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AN INDEX THEORY FOR

QUANTUM DYNAMICAL SEMIGROUPS

B. V. RAJARAMA BHAT

Abstract. W. Arveson showed a way of associating continuous tensor prod-
uct systems of Hilbert spaces with endomorphism semigroups of type I factors.
We do the same for general quantum dynamical semigroups through a dilation
procedure. The product system so obtained is the index and its dimension is

a numerical invariant for the original semigroup.

1. Introduction

Powers [Po1] initiated an index theory for E0-semigroups. By definition E0-
semigroups are continuous (weak operator topology) semigroups of normal ∗-endo-
morphisms of the algebra of all bounded operators on a separable infinite dimen-
sional Hilbert space. The theory has seen considerable progress with contributions
of Powers and his co-authors ([Po1],[Po2], [PR], [PP]), Arveson [Ar1, Ar2, Ar3,
Ar4, Ar5, Ar6, Ar7], Price [Pr], and others. It is the work of Arveson (especially
[Ar1]) which concerns us most here. He is able to associate a product system with
every E0-semigroup in a canonical manner. By a product system we mean a family
of Hilbert spaces {Et, t > 0}, satisfying

Es+t ∼= Es ⊗ Et, s, t > 0,

in an ‘associative’ way with some additional measurability conditions. Earlier such
systems played a decisive role in the famous work of Araki and Woods [AW]. The
paradigm examples are got through symmetric Fock spaces (see [Gu], [PaS]). How-
ever it is known that there are E0-semigroups [Po2] which lead to more intricate
product systems. The index of an E0-semigroup is defined to be the isomorphism
class of the associated product system. This way the index becomes an invariant
for the semigroup. With some further investigation [Ar1] it is possible to obtain a
numerical invariant by defining a ‘dimension’ for the product system. Moreover it
is possible to classify E0-semigroups more or less completely using product systems
[Ar6].

Here the scope of this index theory has been enhanced considerably to admit
more general semigroups. Fix a complex separable Hilbert space H0 (It could even
be finite dimensional.) Let T = {Tt, t ≥ 0} be a semigroup of unital, normal
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completely positive maps on B(H0). With every such semigroup T we are able to
associate a family P = {Pt} of Hilbert spaces satisfying

Ps+t ∼= Ps ⊗Pt, s, t > 0.(1.1)

The separability of these Hilbert spaces can be ensured along with fulfillment of
other technical conditions to have a product system in the sense of Arveson under a
mild regularity assumption of path-continuity (see Definition 5.1, Proposition 5.2,
5.3) on the semigroup.

The constructions are based on weak Markov dilations ([Bh], [BP2]) of quantum
dynamical semigroups (semigroups of contractive completely positive maps on a
C∗-algebra). This theory allows us to construct a family j = {jt} of (non-unital)
∗-homomorphisms, jt : B(H0) → B(H), for some Hilbert space H containing H0.
We see that up to unitary isomorphisms the range of jt(I) (denoted by Ht] ) splits
as H0 ⊗ Pt, with {Pt} satisfying (1.1). Finally using the family {Pt} we are able
to ‘dilate’ T to a semigroup θ of ∗-endomorphisms of B(H) (Theorem 4.7). This
semigroup is uniquely determined up to unitary isomorphisms. We define the index
of T by simply taking it as index of θ. It is seen to be anti-isomorphic to the product
system P obtained earlier. Here we emphasize that the index is important for us
not only because it gives an invariant for the semigroup but also it provides a
factorization of the dilation.

If T happens to be a semigroup of endomorphisms then its dilation is itself. That
is, we have H = H0, and θ = j = T. Here the theory matches with Arveson’s work,
except for the method of constructing product systems. A notable improvement
being that we obtain all the constituent Hilbert spaces of the product system as
subspaces of a single space, the dilation space. Moreover the orthogonal projections
onto these subspaces form a strongly continuous family. Whereas in [Ar1] the
necessary Hilbert spaces are obtained by imposing a somewhat artificial inner-
product on some subspaces of B(H). (So in that setting there is no compatible
inner-product between vectors belonging to two different subspaces.)

The product system P describes a multiplicative structure of the dilation.
Roughly speaking there is also an additive structure when we deal with general
quantum dynamical semigroups. Actually, we obtain another family of Hilbert
spaces {Nt}, now decomposing Ht] as H0 ⊕Nt, and satisfying

Ns+t ∼= Ns ⊕ (Nt ⊗Ps).(1.2)

A detailed study of such systems is yet to be undertaken.
The associated product systems become trivial (i.e., Ps ∼= C ) and hence (1.2)

becomes completely additive when we deal with quantum dynamical semigroups
implemented by semigroups of contractions. At the other extreme only the product
structure is non-trivial (i.e., Nt ∼= {0}) for semigroups of endomorphisms.

The paper has been ordered as follows. We begin with the definition of quantum
dynamical semigroups and give a brief summary of the results we are going to need
from the dilation theory in Section 2. Discrete time quantum dynamical semigroups
are dealt with in Section 3. Here dilations have been constructed quite explicitly.
Naturally enough we obtain ‘discrete product systems’.

In subsequent sections we consider conservative (unital), normal, quantum dy-
namical semigroups in continuous time. The theory is in complete parallel with
the discrete time version. The basic constructions of spaces P ,N with associated
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unitary maps are in Section 4. Main results being factorization of j, and the ex-
istence and uniqueness of the endomorphism semigroup θ. (Theorems 4.5–4.8). In
a sense, we have a semigroup version of Stinespring’s theorem. As a simple cor-
rollary to the dilation theory it is seen that if a quantum dynamical semigroup on
B(H0) is an endomorphism for some positive time point then it is a semigroup of
endomorphisms.

In Section 5 we begin with explaining the notion of path-continuity which guar-
antees the separability of the dilation space. This point onwards, path-continuity
is an added assumption on the semigroup. After briefly recalling the definition of
product systems we see that our construction does lead to such a family of Hilbert
spaces. This is linked up with Arveson’s construction of product systems and as-
sociated index theory in the final section. Some functorial properties of the index
such as invariance under cocycle conjugacy can be seen. Units of a product system
are families of vectors with a special multiplicative property, and form the basis
for Arveson’s study of product systems. Theorem 6.4 explicitly provides units, and
in particular shows that the numerical index is positive for semigroups with pure
invariant states.

2. Markov dilations of quantum dynamical semigroups

Quantum dynamical semigroups appear naturally in various physical contexts
([Da1], [Da2], [AL]). And one studies them either by looking at the structure of the
generators ([GKS], [Li], [Da4]) or by constructing suitable dilations ([EL], [HP]).
Quantum dynamical semigroups are non-commutative versions of Markov semi-
groups and their dilations to homomorphisms can be interpreted as construction
of non-commutative or quantum Markov processes. Accardi, Friegerio and Lewis
[AFL] formulated this idea in a precise mathematical format and obtained a re-
construction theorem. We will not be needing this general theory here. All our
constructions will be based on the theory of weak Markov dilations of quantum
dynamical semigroups as in [Bh] and [BP2]. (See [Em], [Sa] and [ViS] for some
earlier work.)

In the sequel T+ will denote either the additive semigroup Z+ of nonnegative
integers or R+ of nonnegative real numbers.

Definition 2.1. Let A0 be a unital C∗ algebra. A family of linear maps T = {Tt :
t ∈ T+}, of A0 into itself is called a quantum dynamical semigroup if the following
are satisfied:

(i) Tt is completely positive for every t ∈ T+;
(ii) Ts(Tt(X)) = Ts+t(X) for all X ∈ A0, s, t ∈ T+ ;
(iii) T0(X) = X for all X ∈ A0;
(iv) Tt(I) ≤ I for all t ∈ T+.
The semigroup is called conservative or unital if Tt(I) = I for every t.

As of now there is no continuity restriction on the semigroup in the variable t.
In discrete time (i.e., T+ = Z+) the dynamical semigroup consists of {I, T, T 2, · · · }
for a single contractive completely positive map T : A0 → A0.

We motivate the dilation theory needed here through Sz. Nagy dilations of
contractions. Let R = {R(t), t ∈ T+} be a contraction semigroup on a Hilbert
space H0. Then {Tt} defined by Tt(X) = R(t)XR(t)∗ is a quantum dynamical
semigroup on B(H0). Now by [SzF] there exists a Hilbert space H containing H0
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with a semigroup of isometries V , such that

R(t) = PV (t)|H0

where P is the projection of H onto H0. Let F (t) be the projection onto the closed
linear span of {V (s)u : 0 ≤ s ≤ t, u ∈ H0}. Define jt : B(H0)→ B(H) by

jt(X) = V (t)PXPV (t)∗ for t ∈ T+ and X ∈ B(H0).(2.1)

Then j = {jt, t ∈ T+}, is a family of representations of B(H0) satisfying jt(I) ≤
F (t), and F (s)jt(I)F (s) = js(Tt−s(X)), for s ≤ t. The idea is to construct rep-
resentations having similar properties with respect to a given quantum dynamical
semigroup.

