time i + 1. This can be described in a * algebraic

language as follows. Denote by &, the commutative * algebra of all complex valued

bounded measurable functions on (X;, #,). Introduce the positive unital operator
T@,i+1): ;. >, by :

(TG,i+ 1)g)(x;) = '[g(xi+1)Pi(xi» dx;4 ).
For any i <k define T(, k). Ay~ s by

TG, k)= { identity if i=k,

TGi+ 1) T(+1,i+2)Tk—1,k if i<k
253
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The family {T(,k),i <k} of transition operators obeys the Chapman-Kolmogorov
equations:

TG, k) T(k,&)=T(G,¢) fori<k<¢.

Let 5 be the Hilbert space L*(P,) and F(i) denote the Hilbert space projection on
the subspace of functions depending only on the first i + 1 coordinates (x¢, Xy, ..., X;)
of w=(xg,X1,%3,...,) in (& Then {F(i)} is an increasing sequence of prOJectlons in
. For any ges/; deﬁne the operator j;(g) in ¢ by

(i9) ) (@) = g(x)(FDP) @), ©=(xo,X1,-..,).

Then j; is a * homomorphism from &/, into the * algebra #(#) of all bounded

operatois in . The Markov property of the stochastic process (Q,&,P,) is
encapsulated in the operator relations

Ju(1) =F(k), | \ 1.2)
F@j@)F@) =jiTG,k)g), gedy, i<k - (13)

The relations (1.1) can be expressed as
Cth7o@0)is (91) +jnlgn)v
= J(avgo)(xo)gl(xl)"'gn(xn)dPu(w) (L4) |

for all u, v in the range of F(0) and g;e /;,i =0, 1,2, ...,n. Here @ denotes the sequence
(XgsX1,-..). We may call the triple (, F,j,,k=0,1,2,...) consisting of the Hilbert
space J, the filtration of projections F(k) increasing in k and the family {j,, k=
0,1,2,...} of * (but nonunital) homomorphisms, a Markov process with transition
operators {T(i,j),i <j}. A similar description of a Markov process in continuous
time is also possible.

In the context of quantum or non-commutative probablhty theory there have been
several partial attempts (for example, by Accardi, Frigerio and Lewis [AFL], Emch
[E], Sauvageot [S] and Vincent-Smith [Vi-S]) to construct Markov processes when
transition. probabilities between measurable spaces, or equivalently, the transition
operators between the corresponding commutative * algebras of bounded measurable
functions are replaced by unital and completely positive linear maps between unital
* algebras of operators in Hilbert spaces. In the present paper we shall start with a
family of completely positive maps between C* algebras which obey the Chapman-—
Kolmogorov equations and build a unique canonical minimal Markov process, using
the GNS principle. Rather remarkably, this minimal process, when restricted to the
centres of the different C* algebras that are involved, can be obtained as a conditional
expectation of a completely commutative process. The definition of a Markov process
that we shall adopt is inspired by the equations (1.2)—(1.4).

2. The basic construction

Let o/, be a unital C* algebra of bounded operators in a complex Hilbert space £,
for every ¢t > 0. The time index ¢t here may be discrete or continuous. It is useful to
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imagine any hermitian element xe.«/, as a real valued observable concerning a system
at time t. Forevery 0 <s <t < oo let T(s, t): &/, — o be a linear, unital and completely
positive map (hereafter called simply a c.p. map) satisfying the following: (i) T(s, s) is
the identity map on «/,; (ii) T(r,t) = T(r,s) T(s,t) for all 0 <r < s <t < oo. When (i)
and (ii) hold we say that the family {T(s,#)} of c.p. maps obeys the Chapman-
Kolmogorov equations and call it a family of transition operators. Complete positivity
is equivalent to the condition

T XHT( (Y Y)}IX, >0

for all bounded operators X; in 4", and elements Y;e.</,, the summation being over
any finite index set. Another equivalent description of complete positivity is that, for
every finite n, the matrix ((T'(s,t)(Y, Mi<ij<n viewed as an operator in the n-fold
direct sum X" @ --- @ X, is positive whenever ((Y;;)1 < j<n 18 positive in the n-fold
direct sum X", @ -+ @ X", with Y, ;e o, for each i,j.

