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A systematic structure analysis of the correlation functions of statistical quantum optics
is carried out. From a suitably defined auxiliary two-point function we are able to
identify the excited modes in the wave field. The relative simplicity of the higher order
correlation functions emerge as a byproduct and the conditions under which these are
mode pure are derived. These results depend in a crucial manner on the notion of
coherence indices and of unimodular coherence indices. A new class of approximate
expressions for the density operator of a statistical wave field is worked out based on
discrete characteristic sets. These are even more economical than the diagonal coherent

state representations. An appreciation of the subtleties of quantum theory obtains.
Certain implications for the physics of light beams are cited.

INTRODUCTION

Light is essentially quantum mechanical in nature.! A
light beam is therefore to be represented by an ensemble of
quantum states. For a variety of purposes it is convenient to
specify a statistical state by giving the set of correlation func-
tions of all possible orders corresponding to that state. It is
therefore of value to study representations of the statistical
state that make the calculation of correlation functions as
direct as possible. One must of course satisfy oneself that a
set of (acceptable) correlation functions defines the state
uniquely. L

By a systematic analysis of the structure and properties
of the correlation functions we can identify the “modes,” i.e.,
the natural one-photon wavefunctions, in terms of which the
given correlation function, and so the associated states, as-
sume their simplest form. Such an analysis basically brings
out the consequences of the positivity properties of the densi-
ty matrix and the Bose nature of light.” Unlike the case, say,
of hydrodynamic turbulence,’ the correlation functions for
light obey uncoupled equations of propagation,* and the in-
teraction with matter can be treated perturbatively. This fact
justifies the structure analysis of statistical states of the free
electromagnetic field and also leads to a remarkable simplifi-
cation in that we basically need study only systems with one
degree of freedom.

Correlation functions for the quantized free electro-
magnetic field are defined as expectation values of normal
ordered operator functions of the field.* The diagonal coher-
ent state representation® of the density matrix therefore leads
to expressions for these functions closely mimicking classi-
cal correlation functions defined as averages over classical
statistical ensembles.’ The diagonal representation asserts
that any density operator for a quantum system with one
degree of freedom may be displaved in the form
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p= ¢ @l e,
du(z) = (1/md *z = (1/7)d (Rez)d (Imz).

Here ¢ is a c-number weight function, the coherent states |z
are eigenstates of the annihilation operator for complex ei-
genvalues z and the integration is over the entire complex
plane.® These states taken for all z form at the vector space
level an overcomplete family’ permitting a general vector to
be expanded linearly in terms of them in more than one way.
Thediagonal representation for statistical states exploits this
overcompleteness to avoid all nondiagonal outer products of
coherent states in the above representation and so achieve a
form similar to a classical ensemble. The weight function ¢ is
generally a distribution belonging to the space Z,. Neverthe-
less with this weight function all “normal ordered” correla-
tion functions can be calculated as if the system were classi-
cal with the same weights.® It must be stressed that we have
here a description of the fully quantum mechanical system
and not just of its classical limit or semiclassical approxima-
tion. The quantum nature of the system lies in the set of
weights ¢ to be admitted, and in their properties. Such a
description is valuable in any assessment of the information
carried by a light beam.

For such a diagonal representation to exist it is neces-
sary that the set of states used be overcomplete. A set of
states constituting a complete, but not overcom p]efe, basis at
the vector space level would represent aimost all density op-
erators in a nondiagonal form. Since a system with one de-
gree of freedom already calls for a countably infinite set of
basis vectors, we do expect every complete as well as over-
complete set to contain infinitely many elements. The coher-
ent states form a two-parameter continuous infinity of states
labelled by the real and imaginary parts of z. The question
naturally arises as to whether there are “*smaller’” overcom-

® 1979 American Institute of Physics 1801



plete families of states which are yet rich enough to permit a
diagonal representation for any density operator in terms of
them. More precisely, are there smaller families using which
we can approximate any given density operator through ex-
pressions of the diagonal form to any desired accuracy?

We find that there are indeed such families which need
not even be continuously infinite. There is a great variety of
countable overcomplete sets of coherent states using any one
of which arbitrarily good diagonal approximations to a given
density operator can be obtained.® It is curious, however,
that if we spread these states “as uniformly as possible” over
the complex z-plane, then these states must be more dense
than one per unit phase cell in most parts of the phase plane.
Indeed, Planck’s constant fails to provide a natural size for
cells in phase space with respect to which the density of such
overcomplete sets may be meaningfully stated. This indi-
cates yet another subtle aspect of quantum theory.

The picture of the general density operator for a light
beam has then the following structure: The (electric) field is
expanded in terms of a complete orthonormal set of natural
modes. Under rather general conditions this is a discrete set.
All these natural modes will generally contribute to the two-
point correlation function. The density operator can now be
associated with a multivariate weight function in the excita-
tions of these modes. If we use all the coherent states associ-
ated with the annihilation operator corresponding to each
mode, we deal with the diagonal representation in its con-
ventional form, and the weight function is in general a distri-
bution in a discrete set of complex variables one per mode.
We may alternatively choose a countable overcomplete set
of coherent states to go with each mode, rich enough to allow
diagonal-type approximations to any statistical state as far as
this mode is concerned; thus any state with respect to this
mode can be approximated through ensembles over the cho-
sen discrete set of corrfplex eigenvalues for the mode annihil-
ation operator. And a general density operator for the total
field system can be approximated arbitrarily closely by en-
sembles over the collection of discrete sets of eigenvlaues for
the annihilation operators of all modes.

