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Eigenvalues of AB and BA

LetA ;B benf nmatricesw ith com plex entries. G iven
below are several proofs of the fact that AB and B A
have the sam e eigenvalues. Each proofbringsouta dif-
ferent viewpointand may be presented at the appropri-
ate time in a linear algebra course.

Let tr(T ) stand for the trace of T, and det(T ) for the
determ inant of T . T he relations

trAB)=trBA) and det(AB)= det(BA): (1)

are usually proved early in linear algebra courses. The
“rst is easy to verify; the second takes m ore work to
prove.

Let
JUioc(T), N eeet (1) e (T) (2)

be the characteristic polynom ial of T, and let ,,1(T);
ities and in any order. T hese are the eigenvalues of T .

W e know that c(T) is the kth elem entary sym m etric
polynom ial in these num bers. T hus

X
a) = 0= ()
o) = L))

i< j

Y
¢ (T) = Lj(T)= det(T):

j=1

To say that AB and B A have the same eigenvalues
am ounts to saying that

ck(AB)=ck(BA) forl- k- n: 3)
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W e know that this is true when k = 1;0rn ;and want Recall Newton’s
to prove it for other values ofk. identities by which
the n elementary

Proofl. Itsut cestoprove that,forl - m - n; ,
symmetric

i (AB )+ coe+ T (AB)= T (BA)H GO+ T (BA) (4) polynomials in n

variables are

(R ecall N ew ton’s identities by which the n elem entary expressed in terms
sym m etric polynom fals in n variables are expressed in of the n sums of
term softhen sum sofpowers.) Note that the eigenval- powers.

ues E,me are th|g m th powers of the eigenvalues of T .
So, ,j(M)-= L@™)y = tr(T"):Thus the state-
ment (4) is equivalent to

tr[(AB)"']= tr[(BA)"T
But this follow s from (1)

tr[(AB) ]= tr(ABAB ¢6CAB) = trGABA :::BA)

tr [BA)" ]

Proof2.0necan prove the relations (3) directly. T he

coet cient ¢ (T) is the sum of all the k £ k principal

minorsofT. A direct com putation (the B inet{C auchy

form ula) leads to (3). A more sophisticated version of

this argum ent involves the antisym m etrdic tensor prod-
n

uct AX(T). Thisisam atrix of order . Whose entries
are the k £ k minors of T . So

()= tr " (@)l k- on:

Among the pleasant properties of 2 is m u Itip licativ ity :
AK(AB )= AK(AYAMCB). So

ck(AB) trPEAB)]= trRGA)N 6]
tr PG )M (AN = tr AKX BA)= c(BA):

Proof3. Thisproofinvokesa continuity argum ent that
isusefuliin m any contexts. Suppose A is invertible (non-
singular). Then AB = A(BA)Ail:SoAB and B A are
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Since detis a
polynomial function
in the entries of A,
the set of its zeros
is small.

sim ilar, and hence have the sam e eigenvalues. T hus the
equalities (3) are valid when A is invertible. Two facts
are needed to get to the generalcase from here. (i) ifA
is singular, we can choose a sequence A, ofnonsingu-
lar m atrices such thatA, ! A . (Singular m atrices are
characterised by the condition det (A) = 0. Since det
isa polynom ial function iIn the entries of A, the set of
its zeros is sm all. See also the discussion in Resonance,
Vol. 5,n0.6,p.43,2000). (i) The functions c, (T ) are
polynom ials in the entries of T and hence, are contin-
uous. So, if A is singular we choose a sequence A, of
nonsingular m atrices converging to A and note

G(AB)= M c(A.B8)= lp c(BA,)= c(BA):

Proofd. Thisproofuses2£ 2 hlgck m atrices. C onsider
the (2n)£ (2n) m atrix )é $ in which the four en-
triesare n £ n m atrices, and 0 is the nullm atrix. T he
eigenvaluesofthism atrix are the n eigenvaluesofX to-
gether w ith the eigenvalues of Y . (T he determ inant of
this m atrix is det(X )det(Y ).) G ivengany n £ n m atrix

A, the 2n)£ (2n) m atrix
. #

OI A: is invertible, and

its inverse is 0 iIA . Use this to see that
# 1 # # #
I A AB O I A 0
0 1 B 0 0 I ~ B BA
AB 0 # "0 0 #
Thus the m atrices 3 0 and 3 B A are sim -

ilar and hence, have the sam e eigenvalues. So,A B and
B A have the sam e eigenvalues.

Proof5.LetA bean idem potentm atrix, ie.,A2= A:
Then A representsa projection operator (notnecessarily
an orthogonalprojection). So, in som e hasis (not neces-
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#
sarily orthonorm al) A can be written asA = 0 8
IIB B #
In this basis let B = Bll 12 Then AB =
- 4+ - 201 B
Bll BlZ _ Bll
0 0 ,BA = B, 0 .S50,AB and B A have

the sam e eigenvalues. Now let A be any m atrix. T hen
there exists an invertible m atrix G such thatAGA = A:
(The two sides are equal as operators on the null space
of A. On the complem ent of this space, A can be in-
verted. Set G to be the identity on the null space of
A) Note thatG A is idem potent and apply the special
case to G A and B G ' in place of A and B . Thisshows
GABG iland BG ilGA have the sam e eigenvalues. In
otherwordsAB and B A have the sam e eigenvalues.