Denote by I'y(R..) =T, the set {gloc =R, 0o, #0 < 0}, where #o denotes the
cardinality of . When #0 =n and t;€0, i=1,2,...,n are distinct we always express
itaso={ty,ty,...,t,} witht, >t, > .- > t,=0. When X, e/, foreachi=1,2,...,n
we denote the n-length sequence {X,,X,,....,X, } by X(o). Suppose that o=
{51,852, s8m} 6={ty,ts,...,t,} and 0L = {r,,r,,...,r,} are in T'y. For any X (o)
with X eof we write X(o L ) for the sequence Y(o U d) defined by

_ X, if ri=s;forsomej=1,2,...,n,
" I, otherwise,

where I, is the identity element in &/,. Denote by A the set of all sequences of the
form X (o) with ¢ varying in I'y and write

M=Ax KA, E | (2.1)
= {{(X(a),u)e./l,a=(t,t2,~...,t,,),n=2,3,...,} Tft>0 22)
Mo)(fo . 1ft=0

To the family {T'(s,t)} of transition operators we now associate a function L, on the
set A x A as follows:

Lr((X(0), u)(Y(0),0)) = <, XF{T 0,2, )X} _ {T(t,_15t,_5)
(o XE{T(t,0 1 )(XT, Ytl)} Y, )} Y, ) Yo)o)

fo={t;,ts,...sta} (2.3)
and ‘ .
L((X(0),u),(Y(3),v)) = Lr((X "(_ff w0), u),( Y’(c L), 0)). (2.4)

PROPOSITION 2.1.
Ly is a positive definite kernel on M x M, i.e., for any n=1,2,..., complex scalars c;

and elements (X ;(0;), u;)e M, i=1,2,...,n the following inequality holds:

Y. &iey Le((Xi(o:), wy), (Xi(o;),u;)) =0 (2.5)

ISi.fQH
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Proof. We claim that for a pair of elements of the form (X (o), u), (Y(0),v) in 4 and

oel’,
L ((X(0),u),(Y(0), 1)) = L1((X" (6w ), u), (Y’ (oL J),1)). (2.6)

It suffices to prove this relation when & = {t,0}, o = {t;,¢t5,...,t,-1,0}, t #1; for every
i, since the more general case would follow by induction. In this special case (2.6)
follows easily from (2.3) with ¢ replaced by o é and the Chapman-Kolmogorov
equations. In view of (2.4) it is enough to prove (2.5) when o;=o for each i, for
otherwise, we may replace allthe o, ’sbys = | ;. Leto = {t1, 15, ., by 15t = 0} and

X(0)=Xy Xy s Xy, ) i=12,...n

ity? m

Define inductively the following operators:

Z,t)=X} X,
Zij(tr)::Xitr T(t,, r—l)(zij(tr—l))thr’
r=23,....m
Clearly, the matrix ((Z,(t;)) is a positive operator in the n-fold direct sum
A, @-@x, . If (Z (t 1))) is a positive operator in A", @ @A, the

~1

complete positivity of T(t ,) implies that ((Z (¢, ))) is posmve in A, D @ A, .
Thus, by induction, ((Z(t,, ))) is a positive operator in A @ DA, If we wrlte
E= @clu, in A @ @A, we have
i=1
Z EiCjLT((Xi(U)s u;), (Xj (o), uj)) = <f,((zij(tm)))f> =>0. =

1<i,j<n

PROPOSITION 2.2.