The plan of the paper is as follows. Section 1 gives a brief
development of the quantum mechanics of a system with one
degree of freedom mostly with a view to establishing nota-
tion and deriving certain results in a form to be used later.
Sections 2 and 3 deal with the analysis of correlation func-
tions and the unravelling of natural modes; both sections are
primarily concerned with the descriptions of those parts of a
statistical state that correspond to “large photon numbers.”
After preliminaries, Sec. 2 analyzes this aspect for a state for
which it is assumed that a correlation function of some defi-
nite order obeys a condition of coherence. Section 3 on the
other hand analyzes this aspect for a general state by a slight-
ly different means. Section 4 introduces the Weyl operators
and the associated expansions of density operators. The
problem of the diagonal representation for operators is then
identified with the one representing an arbitrary vector state
in terms of linear combinations of subsets of coherent states.
The basic tool here is the notion of a second Hilbert space
made up of operators on the original one. In Sec. 5 we make
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use of these results and those given in Sec. 1 to derive the
general discrete-discrete approximation to the density oper-
ator of a light beam. Concluding remarks and some open
problems make up Sec. 6.

1. QUANTUM THEORY OF ONE DEGREE OF
FREEDOM
A classical one-dimensional harmonic oscillator with

unit mass and frequency @ has canonical variables ¢, p obey-
ing equations of motion

g=p, p= —oyq. (L.1)
Use of the complex canonical variables
a=(wg + ip)/\/g, a* = (wg — :p)/\/ﬂ, (1.2)

allows the solution of Eq. (1.1) to be completely expressed as
a(t) = a(0) exp( — fwt), a*(t) = a*(0) exp(iwt ). (1.3)
The instantaneous state of the oscillator is given by the value
of the complex dynamical variable a, and as time advances

the representative point in the ¢ plane describes a circle. This
plane is a rescaled version of the phase space.

For a quantum system with one degree of freedom we
have two unbounded Hermitian operators ¢, p obeying the
commutation relation

lg.p] =i.
(Planck’s constant has been set equal to unity, and no special
symbols such as carets are used to distinguish operators, as
there will be no cause for confusion on this account.) This
relation can be transcribed in terms of bounded operators by
introducing the Weyl families of unitary operators '

V(7) = exp(i7p),

(1.4)

U (o) = exp(iog),

—w<or<w, (L1.5)
Then Eq. (1.4) is equivalent to
U@U(o)=U(c + o),
VOWV(E)y=Vr+1),
U(a)V (7)) = V(n)U (o) exp( — fo7). (1.6)

Setting the frequency @ equal to unity for simplicity, the
annihilation operator @ and its Hermitian adjoint a " are de-
fined, following the classical definition (1.2), as

a=@+ipV2, ot=@G—ipyVa, .7
and then the commutation relation (1.4) appears as

{a,a'} = 1. (1.8)
Coherent states’ are eigenvectors of the annihilation
operator,

a|z) =z|z), (1.9)

with the eigenvalue z being any complex number. These
states are normalizable, and when normalized to unity their
Schrodinger wavefunctions may be taken to be

@lzy=mexpl — 3 —2V2) — dz(z* — 2)].
(1.10)

No two of these states are mutually orthogonal as one has
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{z|z"y = exp( — }|z|* — §|2'|* + z*2'). (1.11)

The coherent states taken together for all complex z are com-
plete as they furnish a resolution of the identity in the form*

= f|z> Celdu)=(1/m) j|z> (eld’z.

Actually, however, they are overcomplete, as one can easily
exhibit linear dependences among them in the form of inte-
gral relationships. On the other hand any finite number of
distinct coherent states are linearly independent. We come
back to the use of Eq. (1.12) in a moment.

We can rewrite the operators (1.5) of the Weyl family in
the form

U (o) = explio(a + a*)/\/g],
V(T}:EKP[T(G——GJF)/\/E]. (1.13)

This motivates the introduction of the more general Weyl
family of unitary operators

(1.12)

W (a) = exp(aa’ — a*a)
( V2 V2

. ( a* —a? )
xexp| —mm———}»
P -
where & isany complex number. This family will be put to use
in Sec. 4. At this point we note the diagonal coherent state
matrix elements of these operators,
| W (a)|z) = exp( — L|a|* + az* — a*z). (1.15)

Because of the overcompleteness of coherent states, one
expects to be able to “expand” any state |¢) in terms of them
in more than one way. A particular expansion is supplied by
the resolution of the identity, Eq. (1.12); one has for any |¢),

9= f<z| UDIz> duz).

The particular “wavefunction™ occurring in this expansion
has certain characteristic features. If for convenience we
write

{Z*|¥> = exp( — }|z[)) S (), (1.17)

then f(z) is an entire analytic function whose behavior for
large |z| is controlled by

| f @<l [¢> llexp(5lz["). (1.18)

Using Eq. (1.10) we can relate /(z) to the Schrodinger wave-
function of |¢> through

f@=ren—32) [ wa)

(1.14)

(1.16)

xexp(— 39" + ¢V 2) dg. (1.19)
An alternative expansion possibility arises by consider
ing a suitable subset of coherent states. One choice of subset is

given by ff\/2r> for all real r. If we tentatively write an
expansion
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0 = 7 J WOV 25> dr, (1.20)
a means must be found to evaluate the weight function v(r).
One way is to take the scalar product of both sides of Eq.