We will be dealing with only a special subclass of Markov dilations called sub-
ordinate weak Markov flows. For a more general definition of Markov flows see
([BP2], [BP3]).

Definition 2.2. Let A0 be a unital C∗ algebra of operators on a Hilbert space
H0 and let T = {Tt, t ∈ T+} be a quantum dynamical semigroup on A0. A triple
(H, F, j) is called a subordinate weak Markov flow with expectation semigroup {Tt}
if H is a Hilbert space containing H0 as a subspace, F = F (t) is a non-decreasing
family of orthogonal projections on H with F (0) having range H0, and j = {jt} is
a family of ∗-homomorphisms from A0 into B(H) satisfying the following:

(i) j0(X) = XF (0) ;
(ii) F (s)jt(X)F (s) = js(Tt−s(X)) for all 0 ≤ s ≤ t <∞, X ∈ A0.
The flow is called minimal if {jt1(X1) · · · jtn(Xn)u : t1, . . . , tn ∈ T+, X1, . . . , Xn

∈ A0, u ∈ H0 and n = 1, 2, . . . } is total (linear combinations form a dense set) in
H.

Note that (ii) implies that jt(I) ≤ F (I); for this reason we say the flow is
subordinate to F and this in particular means that jt leaves the range of F (t)
invariant for every t. If jt(I) = F (t) for all t then the flow is said to be conservative.
We will not be needing any probabilistic ideas in the sequel, but we would like to
point out that F is to be thought of as a filtration and the map Z → F (t)ZF (t)
occurring in (ii) as conditional expectation. So (ii) is essentially the Markov property
of the flow.

Theorem 2.3. Given a quantum dynamical semigroup T (as in Definition 2.2) up
to unitary isomorphisms there is a unique minimal Markov flow (H, F, j) having T
as its expectation semigroup. Moreover j is conservative if and only if T is.

Proof. See [BP2] for the original proof. [Bh] has somewhat more direct approach.
The central idea being the GNS construction as in the standard proof of Stine-
spring’s theorem.

Throughout this article (H, F, j) guaranteed by Theorem 2.3 is the only flow
we consider and we simply calll it the minimal dilation of T . It is the Sz. Nagy
dilation when T is implemented by a semigroup of contractions on the Hilbert space
(as explained before) and it is essentially the Kolmogorov construction of Markov
processes when the algebra is abelian. Here we fix our notation and list some
properties of this dilation for future reference.

The Hilbert space H0 (where the algebra A0 is acting) may be called the initial
space and H the final space or the dilation space. The range of F (t) is ‘the Hilbert
space up to time t’ and is denoted by Ht]. Note that H0] is the same as H0. By
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convention H∞] is H. For any three time points a, b, c in T+ with b ≥ a, c and
X,Y, Z in A0, we have a ‘reduction algorithm’ (Proposition 3.2 of [Bh]):

ja(X)jb(Y )jc(Z) =

 ja(XTb−a(Y ))jc(Z) if c ≤ a ≤ b,
ja(X)jc(Tb−c(Y )Z) if a ≤ c ≤ b,
ja(XTb−a(Y )Z) if a = c and a ≤ b.

For any finite sequence r = (r1, . . . , rn) in T+ and Y = (Y1, . . . , Yn) in A0 (of length
n) write j(r, Y ) = j(r1, r2, . . . , rn, Y1, . . . , Yn) = jr1(Y1)jr2(Y2) . . . jrn(Yn). If for
some index k in {2, . . . , n− 1}, rk ≥ rk−1, rk+1, then the algorithm can be applied
at the triple (rk−1, rk, rk+1) to reduce the length of r, Y in j(r, Y ). Repeated
application of the algorithm and (i) of Definition 2.2 to F (0)j(r, Y )F (0) (recall
F (0) = j0(I)) yields ε(r, Y ) ∈ A0 such that F (0)j(r, Y )F (0) = ε(r, Y )F (0). Note
that ε(r, Y ) is uniquely determined as 〈u, ε(r, Y )v〉 = 〈u, j(r, Y )v〉 for all u, v ∈ H0.
The mapping ε satisfies

(i) ε(r + s, Y ) = Ts(ε(r, Y ));(2.2)

(ii) F (s)j(r + s, Y )F (s) = js(ε(r, Y )),(2.3)

where r + s = (r1 + s, r2 + s, . . . , rn + s).
If r has some monotonicity property then one can chase the algorithm to get an

explicit formula for ε(r, Y ). We find it useful to record a special case. Let D,Dt] be
the sets defined by

D = {(r, Y , u) : u ∈ H0, r = (r1, . . . , rn), r1 > r2 > · · · > rn ≥ 0 in T+,

Y1, . . . Yn ∈ A0, for some n ≥ 1},

(2.4)

Dt] = {(r, Y , u) ∈ D : t ≥ r1 > r2 > · · · > rn ≥ 0}.(2.5)

Then it follows from the construction in [BP2] that {j(r, Y )u : (r, Y , u) ∈ Dt]}
spans Ht] and

〈j(r, Y )u, jt(X)j(r, Z)v〉
= 〈u, Trn(Y ∗n Trn−1−rn(Y ∗n−1 · · ·Y ∗2 Tr1−r2(Y ∗1 Tt−r1(X)Z1)Z2 · · ·Zn−1)Zn)v〉.

(2.6)

for X ∈ A0, (r, Y , u), (r, Z, v) ∈ Dt]. Note that we have taken same time sequence r
along with both Y and Z. This is no restriction for the following reason. Consider
(r, Y , u) ∈ D. Then for any s = (s1, . . . , sp) with s1 > s2 > · · · , sp ≥ 0 in T+,

we write s ≥ r if {s1, . . . , sp} ⊇ {r1, . . . , rn} and in such a case define (s, Ỹ , u) by
putting

Ỹj =

{
Yi if sj = ri for some i;
I otherwise,

i.e., we extend Y by inserting identity at the extra time points. Then it follows
from the reduction algorithm or otherwise that for conservative minimal flows,

j(s, Ỹ )u = j(r, Y )u.(2.7)

The same equality holds for nonconservative flows too under the added restriction
s1 ≤ r1. Finally, we note the following technical result.

Proposition 2.4. Suppose A0 is a von Neumann subalgebra of B(H0) and Tt is
normal for t ≥ 0. Then the homomorphisms jt are normal for every t.
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Proof. Suppose Xα is a net of positive elements of A0 monotonically increasing to
X . Clearly jt(Xα) is increasing. We need to show the convergence of 〈ξ, jt(Xα)ξ〉
to 〈ξ, jt(X)ξ〉 for arbitrary ξ in H. As jt(Xα) = F (t)jt(Xα)F (t), we can assume
ξ ∈ Ht]. Further as the set {j(r, Y )u : (r, Y , u) ∈ Dt]} is total in Ht], it is enough to
show the convergence of 〈j(r, Y )u, jt(Xα)j(s, Zv)〉 for arbitrary (r, Y , u), (s, Z, v) ∈
Dt]. In view of (2.7), we can assume r = s. Now observe that,

〈j(s, Y )u, jt(Xα)j(s, Z)v〉 = 〈u, Tsn(Y ∗n · · ·Ts1−s2(Y ∗1 Tt−s1(Xα)Z1) · · ·Zn)v〉.
(2.8)

Taking a cue from [Da1] we note that for A,B,C ∈ A0,

A∗CB =
1

4

3∑
r=0

(−i)r(A+ irB)∗C(A+ irB).

On applying this formula repeatedly, we have

Tsn(Y ∗n · · ·Ts1−s2(Y ∗1 Tt−s1(Xα)Z1) · · ·Zn)

=
1

4n

3∑
r1,r2,...rn=0

(−i)(
∑

n

k=0
rk)Tsn(W ∗nrn(· · ·W ∗1r1Tt−s1(Xα)W1r1 · · · )Wnrn)

where Wkrk = Yk + (i)rkZk, 1 ≤ k ≤ n. Now use normality of Tt for all t, on the
right hand side expression to conclude the convergence of (2.8).

3. In discrete time

Here we work with the discrete semigroup formed by integer powers of a single
completely positive map on the algebra of all bounded operators on a Hilbert space.
We build the dilation and show how it factorizes. Though the constructions here
are quite elementary, they are quite instructive and show us as to why one should
expect product spaces in continuous time.

