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We discuss the structure of the Dirac bracket in classical mechanics. We consider a generalization of
the usual Poisson bracket and show the close connection of this generalization to the Lagrange brackets
of classical mechanics. We show how the Dirac bracket appears as a particular case of the generalized
Poisson bracket, thus giving a simple reason why the Jacobi identity holds for the Dirac bracket. We
also discuss the nature of the transformations generated via the Dirac bracket and the relation of these

to canonical transformations.

INTRODUCTION

EVERAL years ago, Dirac developed a canonical

formalism for the Hamiltonian formulation of
classical mechanical systems which are subject to
constraints. The usual Hamiltonian formulation of
classical mechanics rests on the equivalence of the
Lagrangian and the Hamiltonian equations of motion;
and the passage from the Lagrangian variables of
generalized position and velocity, ¢ and ¢, to the
Hamiltonian variables of generalized position and
momentum, ¢ and p, is possible when and only when
the velocities can be expressed in terms of the positions
and the momenta. This requirement can be expressed
in two equivalent ways: either (i) the Lagrangian
equations of motion should specify all the accelera-
tions as functions of positions and velocities; or (ii)
the definitions of the momenta should not lead to any
identities among the positions and momenta alone.
The Dirac theory of constraints was intended to
handle precisely those systems that do not fulfill this
requirement, namely systems whose position and
momentum variables obey certain identities and are
therefore not independent. These identities are the
constraints referred to earlier. In such cases the lack
of complete specification of the accelerations by the
Lagrangian equations of motion manifests itself also
in ambiguities in the passage to an equivalent
Hamiltonian formulation.

As a prelude to the quantization of such systems,
Dirac proposed that the usual Poisson® brackets of
classical mechanics be replaced by a new algebraic
structure, now known as the Dirac bracket,! and that
these new brackets be made to correspond to com-
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mutators in quantum theory. If f(q, p) and g(q, p) are
two functions defined on a 2N-dimensional phase
space with coordinate variables ¢, - " gy, p; - py,
then the Dirac bracket of fwith g, {f, g} * is defined by

{figt*={f.g} = {. 0°C,{0" g}

Here, the curly brackets without stars are ordinary
Poisson brackets. The functions §%(g, p) are a certain
subset of all those functions whose vanishing expresses
the constraints. They have the important property
that, if we form "a matrix whose elements are the
Poisson brackets of the 0° with one another, then this
matrix is nonsingular. (It follows that we have an
even number of 6’s.) The functions C,,(q, p) form the
matrix inverse to the matrix of Poisson brackets:

Cm‘:{ebs BC} . (5; .

A summation over repeated indices is assumed in.the
equations above.

For systems involving constraints, the Hamiltonian
equations of motion can be expressed in terms of
Dirac brackets, in the same way in which the equations
of motion of systems without constraints are expres-
sible in terms of Poisson brackets. Before the Dirac
bracket can be introduced, however, the set of all
constraints has fo be separated into two classes,
known as first class and second class constraints. The
functions 6 are the second class constraints, and this
class is characterized precisely by the existence of the
matrix C,,. The Dirac brackets share many of the
standard properties of Poisson brackets, namely
linearity, antisymmetry, and the Jacobi identity.?
The main difference lies in the fact that with respect to
them, the functions 6 behave essentially like pure
numbers. In other words, the Dirac bracket of 6% with
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any other function is identically zero. It is only the

set of second class constraints that can be eliminated

in this way by the use of the Dirac bracket.

In this paper, we would like to study and clarify in
an algebraic way the structure and properties of the
Dirac bracket, by relating it to the other two algebraic
structures of classical mechanics, namely Poisson and
Lagrange brackets. We will also study the relationship
between the transformations generated by the Dirac
brackets on the one hand, and those generated by
Poisson brackets onthe other. The latter are, of course,
the canonical transformations of classical mechanics.
The motivation for this study is the following. The
original proof of the Jacobi identity for the Dirac
bracket consisted of a straightforward but rather
lengthy verification of the identity,? without shedding
much light on the structure of the bracket or suggesting
any simple reason for suspecting that the identity
might hold. Subsequently, it has been shown® by
Bergmann and Goldberg that one can start from a
certain continuous group of coordinate transforma-
tions in phase space having special properties with
respect to the constraints; one then finds that the
infinitesimal Lie brackets corresponding to this group
are, in fact, Dirac brackets. The associativity of the
group multiplication law then automatically guar-
antees the Jacobi identity for the Dirac bracket. Our
interest is in exhibiting in a direct and algebraic way
the reason why the Dirac bracket looks the way it
does and the reason why it obeys the Jacobi identity,
and after that examine the group of coordinate
transformations generated by it.

In Sec. 1, we briefly review the properties of
Poisson and Lagrange brackets and of canonical
transformations in phase space. This material is
completely standard and is included only for the sake
of completeness. Section 2 consists of a straight-
forward extension of Poisson brackets to what we will
call a generalized Poisson bracket. These brackets can
be related in a direct way to Lagrange brackets. In
Sec. 3, we show how the Dirac brackets arise as a
special case of the generalized Poisson brackets.
Finally, Sec. 4 contains a discussion of the coordinate
transformations generated by the Dirac brackets and
of the relation of these transformations to canonical
transformations. In this paper, we will not be inter-
ested in any particular Lagrangians or Hamiltonians,
and we will not need to make statements which are
valid only when the constraint functions vanish.
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1. POISSON AND LAGRANGE BRACKET:
CANONICAL TRANSFORMATIONSS

In the 2N-dimensional phase space of a classical
mechanical system with canonical variables ¢, « - - g,
P1° - py we define the Poisson bracket (PB) of any
two functions f{g, p) and g(g, p) to be a third function
given by
(220 i)

figXa, p) =2
thel %1 0q, dp.  Op. g,

Introducing the variables

N
w* :kzl(agk‘?k + Sy nPr) (1.2)
and the constant matrix
e = rjp.\'+1\" - 6#-!—-'\',“’ (1.3)

we could rewrite Eq. (1.1), defining the PB in tensor
notation?
v Of (w) dg(w)
g w) =V 2L
0 g)w) = v 20 2
In either form [(1.1) or (1.4)], the PB satisfies the
Jacobi identity

{hfhgd +{/gh iy +{{g. 1}, /) =0 (L3)

for any three functions f, g, 4. Using the form (1.4),
the only property of e used is its antisymmetry.

Canonical transformations can be characterized in
the following way. The PB’s of the basic variables
w* with one another have the standard values

(1.4)

{w', 0’} = &,
Using the definiton (1.4), we see that the PB pre-
serving property of canonical transformations can be
transcribed as follows:

dw™ Gw"
0w’ dw’
Thus canonical transformations are those transforma-

tions with respect to which e behaves as an invariant
secorid rank antisymmetric tensor of contravariant

type.
The covariant tensor €,, is defined as the inverse

matrix to €** and has the elements:

%P — ehv

(1.6)

EnT ‘_6;;,1'-9;\’ + éiu-l—N.w ¥ (1'?)

Given any set ¢*(w) of 2N-independent functions we
could express the w" as functions of ¢*. Then we
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