(1.20) with another vector of the subset, |i\/2r’). Then use
of Eq. (1.11), (1.17), (1.19) gives:

r oliexpli=tr-FPids

—r [T wgren(— 4+ 2uryag, a2

so that

v(r) = 7' J ¥(g') exp(3¢”) expirg") dq'. (1.22)
Since the integrand may grow fast at infinity the weight func-
tion v(r) may not be an ordinary function but a distribution
(in the family Z,). Alternately we may take the scalar prod-
uct of the two sides of Eq. (1.20) with a coherent state

1'\/23), s real, to obtain
(\/53!1;‘;} = rr'“’J.w v(r) exp( — s* — r* + 2irs) dr,
so that
o) = ZPO) T 251> exp(s® — 2irs) ds. (1.23)
Yed B

The two possible expansions (1.16, 1.20), with charac-
teristically different properties for their integrands, use, re-
spectively, a two-parameter and a one-parameter continu-
ous infinity of coherent states. Instead of such expansions, if
we were satisfied with merely being able to approximate ar-
bitrarily closely to any |¢> through combinations of coher-
ent states, more economical possibilities in terms of the so-
called characteristic sets exist.!" A set S of points in the com-
plex plane is a characteristic set if we can assert that

{z|Y> =0, zeS=|y>=0. (1.24)

A set S with a finite limit point; the set of all real numbers;
the set of all imaginary numbers; any sequence {z, | of dis-
tinct nonzero complex numbers for which

Sl =
n=1
for some positive e—all these are examples of characteristic
sets. Let us restrict ourselves to discrete sets. In terms of the
corresponding coherent states |z, | we could approximate a
given |¢) to arbitrary accuracy: For each 7 > 0 we can find
an integer NV () and coefficients b, (7) such that

|19~ ez

me=|
However, for a general vector |¢) there is no guarantee that
there exists a definite set of coefficients 4, such that the
sequence of vectors

=3 bz

n=1

(1.25)

<. (1.26)

forms a Cauchy sequence converging to |¢).
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We conclude this resumé of the properties of coherent
states by quoting one more interesting example of a charac-
teristic set and mentioning a property of such sets in general.
The example, due to von Neumann and Perelomov,'? is the
set made up of points in the complex plane of the form

2= \/;(1 +im), Im=0,+1,42,- s<m(1.27)

Thus by essentially picking one coherent state in a phase
volume smaller than a unit cell in phase space we get a set
with which any |#> can be approximated arbitrarily closely.
The property of characteristic sets we have in mind is this: if
from any such set § any finite number of points are removed,
the remaining points still make up a characteristic set.

2. CORRELATION FUNCTIONS AND NATURAL
MODES

The free electromagnetic field may be characterized ei-
ther by the transverse vector potential A(r,t) or by the elec-
tric field E(r,t), both of which are transverse and gauge in-
variant. The interaction Hamiltonian of an electron with the
field" is expressed in terms of A directly, so that theoretical
expressions relating to experiments based on photoelectric
detection naturally involve A also." We shall thus choose A
as the basic variable for defining correlation functions,
though one can always pass to the variable E by time differ-
entiation. The positive frequency part of A(r,t), sometimes
called the analytic signal,'** consists entirely of annihilation
operators and has the time dependence

AT N(r,t) = e~ @ A (x,0), Q.1

where & is the (positive) frequency operator defined by the
wave equation '

(V2 4+ GHA(@,0) =0, @ =(— V) 2.2)
The transversality of A ¢ 7 is expressed by
VA (r,e) = 0. 2.3)

Therefore, there are only two independent components to
A ), In momentum space these are the components ortho-
gonal to the momentum direction, and may be chosen to be
the two circular polarizations denoted by a two-valued po-
larization index €. Therefore, we may write for the vector
potential,

A=V (ret) = Vxe).

When it is not essential to indicate the polarization index €
explicitly, it will be combined with the position vector r into
a single symbol x; and formal integration over x will mean a
sum over € plus ordinary integration over space. The time ¢ is
not combined into x in this way. In fact in all the following
analysis we shall be concerned only with conditions at one

instant of time, and time variables 7 will be dropped entirely.

24

Let some statistical state of the field be given, and let the
corresponding density operator be p. The general (m,n) or-
der correlation function is defined as the expectation value of
the normal-ordered product’® of m negative frequency (cre-
ation) field operators and # positive frequency (annihilation)
field operators:
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r{m‘n)(xlst:“‘fx,n;yly,VE!'“!yn)

= < V(xl)T"' 4 (xm)T V(yl)"' V@n))

=Tr[V @)V @) pV ()" (x,)"]. 2.5)
Here, m and n are nonnegative integers, and for given values
of these, the correlation function depends symmetrically on
the m x’s and also on the n p’s. For conciseness, we may write
I (x.p) for the above correlation function; the super-
scripts imply that x actually stands for m arguments, each
consisting of a position vector and a polarization label, etc.
As seen by inspection of Eq. (2.5), the following relation
holds,

L px) = [Fxp)]*, 2.6)

Further, for m = n, the “matrix” I" ™ (x;y) with continu-
ous matrix indices x and y is nonnegative,

J X +dX py Ap i@y f X, P D) £ (D100,0)

>0. (2.7)

More generally, we may view the entire collection

" "™"(x.) as constituting a giant matrix I" in which 1" ™"
stands in the (,n) position when I is partitioned." If simi-
larly f'is a giant vector at whose mth position stands a sym-
metric function f,,(x,,...,x,,) of m x’s, then we may identify I
as a nonnegative matrix according to

rrr= §

mn =10

deI-.-dx’*idyl"' dynfm(xl'"xm)

X *I ™y £ pie+p,) 20, (2.8)
we now wish to study in more detail some general properties
of these correlation functions, especially for “large” orders.

For this purpose we introduce the family of “optical
discriminants” A "(x;y) according to

A ) =L ()

o F(m.n)(x;y) [“(f!‘m)(y;x)_ (29)

These are real functions of the indicated variables, and the
essential point in the definition is that these are nonnegative
quantities. In fact, in terms of the operator combination

G (m,n}(x;y) e (-“.:I)(y;y)'{/(x!)___ V(xm)
= 1’“U*”")(y;x)V(y;)"'V(yn)s (2' 10)
we have
A (rrr.rr}(x:y)r (",-’?)O,;y)
= Tr(G " (x)pG ™™ (x») >0, (2.11)

so that (provided I" ") does not vanish identically) it fol-
lows that

A e 0.