Let H0 be a complex separable Hilbert space with the inner-product 〈., .〉 anti-
linear in the first variable. Let A0 be the algebra B(H0). Suppose that T : A0 → A0

is a unital, normal completely positive map.
For u, v in H0, let |u〉〈v| be the rank one operator on H0 defined by

|u〉〈v|w = 〈v, w〉u, for all w ∈ H0.

Note that |.〉〈.| is linear in first variable and anti-linear in the second. For any
bounded operator X on H0 ,

|u〉〈v| = |Xu〉〈v|, and |u〉〈v|X = |u〉〈X∗v|.

Also note that if un → u, and vn → v in H0 then |un〉〈vn| converges in norm to
|u〉〈v|.

Now we define two positive definite kernels ([Pa]) and via the GNS theory obtain
two Hilbert spaces, which will act as building blocks for the dilation space. Let K,
L be the Cartesian products K = H0 × H0 × H0 and L = H0 × H0. Define
K : K ×K → C and L : L× L → C by

K((a1, b1, c1), (a2, b2, c2)) = 〈c1, (T (|a1〉〈b1|∗|a2〉〈b2|)− T (|a1〉〈b1|)∗T (|a2〉〈b2|))c2〉,
and
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L((a1, b1), (a2, b2)) = 〈b1, T (|a1〉〈a2|)b2〉

for a1, b1, c1, a2, b2, c2 in H0.

Proposition 3.1. Let K and L be as above. Then K,L are positive definite kernels
on K,L respectively.

Proof. Consider zi ∈ C, (ai, bi, ci) ∈ K for 1 ≤ i ≤ n, for some n. On taking
Xi = |ai〉〈bi|, we have

n∑
i,j=1

z̄izjK((ai, bi, ci), (aj , bj, cj)) =
n∑

i,j=1

z̄izj〈ci, (T (X∗iXj)− T (Xi)
∗T (Xj))cj〉

(3.1)

which can be rewritten as

2n∑
i,j=1

w̄iwj〈di, T (Y ∗i Yj)dj〉,

where wi = wi+n = zi, di = ci, di+n = −T (Xi)ci, Yi = Xi, Yi+n = I for 1 ≤ i ≤ n.
Now the non-negativity of (3.1) follows from complete positivity of T .

For a fixed unit vector a in H0 , denote the operator |a〉〈ai| by Zi. Then∑
z̄izjL((ai, bi), (aj , bj)) =

∑
z̄izj〈bi, T (|ai〉〈aj |)bj〉 =

∑
z̄izj〈bi, T (Z∗i Zj)bj〉.

Once again the complete positivity of T gives the required result.

Proposition 3.2. There exists Hilbert spaces N and P with maps λ : K → N ,
and δ : L → P, satisfying

(i) 〈λ(a1, b1, c1), λ(a2, b2, c2)〉

= 〈c1, (T (|a1〉〈b1|∗|a2〉〈b2|)− T (|a1〉〈b1|)∗T (|a2〉〈b2|))c2〉,

〈δ(a1, b1), δ(a2, b2)〉 = 〈b1, T (|a1〉〈a2|)b2〉.
(ii) The sets λ(K) and δ(L) are total (linear combinations form a dense set) in

N and P respectively.
(iii) The Hilbert spaces N and P are separable.

Proof. Existence of Hilbert spaces satisfying (i) and (ii) follows from GNS theory
and positive definiteness of K and L. Separability of N and P is immediate from
separability of H0 and easily derivable estimates,

||λ(a, b, c)||2 ≤ 2||a||2||b||2||c||2 and ||δ(a, b)||2 ≤ ||a||2||b||2

for a, b, c in H0.

Dimensions of N and P are important numerical invariants for the semigroup
{Tn}. In fact, the dimension of P can be thought of as the numerical index of the
semigroup in discrete time. Clearly, N is zero if and only if T is an endomorphism.
So in a sense, dimension of N measures the deviation of T from an endomorphism.
It might be mentioned that every normal completely positive map on B(H0) can
be represented in the form

∑
LiXL

∗
i for some bounded operators Li, and dim(P)

is just the minimum number of Li’s needed to represent T in this form.
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Now we recast Stinespring’s theorem [St] in a form more suitable for us.

Theorem 3.3. There exists a unitary map V : H0 ⊕N → H0 ⊗P such that

V ∗(X ⊗ I)V |H0 = T (X)(3.2)

for X ∈ B(H0), and the closed linear span of {(X ⊗ I)V u : u ∈ H0, X ∈ B(H0)} is
H0 ⊗P.

Proof. Fix an orthonormal basis {e0, e1, . . . } of H0. We first define V on H0 ⊂
H0 ⊕N by setting

V x =
∑
n

en ⊗ δ(en, x)(3.3)

for x ∈ H0. For any finite subset E of {e0, e1, . . . }

〈
∑
n∈E

en ⊗ δ(en, x),
∑
m∈E

em ⊗ δ(em, y)〉 =
∑
n∈E
〈δ(en, x), δ(en, y)〉

= 〈x, T (
∑
n∈E
|en〉〈en|)y〉.

By normality of T it is clear that V is well-defined (i.e., the series in (3.3)
converges) and is an isometry on H0. Also note that for X ∈ B(H0),

〈V x, (X ⊗ I)V y〉 = 〈
∑
n

en ⊗ δ(en, x),
∑
m

Xem ⊗ δ(em, y)〉 = lim
k→∞

〈x, T (PkXPk)y〉,

where Pk is the projection onto the span of {e0, e1, . . . , ek}.Once again by normality
of T

〈V x, (X ⊗ I)V y〉 = 〈x, T (X)y〉.(3.4)

Now extend V to H0 ⊕N by taking

V (x⊕ λ(a1, b1, c1)) = V x+ (X1 ⊗ I)V c1 − V T (X1)c1

where X1 = |a1〉〈b1|, a1, b1, c1 ∈ H0. An elementary computation using (3.4) yields

〈V x+ (X1 ⊗ I)V c1 − V T (X1)c1, V y + (X2 ⊗ I)V c2 − V T (X2)c2〉
= 〈x, y〉+ 〈c1, (T (X∗1X2)− T (X∗1 )T (X2))c2〉.

Recalling the definition of λ it is clear that V extends as an isometric operator to
whole of H0 ⊕N . Note that

V (−T (X1)c1 ⊕ λ(a1, b1, c1)) = (X1 ⊗ I)V c1

=
∑
n

|a1〉〈b1|en ⊗ δ(en, c1)

= a1 ⊗
∑
n

〈b1, en〉δ(en, c1)

= a1 ⊗ δ(b1, c1).

Hence V mapsH0⊕N ontoH0⊗P and {(X1⊗I)V c1 : X1 = |a1〉〈b1|, a1, b1, c1 ∈ H0}
is total in H0 ⊗P .

Remark 3.4. If H0 is finite dimensional then so are N and P . Then Theorem 3.3
implies dim(N ) = dim(H0)(dimP − 1). No such formula holds in the infinite di-
mensional case.
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We shall realize the minimal dilation of the semigroup {Tn, n ≥ 0} on the Hilbert
space

H = H0 ⊕N ⊕ (N ⊗P)⊕ (N ⊕P⊗2

)⊕ · · · .

Let F (n) denote the orthogonal projection of H onto Hn] where H0] = H0, H1] =
H0 ⊕N , and

Hn] = H0 ⊕N ⊕ (N ⊗P)⊕ · · · ⊕ (N ⊗P⊗
(n−1)

) = Hn−1] ⊕ (N ⊗P(n−1))

for n ≥ 2, thought of as subspaces of H in the natural way. Observe that on taking

Nn = N ⊕ (N ⊗P)⊕ · · · ⊕ (N ⊗P⊗(n−1)

)

we have Hn] = H0 ⊕Nn, and Nm+n
∼= Nm ⊕ (Nn ⊗Pm).

Now we obtain a family of unitary operators Vn : Hn] → H0⊕P⊗
n

by induction.
Take V1 : H0 ⊕ N → H0 ⊗ P to be the operator V of Theorem 3.3. Let IN , In
be identity operators on N and P⊗n respectively. Now if Vn−1 maps Hn+1] to

H0 ⊗ P⊗
(n−1)

, then (Vn−1 ⊕ (IN ⊗ In−1)) maps Hn−1] ⊕ (N ⊗ P⊗(n−1)

) to (H0 ⊗
P⊗(n−1)

)⊕ (N ⊗P⊗(n−1)

). But

(H0 ⊗P⊗
(n−1)

)⊕ (N ⊗P⊗(n−1)

) ∼= (H0 ⊕N )⊗P⊗(n−1)

in a natural way. Using this identification, define Vn : Hn] = Hn−1] ⊕ (N ⊗
P⊗(n−1)

)→ H0 ⊗P⊗
n

by

Vn = (V ⊗ In−1)(Vn−1 ⊕ (IN ⊗ In−1))

for n ≥ 2. Clearly Vn is a unitary operator as it is a composition of two unitary
operators.