Proof 6. Since detAB = detB A;0 is an eigenvalue
of AB ifand only if it is an eigenvalue of BA. Sup-
pose a nonzero num ber , isan eigenvalue ofAB . Then
there exists a (nonzero) vector v such thatABv = | v.
Applying B to the two sides of this equation we see
thatB v isan eigenvector ofB A corresponding to eigen-
value , . Thusevery eigenvalue ofAB isan eigenvalue of
BA.Thisargum entgivesno inform ation about the (al-
gebraic) m ultip licities of the eigenvalues that the earlier
~ve proofs did. However, follow ing the sam e argum ent

tors of B A corresponding to the eigenvalue ,. Thus a
nonzero eigenvalue ofAB hasthe sam e geom etric m u kti-
plicity as ithasasan eigenvalue ofB A . Thism ay nothg,

true for a zero eigenvalue. Forexam ple, ifA = L0
- - 0 0
0 1# 0 1#

and B = 00 ,then AB = 00 and BA = 0:

Both AB and B A have one eigenvalue zero. Its geom et-

A nonzero
eigenvalue of AB
has the same
geometric
multiplicity as it
has as an
eigenvalue of BA.
This may not be
true for a zero
eigenvalue.
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This proof gives no
information about
multiplicities of
eigenvalues —
algebraic or
geometric — since
it does not involve
either the
characteristic
polynomial or
eigenvectors. This
apparent
weakness turns
into a strength
when we discuss
operators on
infinite dimensional
spaces.

ric m ultiplicity is one in the rst case and two in the
second case.

Proof7.Wewantto show thata com plex numberz is
an eigenvalue ofAB ifand only ifit is an eigenvalue of
BA.Inotherwords, (zlI j AB) isinvertible ifand only
if(zl i BA)isinvertible. This is certainly true ifz = 0.
Ifz6 Owecandivide A by z. So,we need to show that
(I'i AB)isinvertible ifand only if(1j B A) isinvertible.
Suppose | j AB isinvertible and letX = (I j AB)il:
Then note that

(1] BAYI+BXA)

lj BA+BXAjBABXA
i BA+B(ijAB)XA
li BA+BA =1

Thus (I'j BA)isinvertible and its inverse is |1+ B X A .

This calculation seem s m ysterious. How did we guess
that I + B X A works as the inverse for | | BA? Here
is a key to the m ystery. Suppose a;b are num bers and
Jabj< 1:Then

(i ab)it = 1+ ab+ abab+ ababab+ ¢¢¢
(Li ba)i' = 1+ ba+ baba+ bababa + ¢¢¢

If the rstquantity is x, then the second one is 1+ bxa.
Thissuggests to uswhat to try in the m atrix case.

This proof gives no inform ation about m ukip licities of
eigenvalues j algebraic or geom etric j since it doesnot
involve either the characteristic polynom ial or eigenvec-
tors. Thisapparentweaknessturnsinto a strength w hen
we discuss operators on in nite dim ensional spaces.

Let H be the Hilbert spacg, l, consisting of sequences
X = (Xi3Xz;::) forwhich & kxjk? < 1 . LetA be
a bounded linear operator on H . T he spectrum of A is
the set % (A ) consisting of all com plex num bers , such
that (A j ,1)it existsand isa bounded linear operator.
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The point spectrum of A is the set %pt(A) consisting of
all com plex num bers, for which there exists a nonzero
vector v such thatAv = ,v. In this case , is called an
eigenvalue ofA and v an eigenvector. The set%(A) isa
nonem pty com pact set while the set %, can he em pty.
In other words,A need not have any eigenvalues, and if
itdoes the spectrum m ay contain points other than the
eigenvalues (U nlike in nite-dim ensional vector spaces,
a one-to-one linear operator need not be onto: and if
it is both one-to-one and onto its inverse m ay not be

bounded.)

Now let A;B be two bounded linear operators on H .
Proof7 tellsusthat the sets% (AB )and % (B A ) have the
sam e elem entsw ith the possib le exception ofzero. P roof
6 tells us the sam e thing about %pt(A B ) and %pt(B A):
It also tells us that the geom etric m u ltip licity of each
nonzero eigenvalue is the sam e for AB and B A . (T here
IS no notion of determ inant, characteristic polynom ial
and algebraic m ultip licity in this case.)

The point zero can behave di®erently now. Let A ;B
be the operators that send the vector (xi;x;;::2) to
(0;x15xz5::) and (xo;x3;5::7) respectively. Then B A is
the dentity operator whil AB is the orthogonal pro-
jection onto the space spanned by vectors whose rst
coordinate is zero. T hus the sets % (A B ) and %pt(A B)
consist of two points 0 and 1, while the corresponding
sets for B A consist of the single point 1.

A nalcommenton rectangular m atrices A ;B . Ifboth
products AB and B A make sense, then the nonzero
eigenvalues of AB and B A are the same. W hich of the
proofs shows thism ost clearly ?

Unlike in finite-
dimensional vector
spaces, a one-to-
one linear operator
need not be onto:
and if it is both
one-to-one and
onto its inverse
may not be
bounded.
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