Another expression of this result can be given in terms of the
“coherence indices.” The coherence index of order (#1,1) is
defined to be

(2.12)
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§ ") = I ey)/ [T )l (y) 1. (2.13)
Then Eq. (2.12) says the same thing as
0<|S "™ M(xp)|<1. (2.14)

Let us now have a statistical state p for which it is given
that for a certain pair of integers (m,n), the inequality in Eq.
(2.12) becomes an equality for all choices of x and y. (We
assume that " is not identically vanishing, and without
loss of generality set m>n.) Equivalently, p is such that the
coherence index of order (#1,7) is unimodular for all
arguments:

|S{.er:}(x;y)| = 1. (215)

Two interesting questions arise: (i) what can be said about
the other correlation functions 77", (ii) what is the form
of the most general p that leads to Eq. (2.15)? We examine
these in turn, basing the analysis just on positivity of p and
the Bose nature of V. The characteristic differences between
the cases m = n and m > n will be pointed out at the appro-
priate places.
As pointed out elsewhere'® that the coherence indices
-have a maximum modulus of unity may be seen as a conse-
quence of Schwarz’s inequality as applied to the m-fold and
n-fold products of the field operator. The coherence index
may be viewed as a generalized visibility index. In the analy-
sis of Ref. 16 it was concluded that unimodularity of A (n,n)
implies it for all S (rn’,n") with max(m’,n")=n. We shall see
below that an even stronger conclusion can be derived from
the unimodularity of S (im,n) with m=£h.
The vanishing of 4 "(x.y), combined with Eq. (2.11)
and the fact that p is nonnegative, leads to the following
operator condition on p:

Vx)~V(x,)p = [T "px)/ T ")V @)V (1) p-
\ (2.16).

This is to be satisfied for all independent choices of the x’s
and y’s. This is easily exploited to give the relations

F(m,n)(x;y) T (m.n)(x;y:)r.(n.n}(v-;y)/r(n,n](y;yr)
= LM ex DD (x' ) /P (x'sx'), (2.17)

where again all arguments may be chosen independently.
Stated in terms of the coherence indices, these relations are

Sfrn n](x‘y) S(m ")(x,_}i )S(n n}(y J)

= S ex) S ('), 2.18)

In boths Egs. (2.17) and (2.18) we have two independent
relations only if 7 > n. These functional equations imply
that each of the three coherence indices has a separable de-
pendence on its two sets of arguments:

S{m,u)(x;y) - S{m](x)/s (n}(y),
Sy = S /S M),
an,n](y;yr) o S[n)(y)/sh:)( J?'), (2‘19)

We have here a symmetric function S ™ of m arguments and
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another S of n arguments, the two coinciding for m = n. -
Then Eq. (2.15) shows that S and S ™ may each be taken
to be unimodular, which in turn leads to both § ¢ and

S =" being unimodular along with § ™.

The result (2.19) can now be fed into the operator con-
dition (2.16) on p, and this then takes the form

V(x)V (x)p = [a™@)/a™(p)IV G-V @) p.
a(m)(x) — [r (:ri,m)(x,x)J 12/8 (m)(x)’
a(n)( y} = [!‘(n.n)(y,y)] :xzfstn)( y)_

Once again we note that we have two distinct symmetric
functions @ ‘™ and a@ “” when m > n and just one when

m = n, and the operator condition holds for all choices of x’s
and p’s. We now exploit the fact that any two ¥’s commute:

V(E)V(xl)'"V(xm)p = V(xl) V(é_ )"' V(xm)p!
ie,
VENV (3)V,)/a™(»)]p

= [ HE Xoim  Va " Nximiiax, ]

(2.20)

XV &)V (y)V @,)/a™(9)] p. (2.21)

Since the right-hand side must be independent of x,, ,...,x,, , it
follows in the first instance that the dependence of @ " on its
first argument must separate from its dependence on the
remaining ones; but since @ ™ is a symmetric function, it
must factorize all the way. Thus we get the result?’

a(x) = C,, u(x,)-u(x,,), (2.22)

where we assume u(x) is a normalized “mode” function, and
C,, isaconstant. By a parallel argument, for m > n, we have

a(y) = C, o(p)-v(r,), (2.23)

but it is easy to show that v must coincide with z. Assuming
this done, the operator condition (2.16), or equally well
(2.20), on p has the form

V(xi)"'V(xm)p T [Cm u(‘xi)'"u(xm)/cnu(yl)"'“(yn)]

XV(y)-¥V(,)p. (2.24)

To fully exploit the fact that this must hold for all x and y, let
us introduce the annihilation operator a for the mode #, and
its adjoint as

a= J,(d.x) u*(X)V(x), a'= fdx u@x)V(x). (2.25)

Then Eq. (2.24) is equivalent to three conditions on p:

Vx)-V(x,)p=ux)u(x,)a” p, (2.262)
V(yl)"'V(y )P - H(VJ)'"H(yH) anp’ (2-26b)
m e (Cm/cu)a ;9 (226':)

For m = n, the first two conditions coincide while the third
is vacuous. We shall see later that for m > n (2.26¢) is a very
strong condition on p.