Theorem 3.5. Let H, F = {F (n)} be as above. Define representations j = {jn}
of B(H0) in B(H) by j0(X) = XF (0),

jn(X) = V ∗n (X ⊗ In)VnF (n) for n ≥ 1,(3.5)

and X ∈ B(H0). Then (H, F, j) is a minimal Markov dilation of semigroup {Tn, n ≥
0}.

Proof. First we verify the Markov property. We have

F (n− 1)jn(X)F (n− 1)

= F (n− 1)[V ∗n−1 ⊕ (IN ⊗ In−1)](V ∗ ⊕ In−1)(X ⊗ In)

× (V ⊗ In−1)[V ∗n−1 ⊕ (IN ⊗ In−1)]F (n− 1)

= F (n− 1)V ∗n−1(V ∗ ⊕ In−1)(X ⊗ In)(V ⊗ In−1)Vn−1F (n− 1).

Note that the range of Vn−1F (n− 1) is H0 ⊗ P⊗
(n−1) ⊂ (H0 ⊕N ) ⊗P⊗(n−1)

, and
from Theorem 3.3

(V ∗ ⊕ In−1)(X ⊗ In)(V ⊗ In−1)|H0⊗P⊗(n−1) = T (X)⊗ In−1.

Hence F (n − 1)jn(X)F (n − 1) = F (n − 1)V ∗n−1(T (X) ⊗ In−1)Vn−1F (n − 1) =
jn−1(T (X)). Now to prove minimality, it is enough to show that {jn(X)ξ : ξ ∈
Hn−1] = range of F (n− 1), X ∈ B(H0)} spans Hn] for every n ≥ 1. We have

jn(X)F (n− 1) = V ∗n (X ⊗ In)(V ⊗ In−1)Vn−1F (n− 1).
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As Vn−1, V
∗
n are unitary operators and the closed linear span of {(X ⊗ I)V u : u ∈

H0, X ∈ B(H0)} is H0 ⊗P ,

span {V ∗n (X ⊗ In)(V ⊗ In−1)Vn−1ξ : ξ ∈ Hn−1], X ∈ B(H0)}

= span {V ∗n (X ⊗ In)(V ⊗ In−1)η : η ∈ H0 ⊗P⊗
(n−1)

, X ∈ B(H0)}
= span {V ∗n γ : γ ∈ H0 ⊗P⊗

n

}
= Hn].

Now notice that V ∗n maps H0⊗P⊗
n

to Hn]. By making the obvious identification

of H⊥0 ⊗P⊗
n

with H⊥n], extend V ∗n to a unitary operator from H⊗P⊗n . It is easily

verified that θ = {θn} defined by

θn(Z) = Wn(Z ⊗ In)W ∗n , Z ∈ B(H),

is a semigroup of endomorphisms of B(H), satisfying

θn(XF (0)) = jn(X),

for X ∈ B(H0). Observe that θ has the property θm(jn(X)) = jm+n(X).

4. Basic constructions

In this section we are considering continuous time (i.e., T+ = R+) conservative
quantum dynamical semigroups on a type I factor A0 = B(H0), for a complex
separable Hilbert space H0. Fix one such semigroup T . Throughout we assume
that the maps Tt, t ≥ 0, are normal. Let (H, F, j) be the minimal dilation of the
semigroup T provided by Theorem 2.3.

We shall construct two families of subspaces of H, {Nt, t ≥ 0} and {Pt, t ≥ 0},
satisfying

(i) Ps+t ∼= Ps ⊗Pt;
(ii) Ns+t ∼= Ns ⊕ (Nt ⊗Ps);
(iii) Ht] = H0 ⊕Nt ∼= H0 ⊗Pt,

in a canonical way. Moreover just as in the discrete time, unitary operators V (t) :
H0⊕Nt →H0 ⊗Pt, implementing the isomorphism in (iii), will factorize the flow.
That is, we see that

jt(X) = V (t)∗(X ⊗ I)V (t)F (t), for X ∈ A0, t ≥ 0(4.1)

holds where It is the identity operator on Pt. Of course, in the final analysis {Pt}
will give us a product system in the sense of Arveson.

Now as the algebra under consideration is B(H0), and the maps Tt are assumed
to be normal, action of the flow on rank one operators has full information about
the flow. In more precise terms we have the following proposition.

Proposition 4.1. The set {j(r, Y )u; (r, Y , u) ∈ Dt], with Yi’s of the form |xi〉〈yi|
for some xi, yi ∈ H0} is total in Ht].

Proof. Any finite rank operator is a finite linear combination of operators of the
form |xi〉〈yi|. Now normality of jt and a simple induction argument show that we
can approximate all vectors of the form j(r, Y )u with Yi ≥ 0. Clearly that is good
enough.
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Here is an elementary but key observation. For arbitrary x1, x2, y1, y2 ∈ H0 and
ξ, η ∈ H,

〈jt(|x1〉〈x2|)ξ, jt(|y1〉〈y2|)η〉 = 〈ξ, jt(|x2〉〈x1||y1〉〈y2|)η〉 = 〈x1, y1〉〈ξ, jt(|x2〉〈y2|)η〉.
As a consequence for an arbitrary unit vector a in H0,

〈jt(|x1〉〈x2|)ξ, jt(|y1〉〈y2|)η〉 = 〈x1, y1〉〈jt(|a〉〈x2|)ξ, jt(|a〉〈y2|)η〉.(4.2)

Proposition 4.2. For a unit vector a ∈ H0, let Pt(a) denote the range of jt(|a〉〈a|).
Then

(i) Pt(a) = Range jt(|a〉〈x|) for any x 6= 0 in H0.
(ii) If b is another unit vector in H0 then Pt(a) ∼= Pt(b).

Proof. Observe

jt(|a〉〈a|)jt(|a〉〈x|) = jt(|a〉〈x|),

jt(|a〉〈x|)jt(|x〉〈a|) = 〈x, x〉jt(|a〉〈a|).
So the range of jt(|a〉〈x|) is contained in, and contains Pt(a). Now define Z :
Pt(a)→ Pt(b) by putting

Zjt(|a〉〈a|)ξ = jt(|b〉〈a|)ξ for ξ ∈ H.
Then (4.2) shows that Z is an isometry and from (i) Z is onto. Hence Z defines a
unitary isomorphism between Pt(a) and Pt(b).

Now choose and fix a unit vector a in H0. This vector a is fixed once and for
all. Define Pt by

Pt = Pt(a) = Range of jt(|a〉〈a|).(4.3)

Note that Pt is a Hilbert space, that is, up to unitary isomorphisms does not depend
upon the choice of a. Now we obtain a family of unitary operatorsWs,t : Hs]⊗Pt →
Hs+t] by setting

Ws,t(j(r, Y )u⊗ jt(|a〉〈x|)ξ) = j(r + t, Y )jt(|u〉〈x|)ξ(4.4)

for (r, Y , u) ∈ Ds], x ∈ H0, ξ ∈ Ht]. Here by r+ t we mean (r1 + t, r2 + t, . . . , rn+ t).

Theorem 4.3. For s, t ≥ 0, Ws,t defined as above extends to a unitary operator
from Hs] ⊗Pt onto Hs+t].

Proof. Consider (r, Y , u), (r, Z, v) ∈ Ds], x, y ∈ H0], and ξ, η ∈ Ht]. From (2.2) and
(2.3) we have

〈j(r + t, Y )jt(|u〉〈x|)ξ, j(r + t, Z)jt(|v〉〈y|)η〉
= 〈jt(|u〉〈x|)ξ, j((rn, rn−1, . . . , r1, r1, . . . , rn) + t,

(Y ∗n , . . . , Y
∗

1 , Z1, . . . , Zn))jt(|v〉〈y|)η〉
= 〈jt(|u〉〈x|)ξ, jt(ε(rn, . . . , r1, r1, . . . rn), (Y ∗n , . . . , Y1, Z1, . . . , Zn))jt(|v〉〈y|)η〉
= 〈ξ, jt(|x〉〈u|ε((rn, . . . , r1, r1, . . . rn), (Y ∗n , . . . , Y1, Z1, . . . , Zn))|v〉〈y|)η〉
= 〈u, ε(rn, . . . , r1, r1, . . . rn), (Y ∗n , . . . , Y1, Z1, . . . , Zn))v〉.〈ξ, jt(|x〉〈y|)η〉
= 〈j(r, Y )u, j(r, Z)v〉.〈jt(|a〉〈x|)ξ, jt(|a〉〈y|)η〉.