There exists a H ilbert space 3 and a map A:. M — K satisfying the following:

(@) <AX(0),1), A(Y(3),v)) = L ((X(0),w),(Y(3),v));

(i) The set {A(X (o), w)|(X (o), u)e M} is total in H; '

(i) If #' is another Hilbert space and A': M — H' satisfying (i) and (i) with (¥, 1)
replaced by (o', ') then there exists a unitary operator W:# — #' such that Wol = A’;
(iv) M(X(0),u)) = A(X (aud)u) for all (X(o),u)e# and 5T . ’

Proof. (i), (ii) and (iii) are immediate from Proposition 2.1 and the G.N.S. principle.
(See, for example, Proposition 15.4, [P]). By (2.3) and (2.4) we have

L ((X(0),u),(X(0),w)) = Ly ((X (o), u), (X" (0L ), u)
= Lp((X* (o ), u),(X* (0w ), u))
and hence by (i) in the proposition |
14X (0), ) — A(X°(a L), 0)|I* = | A(X (0), ) |* + | A{X (L), w)|?
—2Re<A(X(0),w), UX*(c L) u)>=0. M
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Remark. When ¢ = {t;,t,,...,t,} is fixed it is a consequence of (i) in Proposition 2.2
that A((X,,, X,,,...,X,,), u) is multilinear on A, XX XA
PROPOSITION 2.3.

In Proposition 2.2 let 3, be the closed linear span of the set {A(X (o), w)|(X (o), u)e A o}
where M, is defined by (2.1) and (2.2). Then {#,,t =0} is an increasing family of
subspaces of # and the map V:iu— Al 0, U) is a unitary operator from Ay to Hy.

Proof. Let 0<s<t<oo. Suppose 0= {5,525..-,Sn). Then by property (iv) in
Proposition 2.2 we have

l((Xs, -an-- ~9Xs,.,):u) = )'((InXsisty""Xsm):u)

and the right hand side belongs to By definition. This proves the first part. To
prove the second part we first observe that

<A'(IOa u), A(IO’ v)>9f = <u: v>.)("o'
Thus V is an isometry from ", into 5#,. Furthermore (2.3) implies
| A(Xo,u)— A(Io,Xo“) HZ
= L((Xo,u),(Xo,w)+ Ly((To, Xot4), (o, X o))
—2Re LT((XOau)a (o, Xou) ‘
= (U, XX ju) + (X, X u)
——2Re<u,X§(X0u)>=O. ]
For any Hilbert space A~ we denote by #(') the C* algebra of all bounded
operators on .

PROPOSITION 24.

Let #, #,, A, V be as in Proposition 2.3. Then there exists a unique * unital
homomorphism j°:of ,— B(H ) for every t > 0 satisfying the relations:

POMK X, X)) = MK X o0 X, )W) 2.7

In

for all Yest,, t>1t,>>1,=0, ue.%’;). Furthermore
V*lX)V=X forall Xesd,.

Proof. Let Yes/, be unitary. By (2.3) and the fact that { T(s, )} is a family of transition
operators it follows immediately that

OYX 1y Xy s X 0, AY Z,, Z g0 20, 1 0))
= Lo((YX 0, X oo s X W (YZ1, 2oy, Z4,),0))
=L (X, X1y o s s Xy W (215 215 21, )5 0)
= MKy Xiys e X WU AZ s Zoys -, 20, 0)D
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forallX,, Yes/,, X,,, Y, es,,u,0eX ;. This together with property (iv) of Proposition
2.2 implies that

<’1(YX33 th, L aXz")’ u):/l(YZt, thl’Zt’z’ e 9Zt;.)a U)>
= MK X s X M2 2y, 2, 2, ) 0)

Thus for any unitary Y in A, there exists a unitary operator jo(Y) in 5#, satisfying
(2.7). If Y,, Y, are unitary elements in 4, it follows from the definitions that Jo(Yy)
j?(Y2)=j,°(Y1 Y,). Since MX,X,,...,X, ),u) is linear in the variable X, and any
element in .7, is a linear combination of at most four unitary elements in . it follows
that j°(-) defined for unitary elements extends linearly to &7, as a * unital homomorphism
from o/, into #(s#,). The uniqueness part is obvious. To prove the last part we have
to only note that by the definition of V in Proposition 2.3 and the last part of its proof