We have demonstrated thus far that Egs. (2.26) are nec-
essary consequences of Eq. {2.15); if the latter is valid, there
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is séme mode function #(x) with associated operator a, and
constants C,,, C,,, such that Egs. (2.26) are obeyed by p. The
converse is also true: From Egs. (2.26) we can obtain Eq.
(2.15). We easily get the results, given (2.26):

") = u(x)*-u(y,) Tr(@'pa"™),
i orty = w(x;)*+ulx,,) Tria"pa™),
Ty = u( p)*-uly,) Tr(a"pa'™); (2.27)

and from here, remembering Eq. (2.26c), the unimodularity
of 5" follows. Moreover, the factorizability of all correla-
tion function """ for m',n’>n is an easy consequence of
Egs. (2.26) '*:

™ (xp) = g u(x ) *-u(y,),

g™ = Tr(@"pa™), (2.28)
In particular, if the optical discriminant 4 '’ vanishes so
that the two-point correlation function I *"*'(x;y) factorizes,
then all correlation functions, including the ones I"™® and
9™ will factorize in terms of just one mode function #(x),
and the statistical state may be said to be “mode pure.” This
is not necessarily a coherent state, but it will be so provided

Tilapay =g’ (2.29)

m'n'=n.

for some complex z and all m,n=0.

The second part of the analysis concerns the most gen-
eral form p can have if Eq. (2.15) is to be satisfied. We know
that we must find the most general solution to Egs. (2.26); of
these, Eq. (2.26a) is a consequence of Eq. (2.26b) if m > n, so
we need solve just Egs. (2.26b) and (2.26c), which we write
again for definiteness:

V(y)-V ) e =u(y)-uQy,)ap, (2.30a)
a”p = (C,/C,) a"p. (2.30b)

The case m = n [when (2.30b) is empty] is taken up first, the
case m > n later. To begin with, we recall the general form of
p, given that it is Hermitian, nonnegative, and of unit trace,
its eigenvalues p; form a discrete set summing up to unity. If
the corresponding eigenvectors are |¢; >, we have:

p= zpj|§b)><¢_;|’ P_,-)O, ZPJ:I'

There are, naturally, no terms here corresponding to zero
being a possible eigenvalue of p; the [¢/; > will be an orthonor-
mal set which is in general not a complete one but can always
be extended to a complete orthonormal set. Now it can be
seen that even if the vectors | ¢, > are not pairwise orthogonal,
the expression in Eq. (2.31) yields an acceptable density ma-
trix provided only that the numbers p; remain positive, sum
up to unity, and each ¢, > is of norm unity. In this more
general situation, we do not interpret the p; and |1_£rj-> as ei-
genvalues and eigenvectors of p, but interpret p as being a
convex combination of the pure state density opera-
tors|¥; > (i, |. It follows that we need find the most general
solutions to Egs. (2.30) assuming p to be as given in Eq.
(2.31) but need not insist that the |¢; > be pairwise ortho-
gonal. But the fact that the constants p; in Egs. (2.30) are
positive is enough to show that the operator conditions de-
veloped above for p must in fact be satisfied by each (¢, >; itis

(2.31)
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not necessary, in order to make this statement, that (2.30) be
an expansion of p in terms of its eigenvalues and eigenvec- |
tors. Specifically, each of Eqgs. (2.16), (2.20), (2.24), (2.26),
and (2.30) must remain valid if |¢/; > replaces p in them.

For the case m = n, we choose any normalized mode
function u and ask for the most general vector |¢; > obeying

Vx)V (x,) ) = u(x)-u(x,,) a”|>. (2.32)

If u(x) is chosen as the first member of a complete orthonor-
mal set (&,0,,0,,-) and the field V' (x) is expanded as

V(x) = u(x) a + Yv,(x) b, (2.33)
then the content of Eq. (2.32) can be stated in words thus:
| must be annihilated by every product of 7 annihilation
operators provided at least one of them is one of the b,,. |¢>
must be of the form

[¥> = [F @)+ P~ P[V(x)]1}|0),

where Fis an arbitrary function of its argument and P¢" — "
is a polynomial functional of the creation field VT of degree
not more than (;m — 1). We may take any number of such
(normalized) vectors |1, >, choose any positive constants p;
summing to unity, and put them into Eq. (2.31) to get the
most general statistical state p for which the (m,m) optical
discriminant vanishes identically. The quantities to be cho-
sen freely are the mode function , the functions F, the func-
tionals P{™ ~ ", and the ;.

(2.34)

Forthecasem = n + N, N>1, we choose again a mode
u(x) and a complex number z,

e A, (2.35)
We then look for the general solution | to

V(x)=V (x)|> = ulx)--u(x,) a"|¢>, (2.36a)

a¥(@"|¢y) =2V (@" ). (2.36b)
Asin Eq. (2.34), Eq. (2.36a) is solved by

[¥> = {F(a") + P~ PV ()]0, (2.37)

but now the function F'is severely restricted by the remaining
condition (2.36b). In fact, apart from the freedom to add a
polynomial of degree (n — 1}ina T (which could be absorbed

in P, we find
N—1 o
F(ah = E B, exp(e*™ Vza"), (2.38)
r=10

where 3, are arbitrary constants. Thus the acceptable states
[t are largely determined in terms of coherent states as
defined in the last section, with respect to the mode u:

|u9> _ \Z_ Iﬁ ,r|zezm'r/N >u He plr= l)[ V(x)]f|0>. (2_39)
r=0

Once again taking several such (normalized) vectors |#; >
and choosing g, , having first picked a #(x) and a z, we get via
Eq. (2.31) the most general statistical state with unimodular
coherence index of order (m1,#).

3. ENUMERATION OF EXCITED MODES

In the previous section we discovered the general form
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of a statistical state for which it was assumed that some defi-
nite optical disctiminant 4 "™ vanished identically. The
parts of p corresponding to “large” (greater than or equal to
n) total photon numbers was to a considerable extent deter-
mined, and was seen to depend on just one single mode func-
tion u(x). Now we outline a method of directly analyzing
these components of p without assuming anything about the
optical discriminants. As is to be expected, the large photon
number description of p will involve more than just one
mode function in general.