Thus Ws,t is isometric. Proposition 4.1 implies that domain and range of Ws,t are
total in Hs] ⊗Pt, Hs+t] respectively.
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As Ps is a subspace ofHs] we can restrictWs,t to Ps⊗Pt, to have Us,t : Ps⊗Pt →
Hs+t], satisfying

Us,t(js(|a〉〈a|)j(r, Y )u⊗ jt(|a〉〈x|)ξ) = js+t(|a〉〈a|)j(r + t, Y )jt(|u〉〈x|)ξ
(4.5)

for (r, Y , u) ∈ Ds], x ∈ H0, and ξ ∈ Ht]. Clearly the range of Us,t is Ps+t. So we
have unitary operators Us,t : Ps ⊗Pt → Ps+t. Moreover for s1, s2, s3 ≥ 0, as maps
from Hs1] ⊗Ps2 ⊗Ps3 to Hs1+s2+s3 ,

Ws1,s2+s3(Is1] ⊗ Us2,s3) = Ws1+s2,s3(Ws1,s2 ⊗ Is3)(4.6)

as is clear from (4.4) and (4.5). (Here for any s, Is], Is denote identity operator
on Hs], Ps, respectively.) On restricting this equality to Ps1 ⊗Ps2 ⊗Ps3 , we have
the associativity of the tensor product structure on {Ps}. That is, as maps from
Ps1 ⊗Ps2 ⊗Ps3 to Ps1+s2+s3

Us1,s2+s3(Is1 ⊗ Us2,s3) = Us1+s2,s3(Us1,s2 ⊗ Is3)(4.7)

for s1, s2, s3 ≥ 0.

Remark 4.4. The definition of Ws,t (see (4.4)) can be extended to the case s =∞
by considering (r, Y , u) in the whole of D. This yields unitary operators W∞,t :
H⊗Pt →H, (recall H∞] = H) satisfying

W∞,t(ξ ⊗ η) = Ws,t(ξ ⊗ η)(4.8)

for ξ ∈ Hs], η ∈ Pt. In other words, the operator Ws,t is the restriction of W∞,t to
Hs] ⊗Pt. Now (4.6) takes the form

W∞,s2+s3(I∞] ⊗ Us2,s3) = W∞,s3(W∞,s2 ⊗ Is3)(4.9)

as maps from H⊗Ps2 ⊗Ps3 to H, for s2, s3 ≥ 0.

Theorem 4.5. For t ≥ 0, let V (t) : Ht] →H0⊗Pt be the unitary map W ∗0,t. Then
for all X in B(H0)

jt(X) = V (t)∗(X ⊗ It)V (t)F (t).(4.10)

Define θt : B(H)→ B(H) by

θt(Z) = W∞,t(Z ⊗ It)W ∗∞,t, Z ∈ B(H).(4.11)

Then θ is the unique semigroup of normal ∗-endomorphisms of B(H) satisfying

θt(XF (0)) = jt(X), X ∈ B(H0).(4.12)

Proof. On taking V (t) = W ∗0,t, from (4.4) (with s = 0) we have

V (t)jt(|u〉〈x|)ξ = u⊗ jt(|a〉〈x|)ξ

for u, x ∈ H0, ξ ∈ Ht]. Now if v, y ∈ H0, η ∈ Ht], use (4.2) to obtain

〈V (t)jt(|u〉〈x|)ξ, (X ⊗ I)jt(|v〉〈y|)η〉 = 〈u⊗ jt(|a〉〈x|)ξ,Xv ⊗ jt(|a〉〈y|)η〉
= 〈u,Xv〉〈jt(|a〉〈x|)ξ, jt(|a〉〈y|)η〉
= 〈jt(|u〉〈x|)ξ, jt(|Xv〉〈y|)η〉
= 〈jt(|u〉〈x|)ξ, jt(X)jt(|v〉〈y|)η〉.
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This proves the first claim as vectors of the form jt(|u〉〈x|)ξ are total in Ht]. To
prove the second part, note that θt is an endomorphism due to unitarity of W∞,t.
Now on using (4.9),

θt(θs(Z)) = W∞,t(W∞,s ⊗ It)(Z ⊗ Is ⊗ It)(W ∗∞,s ⊗ It)W ∗∞,t
= W∞,s+t(I∞] ⊗ Us,t)(Z ⊗ Is ⊗ It)(I∞] ⊗ U∗s,t)W ∗∞,s+t
= θs+t(Z)

Finally (4.12) is clear as a restriction of W∞,t to H0 ⊗ Pt is W0,t, which is same
as V (t)∗. The uniqueness is proved by showing that (4.12) completely determines
θ. Clearly (4.12) implies θt(js(X)) = js+t(X) for X ∈ B(H0). Now for (r, Y , u),
(s, Z, v) ∈ D,

θt(|j(r, Y )u〉〈j(s, Z, v)|) = θt(j(r, Y )|u〉〈v|j(s, Z)∗)

= j(r + t, Y )θt(|u〉〈v|)j(s+ t, Z)∗

= j(r + t, Y )jt(|u〉〈v|)j(s+ t, Z)∗.

Now as the collection {j(r, Y )u; (r, Y , u) ∈ D} is total and θ is assumed to be
normal, the required result follows.

Observe that on identifying X ∈ B(H0) with XF (0) in B(H), (4.12) takes the
elegant form jt(X) = θt(X), so θ can be thought of as a dilation of T, and as an
extension of j to a larger algebra. We do not do this identification here to avoid
some confusion (e.g. θt(I) would be ambiguous). However as H0 is already thought
of as a subspace of H, for u, v ∈ H0,

jt(|u〉〈v|) = θt(|u〉〈v|).(4.13)

Now it is not very difficult to see from (4.4) that

Us,t(θs(|a〉〈a|)γ ⊗ θt(|a〉〈a|)η) = θs+t(|a〉〈a|)θt(|γ〉〈a|)η(4.14)

for γ, η ∈ H.

Remark 4.6. Note that θ is a quantum dynamical semigroup in its own right. How-
ever as it is a semigroup of endomorphisms its dilation is itself. Moreover, (4.13),

(4.14) show that its associated family of Hilbert spaces P(θ)
t and unitary maps U

(θ)
s,t

are the same as Pt and Us,t respectively.
Perhaps it is worthwhile to restate the existence and uniqueness of ‘dilation’ θ

of T without referring to intermediate j.

Theorem 4.7. Let T be a conservative quantum dynamical semigroup of normal
maps on B(H0). Then there exists a pair (H, θ), where H is a Hilbert space con-
taining H0 and θ is a semigroup of normal ∗-endomorphisms of B(H), such that if
P denotes the orthogonal projection of H onto H0 then

(i) θt(P ) is a family of projections increasing to identity with θ0(P ) = P ;
(ii) Pθt(XP )P = Tt(X)P for X ∈ B(H0), t ≥ 0.
(iii) The set {θr1(Y1P )θr2(Y2P ) · · · θrn(YnP )u : (r, Y , u) ∈ D} is total in B(H).
If (H′, θ′) is another such pair then there exists a unitary map U : H → H′ such

that Uu = u for u ∈ H0, and θ′(Z) = Uθ(U∗ZU)U∗, for Z ∈ B(H′).

Proof. This is clear from Theorem 4.5 and the uniqueness of the minimal dilation
(H, F, j) up to unitary isomorphisms.
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It may be noted that (ii), (iii) of Theorem 4.7 imply that {θt(P )} is a family
of projections increasing to identity with θ0(P ) = P. More interestingly there is a
converse statement to this theorem.

Theorem 4.8. Let H be a Hilbert space and let θ be a semigroup of ∗-endomor-
phisms of H. Suppose P is an orthogonal projection of H to some subspace H0 such
that P ≤ θt(P ) for all t. Then T = {Tt} defined by

Tt(X) = Pθt(XP )P |H0 , X ∈ B(H0),

is a conservative quantum dynamical semigroup on B(H0).

Proof. Clearly Tt(I) = I, and Tt is completely positive for all t. Now for s, t ≥ 0

Ts(Tt(X)) = Pθs(Pθt(XP )P )P |H0 = Pθs(P )θs+t(XP )θs(P )P |H0 = Ts+t(X).