JoX) Vu=j3(X) Al 5, u) = A(X,u)
= Al,,Xu)=VXu
for all uest",. [ |

%
v N

Theorem 2.5. Let o/, be a unital C* algebra of operators in a Hilbert space A, for
every t 20 and let T(s,t): o/, A, s<t be a family of transition operators. Then
there exists a Hilbert space #, an increasing family {F(t),t > 0} of projection operators
on #, a family of contractive * homomorphisms j,:sf,— B(H#), t >0 and a unitary
isomorphism V from X", onto the range of F(0) satisfying the following:

(i) ji(I,) = F(t), I, being the identity operator in A" o
(ii) for any 0 <s<t< oo, Xeo,
F(8)j(XYF (s) = j(T(s, t)(X));

(ii) the set {j,,(X)-j, (X,) Vut, >ty > - >, =0, Xesd, foreachi,n= 1,2,...,

ued',} is total in H#, ‘

(iv) jo(X) V=VX for all Xesty and for any u, vext,, o={s;>8,>>s,=0}, ‘
§={ty>t;>>t,=0}, A

T

Xiesd, Yied,,i=12,....mj=12,..n
e K1) (X2) e (X ) Vit o, (Y1) (%) o), (T,) V0D
= L((X (o), ), (Y(6),0)),

where Ly is given by (2.3) and (2.4).

Proof. Let o, 5, A, V and j be as in Proposition 2.4. Define F(t) to be the projection
on the subspace 5#,. By Proposition 2.3, F(t) is increasing in t. Define, for any X es,,

the operator j,(X) in & by
JX)=j(X)F(t) for anyt>0.

_Since J? is a * unital homomorphism from &, into #(#,) and F(t) is a projection
it follows that | j,(X)| < | X|| and j,(I,) = F(¢). To check that J(X)j(Y)=j,(XY) it is



)
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enough to verify this on vectors of the form A((Xy, X,,5..., X .,)» #). This is immediate
from (2.7). Since jO(X)F(t) = F(£)j>(X)F (z) it follows that j(X)* =j,(X*).
To prove (ii) it is enough to check that, for s <t,

MK Xyysees X ), JPXAY,, Yy Y, hv)>=
(X X gyrens Xt AT D(X) Yy, Yoo, Y D000
for all Xeo/,. By definitions the left hand side is equal to
O X X X o s AKX, Yy, Yy Y, ). v)>

which, by property (i) in Proposition 2.2 and 2.3, is equal to the right hand side.
(iii) is just a restatement of property (ii) in Proposition 2.2 because

G (X 1) Je(Xp) Ve = UX (0), 4)

With o= {tl, tz, ey tll}'
The first part of (iv) is contained in the last part of Proposition 2.4. The remaining
part of (iv) follows from property (i) in Proposition 2.2. [ ]

Remark. It is interesting to compare the properties of {F(t)} and (j;} in Theorem
2.5 with (1.2)-(1.4) in the case of classical Markov processes. This motivates the
following definition: suppose o, A"; and T(s,t), s <t are as in Theorem 2.5. Then
any quadruple (#, F, {j,}, V) consisting of a Hilbert space ¥, an increasing family
{F(t)} of projections in 3, contractive * homomorphisms j, from &, into # (o) and
a unitary isomorphism V from X', onto the range of F(0) is called a conservative

. Markov flow with transition operators T(',") if

jlI)=F@®, F©)jX)F(s)=js(T(s1)(X)) for 0<s<t < oo

and j,(X) V= VX for all Xe s, the flow is said to be minimal if, in addition, property

(iii) of Theorem 2.5 holds. Two such minimal conservative Markov flows (3¢, F, {j, }, V)
and (o', F',{j;}, V') with the same transition operators T(,") are called equivalent if
there exists a unitary isomorphism W:3# — "' such that

WFOW™'=F@), WiXW'=jX), Wv=V

for all t >0, Xeof, [BP], [M]. ,
We shall establish soon that upto equivalence the minimal Markov flow constructed
in Theorem 2.5 is unique.

PROPOSITION 2.6.