The total photon number operator, &, is given in terms
of the potential A and field E as

N= — 2fjd A ()T EC(r). @3.1)

Since E'"'isiw times A", where @ is the frequency operator,
we can rewrite V in the form

N= |dxdy V(x)'H(xyp) V(p), .(3‘2)

where we have denoted the Fourier transform of 2w by

H (x.), and the integrations include polarization sums. Let
us now start with the (n,n) order correlation function
r®(xy),

[ "P(xy) = Te[V ()= (p,) pV (e)'V (x,)1].
(3.3)

Since the trace is unchanged by cyclic permutation of its
arguments, and since any two ¥’s (¥ 's) commute, we can
use Eq. (3.2) to “contract” one ¥ and one ¥ ' and produce an
NN at the proper place within the trace:

jH(x,,y,) I "(xp) dx,dy,

= Tr[pV ()" V (x,) NV ( )V (3]
= Te[V ()Y (3N —n + D pV (x)t=F &), (3.4)

Carrying out this operation (n — 2) times more,.and using
cyclic invariance, we find:

fH(x'&l)"'H(xn— 1V — 1) F("."){x;y) dZ|dy|'“dI“ S | dyﬂ -1

=Tr[V ()N — DN —2)-(N —n+ D)pV (x,)']
=Tr[V (p,)oV (x,)'],

o=V W=1DW=2)N-n+1)

XpV (N = 1)N = 2)-(N —n + 1). (3.5)

The operator o, like p, is Hermitian and nonnegative; all
states in p with at most (n — 1) photons drop out in &, while
states in p with n or more photons survive with positive nu-
merical factors. Thus by this process we obtain for """ an
auxiliary two-point function,

D (xy) =TV oV (x)7], (3.6)
which retains the positivity and hermiticity property but in-
volves only n or more photon contributions top. Let us then
make an eigenvector decomposition of &:

Pxy) = 3 Au0*u (), A4,>0 3.7
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Only the strictly positive eigenvalues A, of @ and the corre-
sponding eigenfunctions appear here; the functions u, form
an orthonormal set which if not complete can be extended to
a complete orthonormal set. Let u,, v = 1,2,-- 0, be the lat-
ter complete set, and let the subset of v values covered by the
sum in Eq. (3.7) be denoted by x. Make an expansion of Fin
the basis ..,

V= S ua,

v |

Then Eq. (3.7) may be written
S 4,0 u(NTra0e) = TAu4ur), (.9

(3.8)

oy =1 VEK
that is,
if u=~v or véx,
Tr(a, 0af) = | | ifﬁ:m : (3.10)

Because of the basic nonnegativity of o we may conclude
from here that

a,0=0 if u & (3.11)

Moreover, since the most general structure for o is of the
form

o= Yoléy<gl. >0, (3.12)
J

with the (normalized but not necessarily mutually ortho-

gonal) states |¢, ) having at least # photons, the condition

(3.11) passes over to each [, >,

a,lé>=0 if uéx. (3.13)

For any given n, this analysis tells us that only the eigen-
modes corresponding to nonzero eigenvalues of the auxiliary
two-point function @ can be excited in the contributions top
having at least n photons.'® If u,,, vex, is less than a complete
set, this is nontrivial information concerning p. The general
solution to Eq. (3.13) is '

4> = F>"(a",vex) |05, (3.14)

where F*" is a possibly infinite polynomial in the indicated
operators with the lowest degree terms being at least of order
n. Taking several p solutions of this form we can get the

general structure of ¢ and then of p remembering Eq. (3.5):

p == ZPJ|¢’;> <¢’jli PJ,)O, zpj= ]_"
4 7

¥ = {Fa,vex) + P{"~ V[V (x)"1}]0). (3.15)

We assume the [¢; ) are unit vectors. Pj." = Dare polynomial
functionals of degree no more than (# — 1)in ¥ (x) ; and the
F; are arbitrary functions of the indicated operators. We
note that this result is the generalization of the results of
Section 2, with the single mode u being enlarged to the set
u,, vex. The correlation function 7" in this case involves
the distinguished modes u,,, vex:

Foey) = S u, (x)*eu, (v,) 8",

fLLVER

(3.16)

But it is immediately obvious that a similar restriction to the

g u:v) = Tr(a, -~a,_pa),--a),).
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set « occurs in all """ for m',n’ >n. Tt is as if we may
ignore all modes except those present in Eq. (3.7) for com-
puting the “sufficiently high” order correlation functions.

Additional information on the correlation functions be-
yond (n,n) allows repetition of this analysis. We now supply
the auxiliary @ (x,p) with an index n. Then the >» photon
parts of the statistical state p can involve only the eigen-
modes of @, (x,y) (corresponding to nonzero eigenvalues!).
If we have a sequence of auxiliary functions @, , @, - with
ny, < My < -+, then we have a corresponding sequence ofsets of
eigcnmodes [, (x),vek,], [u, (x),vex,], with the inclusion
relations «, Dx, D --. The higher the order of the correlation
function considered, the fewer the contributing modes!

4. SECOND HILBERT SPACE AND COHERENT
STATES

Given a Hilbert space 5, we can induce a vector space
structure with an inner product among the linear operators
A,B,- on by defining

(4,B) =Ti(4 'B). (4.1)

So the operators of Hilbert-Schmidt class with finite values
of Tr(4 T4 ) constitute a second Hilbert space %" based on
#°. In particular we may choose 7 as the representation
space of the (unbounded) operators a,a ' or g,p associated
with a quantum system with one degree of freedom.