This means that we have completely classified (unital, normal) quantum dy-
namical semigroups on type In factors in terms of isomorphism classes of triples
(H, θ, P ), where H is a Hilbert space, θ is a semigroup of normal ∗-endomorphisms
of B(H), and P is a projection of H to some subspace H0 of dimension n, such
that (i), (iii) of Theorem 4.7 are satisfied. This is clearly a semigroup version of
Stinespring’s theorem.

Now let us look at the example we started with in Section 2. Suppose T is
implemented by a strongly continuous semigroup R of contractions. (Actually, co-
isometries as we assume T to be conservative.) Now from [Bh] one knows that the
minimal dilation of T can be obtained from Sz. Nagy’s minimal dilation of R to a
strongly continuous semigroup U of unitaries. (Exactly as in (2.1) with V replaced
by U . Minimal isometric dilations of semigroups of co-isometries are automatically
unitaries.) With this knowledge it is not hard to see that θ of T is the semigroup
of automorphisms

θt(Z) = UtZU
∗
t

for t ≥ 0, Z ∈ B(H). Observe that in this case Pt is the one dimensional space
spanned by Uta (a being the unit vector with which we define Pt).

Conversly, suppose for some semigroup T , dimPt ∼= 1. Then (4.11) implies that
θ is a semigroup of automorphisms of B(H). Clearly, it can be extended to the
negative half-line by setting θ−t = θ−1

t , to have a one parameter group of automor-
phisms. It is well-known [Va] that strong continuity of θ forces it to be implemented
by a strongly-continuous semigroup of unitaries. Now one can easily deduce that
the original semigroup T is also implemented (by a strongly continuous semigroup
of contractions).

Now we go back to our program of constructing Hilbert spaces {Nt} as described
in the beginning of this section. Actually, the construction is almost a triviality
now. As Ht],H0 are the ranges of F (t) and F (0) with F (t) ≥ F (0). Take

Nt = Range of (F (t)− F (0)).(4.15)

It is immediate that Ht] = H0 ⊕Nt.

Theorem 4.9. There exists unitary operators Zs,t mapping Ns ⊕ (Nt ⊗ Ps) onto
Ns+t for s, t ≥ 0.
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Proof. Observe that Wt,s : Ht]⊗Ps →Ht+s] maps the subspace H0⊗Ps onto Hs].
So clearly it maps Nt ⊗ Ps onto the range of (F (t + s) − F (s)). Now take Zs,t as
I ⊕Wt,s.

In this theorem we have not bothered to describe the canonicity of associated
unitary maps. Observe that Ns1 ⊕ (Ns2 ⊗ Ps1) ⊕ (Ns3 ⊕ Ps2+s1) ∼= Ns1 ⊕ (Ns2 ⊗
Ps1)⊕ (Ns3 ⊗Ps2 ⊗Ps1). Now the component Hilbert spaces here can be combined
together using unitary operators Zs,t of the theorem to obtain Ns1+s2+s3 in two
ways. A routine verification shows that the associated diagram commutes.

It maybe noted that the dilation space H can be decomposed in a simpleminded
way as H0 ⊕N∞ with N∞ = H⊥0 . However in general H does not admit a natural
multiplicative decompositon as H0⊗P∞ through some isomorphism, though as we
have seen Ht] ∼= H0 ⊗Pt for 0 ≤ t <∞. There is no natural candidate for P∞.

As remarked earlier Nt ∼= {0} for semigroups of endomorphisms. Here is another
observation about endomorphisms which could be of some independent interest.

Theorem 4.10. If Tt0 is an endomorphism of B(H0) for some t0 > 0, then T is a
semigroup of endomorphisms.

Proof. Clearly it is enough to show the endomorphism property of Ts for 0 ≤ s ≤ t0.
Fix s, and take s′ = t0−s, P = F (0), Q = I−P. With this notation, for X ∈ B(H0),
we have

(Qjt0(X)P )∗(Qjt0(X)P ) = Pjt0(X∗X)P − (Pjt0(X∗)P )(Pjt0(X)P )

= j0(Ts(X
∗X))− j0(Tt0(X∗))j0(Tt0(X))

= 0.

Hence Qjt0(X)P = Pjt0(X)Q = 0. As F (s′) commutes with P,Q, pre and post-
multiplication by it gives Qjs′(Ts(X))P = Pjs′(Ts(X))Q = 0. Now for X,Y ∈
B(H0)

j0(Ts′(Ts(X)Ts(Y ))) = Pjs′(Ts(X)Ts(Y ))P = Pjs′(Ts(X))(P +Q)js′(Ts(Y ))P

= Pjs′(Ts(X))P.Pjs′(Ts(Y ))P = j0(Tt0(X)Tt0(Y )) = j0(Ts′(Ts(XY ))).

That is, Ts′(Ts(X)Ts(Y )−Ts(XY )) = 0, implying, Tt0(Ts(X)Ts(Y )−Ts(XY )) = 0.
But then Tt0 is injective as any representation of the von Neumann algebra B(H0)
is the trivial representation with some multiplicity.

It may be noted that the theorem above is applicable to discrete time as well,
where it means that if Tn is an endomorphism then so is T . The continuous time
version is not immediate from this as there is no continuity assumption on the
semigroup.

5. Realization of product systems

In this section we study the family of Hilbert spaces {Pt, t ≥ 0} in greater detail.
To do the analysis of product spaces as in [Ar1, Ar2, Ar3, Ar4, Ar5] one needs
associated Hilbert spaces to be separable. This means some regularity assumption
on the semigroup. We assume that the semigroup T is such that each Tt, t ≥ 0,
is normal and for the associated dilation (H, F, jt), the map t→ jt(X) is strongly
continuous for fixed X ∈ B(H0). Here and elsewhere in this article by strong con-
tinuity we mean continuity in strong operator topology. It is convenient to have a
definition here.
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Definition 5.1. A quantum dynamical semigroup {Tt} is said to be path-continuous
if the map t→ jt(X) is strongly continuous for X ∈ B(H0).

First verifying for operators of the form |j(r, Y )u〉〈j(v, Z)v| as in the proof of
the uniqueness of θ, it is not difficult to see that path-continuity implies that the
map t → θt(Z) is also strongly continuous for all Z ∈ B(H). We have called this
regularity condition path-continuity as the flow j is thought of as a Markov process
for the semigroup T.

Proposition 5.2. A conservative quantum dynamical semigroup T is path-contin-
uous iff the function

〈u, Tsn(Y ∗n · · ·Ts2(Y2Tt−s2(Ts1−t(Y1)XTs1−t(Z1))Z2) · · ·Zn)v〉(5.1)

is continuous in t, as t varies in the interval [s2, s1] for fixed s1 > s2 > · · · > sn ≥ 0
and X,Y1, . . . , Yn, Z1, . . . , Zn in B(H0) for n ≥ 2.

Proof. Assume continuity of functions described above. Firstly, as the jt’s are
homomorphisms, once we show weak continuity for all X , strong continuity is im-
mediate. Now arguing as in the proof of normality (Proposition 2.4) it is suf-
ficient to show continuity of functions of the form 〈j(r, Y )u, jt(X)j(r, Z)v〉, for
(r, Y , u), (r, Z, v) ∈ D. (Note that we cannot restrict ourselves to Dt as t is vary-
ing.) Suppose t varies in a small interval [a, b] ⊂ [0,∞). As the semigroup is
conservative we can insert arbitrarily large extra time points in r and identity op-
erators at corresponding places in Y , Z and have r1 > r2 > · · · > rk ≥ b ≥ t ≥
a ≥ rk+1 > · · · > rm ≥ 0, for some k. Now by a repeated application of reduction
algorithm we have

jt(X)j((r1, . . . , rk+1), (Z1, . . . , Zk+1)) = jt(X)jrk(W )jrk+1
(Zk+1)

= jt(XTrk−t(W ))jrk+1
(Zk+1)

for some W ∈ B(H0). (W does not depend upon t.) In a similar way,

j((r1, . . . , rk+1), (Y1, . . . , Yk+1))∗jt(XTrk−t(W ))jrk+1
(Zk+1)

= jrk+1
(Y ∗k+1)jt(Trk−t(V )XTrk−t(W ))jrk+1

(Zk+1)

= jrk+1
(Y ∗k+1Tt−rk+1

(Trk−t(V )XTrk−t(W ))Zk+1)

for some V ∈ B(H0). Now it should be clear that 〈j(r, Y )u, jt(X)j(r, Z)v〉 =
〈u, j(r, Y )∗ jt(X)j(r, Z)v〉 is of the form (5.1) on suitable renaming of indices.

The converse part should be clear as strong continuity implies weak continuity,
and (5.1) is equal to 〈j(s, Y )u, jt(X)j(s, Z)v〉.