Let (#,F,{j,}, V) be a minimal conservative M arkov flow with transition operators
T(-,") then the following hold: -

(i) Let 0<t, <ty >ty<oco. Then for any X;esd,,i=1,2,3

Jou (X3 T(ty,12)(X2))jes(X3) if 2205

.tx‘X .th 'tax =9. ) .
X 1) X2)is(Xs) b (X )iy (T(ts, 12 )X ) X3) if £y <ty



260 B V Rajarama Bhat and K R Parthasarathy

(i) Let A" be the set of'allpairsofsequences of the form(ty,ty,...,t,; X1, X5,..., X,)
where 0<t,, t,,...,t,< 0, Xiesd,,i=1,2,...,n,n=1,2,... Then there exists a map
oA — o, independent of the Markov flow such that

F(0)ji, (X 1)), (X 2) -+, (X4) F(0) = jo (ax(t, X)) (2.8)
Jor all (,X)=(t1,t5,...,t,; X1, X,,..., X, )EN.

Proof. Let t,,t,,t; be as in (i) and ¢, > t,. Then

Ju (X 1)) (X 2)Ji5 (X 3)
=Ju (X 1)F(t1)]0,(X2) F(£1)j,, (X 5)
=50 (T (t1,6) (X)) (X )
=Ju, (X1 T(t1,£2)(X2))jis(X3),

which proves the first part of (i). Its second part is proved in the same manner.
To prove (ii) observe that

F(0)jy, (X)), (X 5)-ji, (X,) F(0)
=Jo(o)js,(X 1)jiz (X 2)*+jo (X n)jo L o)- (2.9)

Without loss of generality assume that 0 < t, <ty <+ <tp.y; >t Then by (i) the
product j,, _,(Xy-2)j,._,(Xe-1)j,(X,) can be reduced to a product of size 2 of the
formj, (X, _,) Jo (X orj, (X,_,) J, (X}) where the primed operators depend only
on (t,X) and T(,") and not on the particular flow under consideration. Thus the
n-fold product between the two j,(I,)'s on the right hand side of (2.9) can be reduced
to an (n— 1)-fold product. A successive reduction of the sequence (0,¢,,¢,,...,t,,0;
1y, X,,X,,...,X,,1,)applying (i) yields in the end an element a(t, X) satisfying (2.8).

, [ |

Theorem 2.7. Let o, ', T(s,t), 0 <5<t < oo be as in Theorem 2.5. Then any two
minimal conservative Markov flows with transition operators T(-,") are equivalent.

- Proof. Let (#,F,{j},V) and (#,F,{j '}, V') be two Markov flows satisfying the
conditions of the theorem. Suppose that s, >s5,> -.. > Sm=0,t;>t,>..>t,=0,

Xied,, Yied,, i=1,2,...,mj=1,2,...,n Consider (r,Z)e#" (where A4 is as in
Proposition 2.6} defined by

r=(Sm:sm—la'~-aslst1atzv~"tn),

Z=(X%X%_ ... X%Y,Y,.. )

‘Since s,, = t, = 0it follows from Proposition 2.6 that there exists a(r, Z)e o/, such
that

JonX :‘.)f,m_,(X m-1)"Je X1, (Y) ), (Y,) =y (a(r, Z)),
e X)X (V)4 (%) =l 2)

»
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Thus for any u,vef , we have

(X )4 () Vit (Y1), (,) Vo)
)T X ) Vi, (Y, (1) Vo)
= {u, a(r, Z)v).

From the minimality of the two flows it follows that 3 and ' are spanned by
vectors of the form j, (Y,)---j, (Y,) Vu and j, (Y,)---j, (¥,) V'u respectively. Hence
there exists a unitary isomorphism W:5# — 5’ such that

Wi (Y1), (Y,) Vu=j; (Y)--j; (Y,) V'u

for all uex'y, t; >t,>->t,=0, Yed,, i=1,2,...,n. That W is the required
isomorphism implementing the equivalence of the two flows is immediate. [ |

Remark. Let (5, F,{j,},V) be a minimal conservative Markov flow with transition
operators T(,°). Denote by # and %, respectively the C* algebras generated by
{j(X), Xest,,0< s < o0} and {j,(X), Xe,,0 < s <t}. By the same arguments as in
the proof of Proposition 2.6 it is easy to see that for ¢; > s,i=1,2,...,n an expression
of the form F(s)ji,(X 1), (X,) F(s) can be expressed as j,(a,(t, X)) where a,(t, X)e..
In particular the map E; defined by

E(Z)=F()ZF(s), Ze&

maps # onto %&,. We may call E; the conditional expectation map from # onto &,.
If p, is a state on &/, then a state p on & is uniquely determined by

p(Z)=po(V*FO)ZF(O) V), ZeZ.