Let 4 be a general operator on #°. We define a set of
four “superoperators” which are operators on .#” and whose
effects on 4 considered as a vector in %" are given by:

oA =(ad—A4a)V2, &td=@a'4—-A4a/V2,
e Nl Aa*)/\f =i + 40/ V2.
(4.2)

These hermiticity relations are in accordance with the defini-
tion (4.1) of the scalar product. By virtue of their definitions
it follows that

[ ]] = [&al] =1,

[, ;] = [, ]] =0. (4.3)
Hence these operators correspond to a quantum system with
two degrees of freedom.* :

The simultaneous coherent states corresponding to it,
and &/, are supplied by the outer products of the coherent
states in

*

Z, — 2
‘;‘[1|Zl><22| =

|2,> <z,

+
=122

12> <al: (4.4)
In particular, .

|2zl = V2 Im 22 (G,

o> (2| = V2 Rezlz> |, (4.5)

Hence from among all the coherent states |z, > {z;| in J7,
those with z, = z, = z correspond to pure imaginary eigen-
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values for both .7, and .o/,. By a straightforward generaliza-
tion of Eq. (1.20) to two degrees of freedom, we may now
expand a density operator p on & considered as a vector in
%" in terms of the imaginary eigenvalue coherent states,

p=/m[b@ 46

¢ (z) is the (distribution) weight function analogous to v(») in
Eq.(1.20). Todetermine ¢ (z) by an equation similarto (1.22)
[or (1.23)], we must get the description of %~ by Schrédinger
wavefunctions like {(g"). We define

0 = (& +aNWNV2, P= —i(t,—aD/V2,

0. = (s + D/V2, Po= —i(ts— /N2, 47)
On a general A% these act as
1
QA= —=gqAd], PA= — P»A}
\/2 \/2
Qd= —=[pd], A= ——{q,A} (4.8)

\/2 V2

and the only nonvanishing commutators among them are

[Q!:PI] = [Qz:P:] =, (4-9)

The (generalized) “eigenstates” of O, and Q, turn out to be
the Weyl family of unitary operators W (a) defined in Eq.
(1.14). If @ is written as » + is, we find:

O W(r+is)=rW(r+1is), @ W(r+is)=sW(r+is),

P W(r+is)= iQD (r + is),
@r

P, W(r+is)= ;_é' W (r + is),
s

(W (¥ +is), W (r+is)) = 78 — nNé(s’ — s). (4.10)

These operators have general coherent state matrix elements
which may be viewed as a generalization of Eq. (1.10),

W (@)|z) = [|2><z|, W (@)] = exp(— §|a|* — §|2|°

122 4 az'* — a*z 4 z2'%). 4.11)
With the operators W (@) forming an “ideal” basis for
%", any A% and in particular a density operator p has an

expansion
= Jr (a) W(a)d ‘a

with the “Weyl weight” playing the role of ¥(q’) in Sec. 1.
The distribution ¢ (z) obeys the integral equations'®

4.12)

j¢ @) exp(— |z —2'[)d’z

= 'rrjt (@) exp( — i|a|* + az'* —a*z)da, (4.13)
which generalizes Eq. (1.21) and arises by taking the diag-
onal coherent state matrix element in Eqgs. (4.6) and (4.12)

and using Eqgs. (1.11) and (1.15). The solution

b)) = J t(@) exp(lal’) explaz* —a*2)d e (4.14)
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is the analog of Eq. (1.22). We can also make use of the
properties of coherent states to derive the known result'

o) = ifr"l J< — Zlple’s exp(2’

+zz'*% —z¥2)d*Z, (4.15)

which is in the pattern of Eq. (1.23).

5. DISCRETE DIAGONAL REPRESENTATIONS

The preceding section has shown that the problem of
the diagonal coherent state representation (4.6) for a density
operator is in essence the same as the problem of expanding a
vector |¢ in terms of a subset of ““pure imaginary” coherent
states as attempted in Eq. (1.20). But for vectors we know
that even more economical subsets exist through which arbi-
trarily accurate expansions can be made. We can thus com-
bine the properties of these characteristic sets recounted in
Sec. 1 with the approach of Sec. 4 to get new diagonal ap-
proximations for density operators.

We begin with the one-degree-of-freedom case. Since by
Eqg. (4.5) “*diagonal” outer products of coherent states corre-
spond to pure imaginary eigenvalues for .2/, and .&,, we
proceed as follows. We pick two discrete characteristic sets
{f'\/Zy,,} and [ — V2 x,, !, both consisting of points on the
imaginary axis, so that x,,, and y, are real. Then the double
sequence of points {r‘\/2 Y — V2 X,,} is a characteristic
set'" in the product of the complex plane by itself. Conse-
quently the simultaneous coherent states of &/, and &/, with
respective eigenvalues V2 Vr — V2 x,, give a set of ele-
ments in % through linear combinations of which one can

approximate any member of %" arbitrarily closely. But by
Eq. (4.5) these elements of %" are just the elements

|2mu> <zmrl | L4

Consequently we can approximate any density operator ar-
bitrarily closely (in Hilbert-Schmidt norm!) by a discrete
sum

Zinn = X + e 5.1

2 BrmnlZmn <Zmal- (5.2)

m,n
The number of terms needed and the coefficients ¢,,, to be
used both depend on the desired accuracy of approxima-
tion." In the case with one degree of freedom and one opera-
tor a, the operator (5.2) describes an ensemble over the
preassigned set of values {z,, | for @, with the real coefficient
é,., being the quasiprobability associated with the realiza-
tion z,,, for a. Provided the trace property is maintained in
these approximations to p, the @, must add up to unity but
in general the nonnegativity of ¢,,, cannot be guaranteed;
thus Eq. (5.2) is not in general, a convex combination of the
pure state density operators |z, > {z,.. |.