The following proposition lists some important examples of semigroups having
this continuity property.

Proposition 5.3. In each of the following cases semigroup T is path-continuous.
(i) T is a semigroup of endomorphisms and 〈u, Tt(X)v〉 is continuous in t for

fixed u, v ∈ H0 and X ∈ B(H0).
(ii) limt→s ||Tt(X)− Ts(X)|| = 0 for every X in B(H0).
(iii) For fixed X, Tt(X) converges strongly to Ts(X) as t converges to s, and

for fixed t, Tt(Xr) converges strongly to Tt(Xs) as Xr converges strongly to Xr in
B(H0).

(iv) Tt(X) = R(t)XR(t)∗ for a strongly continuous semigroup of contractions
R(t) on the Hilbert space.
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Proof. In case (i), observe that endomorphism property of T implies,

Tt−s2(Ts1−t(Y1)XTs1−t(Z1)) = Ts1−s2(Y1)Tt(X)Ts1−s2(Z1).

Now (4.1) reduces to 〈x, Tt(X)y〉 for some vectors x, y in H0. For second case one
has to simply use joint continuity of multiplication of operators in norm. (iii) is
clear once we notice that here the map t → Tt(Y )XTt(Z) is continuous due to
contractivity of T . And (iv) is as follows from (iii) as R(t)∗ is also a strongly
continuous semigroup (see [Da3]).

Here after we are considering a conservative quantum dynamical semigroup T
on B(H0), such that each Tt is normal and T is path-continuous. Let (H, F, j) be
the assoicated minimal Markov flow.

Proposition 5.4. The Hilbert space H is separable.

Proof. Fix a complete orthonormal basis E of H0. Consider the countable set Γ =
{
∑n
i=1 zij(ri, Yi)ui}, where the zi’s are complex numbers with rational coordinates,

ri’s are tuples of positive rational numbers, Yi’s are tuples of operators of the form
|xi〉〈yi| with xi, yi ∈ E, and also ui ∈ E for all i. Now use strong continuity of the
flow to approximate arbitrary time points through rational time points and then
use Proposition 4.1 to approximate every vector in Ht]. Now recall that due to
minimality of the flow,

⋃
Ht] = H.

The technical preparations are over and we move on to explaining the notion of
product systems. The paradigm examples of continuous tensor products of Hilbert
spaces are obtained through Fock spaces. Let K be a complex separable Hilbert
space. Take

Ht = Γ(L2([0, t],K))

for t > 0. That is, Ht is the Boson Fock space over the L2 space of K valued
functions on [0, t]. Now it is clear that right-shift on R+ gives rise to canonical
isomorphisms satisfying

Hs ⊗Ht ∼= Hs+t
for s, t > 0. Generalising this, continuous tensor product system of Hilbert spaces
has been defined by Arveson [Ar1] as a measurable family {Et, t > 0} of complex
separable Hilbert spaces satisfying Es ⊗ Et ∼= Es+t in an associative way.

In precise terms we demand unitary operators Us,t : Es ⊗ Et → Es+t for s, t > 0,
with associative property:

Us1,s2+s3(I ⊗ Us2,s3) = Us1+s2,s3(Us1,s2 ⊗ I),

for s1, s2, s3 > 0. And here the measurability means the following:

E = {(t, x) : t ∈ (0,∞), x ∈ Et}
is a standard Borel space, {t} × Et is a measurable subset of E and the maps

(i) (x, y) 3 Et × Et → 〈x, y〉 3 C,
(ii) ((s, x), (t, y)) 3 E × E → (s+ t, Us,t(x, y)) 3 E

are measurable. Further one assumes that there exists a Borel isomorphism φ :
E → (0, t) ×M for some fixed Hilbert space M, such that φ restricted to fibre Et
is a unitary map onto {t} ×M.

The last condition is equivalent to assuming that there exists a set {(e1(t), e2(t),
. . . ); t > 0}, where for fixed t, {e1(t), e2(t), . . . } is an orthonormal basis for Et, and
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for fixed n, t → en(t) is a measurable map. The binary operation defined in (ii)
is called a multiplication on E . The notion of isomorphisms of product systems is
the obvious one ([Ar1]). An anti-isomorphism is just like an isomorphism except
that it reverses the order of multiplication. If E is a product system its opposite
product system E∗ is anti-isomorphic to E and is obtained through the reversed
multiplication:

((s, x), (t, y))→ (s+ t, Ut,s(y, x)).

Observe that in a product system E , either dim(Et) ≡ 1 or dim(Et) ≡ ℵ0. In
the first case we say that the product system is trivial, and it turns out that up to
isomorphisms there is only one trivial product system, the obvious one.

Now let us look at the family of Hilbert spaces {Pt} constructed in Section 4.
We claim that

P = {(t, ξ) : t ∈ (0,∞), ξ ∈ Pt} ⊂ (0,∞)×H,
considered as a subset of (0,∞)×H, is a product system with multiplication defined
by

((s, ξ), (t, η))→ (s+ t, Us,t(ξ ⊗ η))

for (s, ξ), (t, η) ∈ P . Firstly we need to show that P is a Borel subset of (0,∞)×H.
(H is a Hilbert space, so has its Borel σ-algebra coming from its natural topology.)
This and the measurability of multiplication follows from the next proposition.

Proposition 5.5. (i) P is a closed subset of (0,∞)×H.
(ii) The mapping ((s, ξ), (t, η))→ (s+ t, Us,t(ξ ⊗ η)) is jointly continuous on P.

Proof. Suppose (sn, ξn) ∈ P and converges to (s, ξ) in (0,∞)×H. Then

jsn(|a〉〈a|)ξn = ξn for all n

and by strong continuity of j, js(|a〉〈a|)ξ = ξ. This proves the first part. To prove
(ii) consider a pair of sequences (sn, ξn), (tn, ηn) converging to (s, ξ), (t, η) in P . We
have

||Usn,tn(ξn ⊗ ηn)− Us,t(ξ ⊗ η)|| ≤ ||Usn,tn(ξn ⊗ ηn)− Us,tn(ξ ⊗ η)||
+ ||Us,tn(ξn ⊗ ηn)− Us,t(ξ ⊗ η)||.

Now note that Usn,tn(ξn⊗ηn) = Wsn,tn(ξn⊗ηn) = W∞,tn(ξn⊗ηn) from Remark 4.4.
In a similar way, Us,tn(ξn⊗ ηn) = W∞,tn(ξ⊗ ηn). This helps to write the first term
as W∞,tn((ξn − ξ) ⊗ ηn), which clearly converges to zero. As for the second term,
use strong continuity of j on vectors of the form j(r, Y )u and then extend.

Proposition 5.6. There exists a Borel map φ : P → (0,∞)×K, for some Hilbert
space K such that φ|{t}×K is a unitary map for every t.

Proof. Note that either dimPt ≡ ℵ0 or dimPt ≡ 1 for t > 0. The first case can be
taken care of using Lemma 10.8.7 of [Di] (exactly as done by Arveson [Ar1]). If
dimPt ≡ 1, then we know that there exists a strongly continuous semigroup U of
unitaries (see remarks after Theorem 4.7) such that

θt(Z) = UtZU
∗
t .

Now as Pt is the one dimensional space spanned by Uta, it is clear that (t, Uta)→
(t, 1) defines a Borel mapping of P to (0,∞)× C.
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Theorem 5.7. Consider a unitary path-continuous quantum dynamical semigroup.
Then the space P associated with it is a continuous tensor product system of Hilbert
spaces.

Proof. This claim is a summary of (4.7) and Propositions 5.4– 5.6.

6. On index

The notion of index for E0-semigroups was introduced by Powers. Powers and
Robinson described as to when we can say two semigroups have the same index. A
clear-cut definition of index was given by Arveson with

index(α) = [E ],

that is, index is the isomorphism class of the product system E associated with
the semigroup as in [Ar1]. Now given a quantum dynamical semigroup (path-
continuous, conservative) T on B(H0), it is natural to define its index by

index(T ) = index(θ)

where θ is the associated semigroup of endomorphisms (see Theorem 4.7). We are
not interpreting this notion of index here. The interested reader may see [Ar3],
where it is compared with Fredholm index of isometries or co-isometries. It has
also been pointed out that the analogy does not go very far. The reason could be
that isometries or semigroups of isometries are more connected with the ‘additive
structure’ N , and have very little to do with the product systems (see comments
after Theorem 4.8). In any case, it should be pretty clear, even by looking at
discrete time case, that the index is an important invariant for the semigroup.