It is legitimate to call the filtered quantum probability space (%, #,, p) the Markov
process with initial state p, and transition operators T'(-,").

Let Z, denote the centre of &, for each ¢. It is possible that T(s,t) may not map
%, into Z,. In the minimal flow with transition operators T(,?), the operators
{j,(2), ZeZ,,t > 0} need not be a commutative family. However, by following an idea
in Bhat [B], we shall modify the construction in Proposition 2.4 in order to arrive
at a family of * unital homomorphisms k,:Z, — #() so that {k,(Z), ZeZ,,t >0} is
a commutative family and j,(Z) is obtained from k,(Z) by a conditional expectation.

Theorem 2.8. Let (#,F,{j,},V) be as in Theorem 2.5. Then there exists a unique
*unital homomorphism k,:Z,— #() satisfying the following:
@) for any t; >t,>--->t,=0, X, ed,,i=12,...,n, ZeZ, and ueX’,

(MK Xy Xy 0 ZX 0 X5 X ) )
if t =t; for somei :
k,(Z)l((X,l,X,z,...,X,"),u)=ﬂ,,l((Z,X,l,...,X,n),u) if t>t,,
' A((th’thﬁ'"’Xti-L’Z,Xh""9Xl,|)9u)
\ if ;- >t >t for somei; ‘ (2.10)
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(ii) the family {k(Z),ZeZ,,t >0} is commutative;
(i) j(Z)=F@O)k(Z)F () for all t>0, ZeZ,.

Proof. As in the proof of Proposition 2.4 consider a unitary element ZeZ,. Suppose
t=t; for somei=1,2,...,n. Forany X,,Y,eZ%,,i=1,2,...,n we have

AX, Xy Xy 02X X e X ) 1),
MYy Yoo Yy b ZY Y s, T )0)) =
Qu XFE(-XEZ*T (et ) (X3 Ty, 2))XE Y, ) Y, )+ ) 2ZY, ) ¥, 0D
Since Z and Z*e %, and Z*Z =1 it follows that the right hand side is independent

of Z. The same argument in the remaining cases together with the Chapman—

Koimogorov equations for T'(,-) and (iv) in Proposition 2.2 imply that k,(Z) defined
by (2.10) on elements of the form A(X (o), u) is scalar product preserving. Hence k,(Z)
extends to a unitary operator on J#. Furthermore for any two unitary elements Z,
Z'eZ,, we have k,(Z)k,(Z') = k,(ZZ'"). Once again by (iv) in Proposition 2.2, k,(I,) is
the identity operator in J#. Exactly as in the proof of Proposition 2.4 we extend k(")
to a * unital homomorphism from %, into #(5#). This proves (i).

Ift#£t,ZeZ,, Z'e%,, it follows from (2.10) by straightforward verification that

k(2)k. (2"} (X (0), u) =k (Z')k (Z) A(X (o), u)

where o = {t; > t, > --- > t, =0}. This proves (ii).
When t=t, >t,> - >t,, X, Y, €,, u, vex , we have -

MX s X X, W), kf(Z)A(Y,, Yy, Vo)1)
=</‘{.((Xt,X,2,...,X,"),u), l((ZY,,Yn,...,‘Y,"),U)>
= UK Xy s X)), G(DM(Y, Y., Y, ) 0).

Since vectors of the form A(X,, X,,, ..., X}, ) u) span the range 5, of F(t), property
(iii) is 1mmed1ate Uniqueness of {k, } follows from the mlmmahty of {j;} and property
- H
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