Since a set of points with a finite limit point does form a
characteristic set,'' we can have approximations of the above
type with all but a finite number of points z,,, inside one
phase cell! In certain respects this would mimic an ampli-
tude-stabilized (mode-pure) classical light beam, but every p
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could be reached this way. The quantum aspects are hidden
in the rapid variations of ¢,,,, asz,,, varies inside the chosen
phase cell and also as the degree of approximation is
improved.

At the other extreme, we can try to choose the set {z,,, }
as uniformly spread out as possible over the complex plane:
the basic limitation now comes from the condition (1.25) for
a characteristic set if finite limit points are to be avoided.
This condition is to beapplied both to {x,, | and [y, ]. Let us
then demand that

2 mlTF t=mw B T, (5.3)
a=1 n=1
for some positive €, and €,. It is clear that x, and y, cannot
depend linearly on n, since these series would then converge
for any €,,6,>0. Among fractional power dependences, pos-
sible candidates are, for example,

PurXa~n", a<i. (5.4)

This means that the number of points of the set {z,,, | con-
tained in a square of side L is approximately L >’ which is,
for large L, larger than L 2. In this sense, one needs much
more than one point for phase cell to have a set of pure state
density operators |z,,, > <z,,, | built from coherent states,
with combinations of which any p can be approximated.

Formally, representations of the type (5.2) can be ex-
tended from one degree of freedom to the entire field. The
operator V (x)is expanded in some complete orthonormal set

g (X),
Vix)=3 u,(x)a, (5.5)

For each mode @, we choose some mesh of points z/*) in the
complex plane in the manner described for one degree of
freedom. Then a density operator g for the whole field can be
approximated through expressions of the form

> e ({man DI, 1> <25, 1 (5.6)

|m.n|
with
aﬁ!z(a) n > = [z(ﬁ) f | {ZE:::J"'} >‘ (5?)

M, Mty

We interpret (5.6) as an ensemble over the preassigned set of
realizations of V' (x) given by

Viaimn}) = Yz, | ua(x). (5.8)

This is of course a c-number function of x. As in the one
degree of freedom case, the quasiprobability ¢ ({m,n}) that
¥ (x;{m,n}) is realized is real but may be negative. Even the
term quasiprobability is used only figuratively since two co-
herent states are never orthogonal!

6. CONCLUDING REMARKS

In this paper we have studied the properties of statisti-
cal states describing general light beams from two points of
view. On the one hand we have shown how from the analysis
of coherence functions one can systematically look for sim-
plicity in the large photon number sectors of a given state.
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On the other hand, we have given new understanding of the
diagonal coherent state representation, and in the process
discovered new representations embodying very subtle fea-
tures of quantum theory.

The structure of a state for which the coherence index of
order (m,n) is unimodular is essentially determined, for pho-
ton numbers greater than or equal to n, by a single mode
function and a sequence of constants. The striking differ-
ences between the cases m = n and m > n are worth pointing
out. In the former, for instance, even if one knew that m
photon states were present in p, nothing definite could be
said about m + 1 and higher photon states; they may or may
not be present in p. If m > n, on the other hand, the presence
of m photon states in p guarantees the presence of states with
arbitrarily large photon numbers, all in the mode u(x) of
course. This is because the relevant parts of p are determined
in terms of coherent states which are superpositions of states
will all possible numbers of photons.

Turning to the theory of discrete diagonal coherent
state approximations to p, we would like to make two com-
ments. The first is to clarify the situation concerning the use

of a characteristic set of coherent states distributed “‘as uni-

formly as possible” over the phase plane. At the level of
making approximations to vectors through linear combina-
tions of coherent states, the example due to von Neumann
shows that by taking one coherent state per unit phase cell
we get a characteristic set. In other words, the set of points

2y = ‘\/?(1 +im), Im=0+1, 42,

is a characteristic set in the complex plane, and any |¢) can
be approximated through combinations of coherent states
|z; ., >- But the problem of the discrete diagonal approxima-
tions to operators through forming linear combinations of

|zﬂﬂ1’> <ZJH’I |

is different. Here, the real and imaginary parts, x,, andy, , of
Z,,, must be such that the set (x,, ,», ), essentially, must be
characteristic in the product of the complex plane by itself.
Equivalently, {x,, | and {y, ] must each be a real character-
istic set, and this precludes {z,,, | being distributed uniform-
ly over the complex plane!

The second comment concerns the fact that one must be
content with arbitrarily close approximations to p but may
“never quite get there.” To us this seems to point to the very
thin line dividing “definition” and “‘existence.” One can well
imagine being completely innocent of the theory of distribu-
tions as yet conceiving of the possibility of the diagonal re-
presentation in its conventional form, Eq. (4.6). Faced with
equations such as (4.13), (4.14), and (4.15) to find the weight
function @, one would be forced to say that in general no ¢
exists obeying these equations, but that with “good” func-
tions ¢, in the formula (4.6) one can produce density opera-
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tors p,, that are “arbitrarily close” to any given p! Indeed,
distributions may usefully be thought of in this way. It seems
that the situation is qualitatively quite similar with the dis-
crete representations based on characteristic sets.

An interesting practical problem is to find ways of com-
puting the coefficients ¢,,,, in the discrete diagonal approxi-
mation (5.2) to a given p for a desired accuracy. One may try
togetd,,, fromaknowledge of the Weyl weight ¢ (@) of p, but
the technique of Fourier transformation seems not useful in
this context. This seems to be a genuinely difficult problem;
we have only succeeded in establishing the existence of these
representations.
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