It turns out that index(T ) = [P∗], P∗ being the opposite product system of
P . To see this we outline Arveson’s construction of product systems based on
E0-semigroups. Let H be a complex separable Hilbert space and let α be an E0-
semigroup on B(H). Take

Et = {Y ∈ B(H) : αt(X)Y = Y X},
that is, Y intertwines between αt and identity representation of B(H). For Y, Z in
Et, the commutation relation in the definition of Et implies that Y ∗Z commutes
with every X ∈ B(H). Hence Y ∗Z is a scalar. Define 〈Y, Z〉 by putting Y ∗Z =
〈Y, Z〉. Then it can be shown that Et becomes a separable Hilbert space with this
innerproduct. The tensor product structure on the family {Et} is just operator
multiplication. Observe that if Y ∈ Es, Z ∈ Et, then Y Z is in Es+t. Now it is a
routine matter to check that Us,t : Es ⊗Et → Es+t, defined by

Us,t(Y ⊗ Z) = Y Z

is a unitary operator and

E = {(t, Y ) : t ∈ (0,∞), Y ∈ Et}
considered as a measurable subset of (0,∞)×B(H) (with strong topology on B(H))
is a product system.

We shall call E the canonical product system associated with the E0-semigroup
α. From the penetrating study of Arveson [Ar6] one knows that every product
system arises this way.

Theorem 6.1. The canonical product system E associated with the E0-semigroup
θ (of Theorem 4.7) is anti-isomorphic to the product system P .
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Proof. First observe that if Z ∈ Et then Za ∈ Pt as

θt(|a〉〈a|)Za = Z|a〉〈a|a = Za.

Now consider the map ψ : E → P , defined by

ψ(s, Z) = (s, Za).

It is easy to see that ψ is an isometry on each fibre Et. Further for ξ ∈ Ps, consider
the bounded operator Zξ on H defined by

Zξγ = θs(|γ〉〈a|)ξ, γ ∈ H.

For W ∈ B(H) and γ ∈ H, we have

θs(W )Zξγ = θs(W )θs(|γ〉〈a|)ξ = θs(|Wγ〉〈a|)ξ = ZξWγ.

That is, Zξ ∈ Es. Further Zξa = θs(|a〉〈a|)ξ = ξ, and hence ψ is surjective. It is
obvious that ψ is a Borel map. Now consider ξ ∈ Ps, η ∈ Pt with associated Zξ,
Zη. Clearly

Us,t(ξ ⊗ η) = Us,t(θs(|a〉〈a|)ξ ⊗ θt(|a〉〈a|)η)

= θs+t(|a〉〈a|)θt(|ξ〉〈a|)η
= θt(|θs(|a〉〈a|)ξ〉〈a|)η
= ZηZξa.

Note that the order of ξ, η gets reversed. And hence ψ is an anti-isomorphism.

There is nothing deep in getting an ant-isomorphism and not an isomorphism
here. One can incorporate a somewhat unnatural twist in the definition of Ws,t, Us,t
to obtain an isomorphism above. Such a definition would also have the undesirable
effect of shifting the initial space H0 into the second component in the factorization
of j.

The index enjoys some natural functorial properties. A semigroup S acting on
B(K0) is said to be conjugate to T if there exists a unitary map V : H0 → K0 such
that

St(X) = V Tt(V
∗XV )V ∗, for X ∈ K0, t ≥ 0.

It is obvious that if T, S are conjugate then they have the same index. Now sup-
pose T,R are quantum dynamical semigroups both acting on B(H0). We say that
T,R are exterior equivalent if there exists a strongly continuous family of unitary
operators {Ut} on B(H0) satisfying

Tt(X) = U∗t Rt(X)Ut,(6.1)

for X ∈ B(H0), t ≥ 0. Following the footsteps of Arveson we have the notion of
cocycle conjugacy (In [Ar1] this was called outer conjugacy.)

Definition 6.2. Let T (resp. S) be a quantum dynamical semigroup acting on
B(H0) (resp. B(K0)). Then T and S are said to be cocycle conjugate if there
exists a third semigroup R acting on B(H0) conjugate to S and exterior equivalent
to T .

Theorem 6.3. If two quantum dynamical semigroups are cocycle conjugate then
they have the same index.
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Proof. Clearly it is enough to show that exterior equivalent semigroups have the
same index. So let T,R be semigroups acting on B(H0), with a family of unitary op-
erators {Ut}, satisfying (6.1). We obtain an isomorphism between product systems
PT and PR. Let (H, F, j), (H′, F ′, j′) be minimal dilations of T,R respectively.
Note that for (r, Y , u), (r, Z, v) ∈ D (take X = I in (2.6))

〈j(r, Y )u, j(r, Z)v〉
= 〈u, Trn(Y ∗n Trn−1−rn(Y ∗n−1 · · ·Y ∗2 Tr1−r2(Y ∗1 Z1)Z2 · · ·Zn−1)Zn)v〉
= 〈u, U∗rnRrn(Y ∗n · · ·Y ∗2 U∗r1−r2Rr1−r2(Y ∗1 Z1)Ur1−r2Z2 · · ·Zn)Urnv〉.

This shows that the map L : H → H′ defined by

Lj(r, Y )u = j′(r, (Y1, Ur1−r2Y2, . . . , Urn−1−rnYn)Urnu

is an isometry. Now as Y was arbitrary in (r, Y , u), the range of L is total and
hence L is a unitary operator. Observe that L maps range of jt(|a〉〈a|) to the
range of j′t(|a〉〈a|). Now it is not hard to see that the mapping (t, ξ)→ (t, Lξ) is an
isomorphism between product systems PT and PR.

It may be noted that for E0-semigroups the converse of Theorem 6.3 is also true.
That is, if two E0-semigroups have same index then they are cocycle conjugate.
But clearly this no longer holds in the general situation as that would mean that
every quantum dynamical semigroup is cocycle conjugate to some E0-semigroup.

Observe that it is meaningful to talk of tensor products of product systems (see
[Ar1], pp. 29). Suppose T, S are quantum dynamical semigroups on B(H0),B(K0)
with respective minimal dilations (H, F, j), (K, G, k). It is not difficult to see that
(H⊗K, F ⊗G, j ⊗ k) defined by (F ⊗G)(t) = F (t)⊗G(t), (j ⊗ k)t = jt ⊗ kt, is a
minimal dilation of the semigroup T ⊗ S. We also see that θT⊗S = θT ⊗ θS . Now
it follows that

index(T ⊗ S) = index(θT )⊗ (θS) = [P∗T ⊗P∗S ].

The problem of determining the index for different quantum dynamical semi-
groups remains open. Looking at the well-developed theory of Evans-Hudson flows
([Me], [Pa]) one feels that perhaps the index of nice (say of bounded generator)
quantum dynamical semigroups are exponential (Fock) product systems and can
be obtained through the theory of quantum stochastic differential equations. This
we have been able to verify only for some very special examples [BF].

Recall that by a unit of a product system P one means a non-zero measurable
cross section t ∈ (0,∞)→ ut ∈ Pt, such that

u(s+ t) = Us,t(us ⊗ ut), s, t > 0.

The numerical index for the semigroup is the dimension of a Hilbert space con-
structed out of units (see [Ar1]) of the associated product system. So units play a
very crucial role in understanding product systems. The following theorem provides
some units through completely elementary means in some special cases. As before
we are considering a path-continuous dynamical semigroup T acting on B(H0), with
associated product system P defined using a unit vector a ∈ H0.

Theorem 6.4. If b is a unit vector in H0 satisfying

Tt(|b〉〈b|)b = e−qtb, t ≥ 0,

for some q ≥ 0, then the cross-section u defined by ut = jt(|a〉〈b|)b is a unit of P .
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Proof. Clearly ut ∈ Pt, and the mapping t→ ut is continuous (and hence measur-
able). Now

Us,t(us ⊗ ut) = Us,t(js(|a〉〈b|b)⊗ jt(|a〉〈b|)b)
= js+t(|a〉〈b|)jt(|b〉〈b|)b,

and on using (4.14) we obtain

||js+t(|a〉〈b|)jt(|b〉〈b|)b||2 = 〈b, Tt(|b〉〈b|Ts(|b〉〈a||a〉〈b|)|b〉〈b|)b〉
= 〈b, Tt(|b〉〈b|)〉.〈b, Ts(|b〉〈b|)b〉
= e−q(s+t).

Similar computations of other terms involved yields ||Us,t(us⊗ut)−us+t||2 = 0.

The special case of q = 0 in Theorem 6.4 might be worth noting, where we are
demanding a pure invariant state for T. Semigroups with such states appear in
various contexts. See [Da4] for a study of their generators.
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