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We investigate the perturbations of tensor operators due to symmetry breaking and consequent repre-
sentation mixing. A group-theoretical stability principle, valid for an arbitrary (simple, compact) group is
formulated, which in many cases assures the vanishing of the first-order perturbation when it is constrained
to leave a certain component unaltered. The physically interesting case of unitary symmetry is discussed in
detail. All previously known results are recovered and several new results are deduced. As an application
we discuss the conditions under which the universality of the Cabibbo angles for leptonic decays is valid.

INTRODUCTION

IGHER symmetries of strong interactions that

have been proposed in recent years have been
remarkably successful in the organization of the data
on particles and resonances. But they all share the
property of being broken appreciably, either by virute
of interactions of lesser strength which violate these
symmetries or by virtue of some other mechanism. In

* Supported in part by U. S. Atomic Energy Commission.
1 On leave of absence from Tata Institute of Fundamental

Research, Bombay, India.

the case of unitary symmetry and the spin-dependent
symmetries these symmetry violations as manifested
by the observed mass differences are appreciable.
Nevertheless, it is remarkable that a considerable
remnant of the symmetry survives in the observable
features like supermultiplets and mass and coupling
constant sum rules. Thus, for example, the identification
of the sources of electromagnetic and weak interactions
to be octet currents seems to be in quantitative agree-
ment with experiment in spite of the large representa-
tion mixing expected in view of the departures from
unitary symmetry. We should therefore search for a
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spectroscopic principle leading to the stability of the
tensor type of dynamical variables.

To lowest order in the perturbation such a stability
principle can be identified for those dynamical variables
which are the generators of the group for an arbitrary
type of perturbation. For this purpose consider a (simple
compact) symmetry group G and a set of states |¢.)
which constitute, in the symmetric limit, an irreducible
representation 4 of the group G. Let X, be the gen-
erators of the group G. As soon as symmetry violations
are considered the states |y,) will no longer belong to a
pure representation of G but will contain admixtures of
several irreducible representations of G, not all neces-
sarily distinct. We may write an expansion, valid to
first order in the perturbation parameter e in the form

W)= [¥u')te 22 CaPu?*|Xa)+0(&).

B.,8,A’,e’ 0

The normalization of the unperturbed state is un-
changed to lowest order in e. We have considered the
perturbation expanded in terms of tensors of type B
and component 3. The states | X) belong to the represen-
tation 4’ and the Clebsch-Gordan coefficient allows
for multiple occurrence of the representation 4’. We
now observe that the generators (conserved charges) X,
have their matrix elements unaltered to first order in e,
since X, do not connect |¢,% with |X,/). This result is
true for any kind of perturbation of the symmetry but
it holds only for the conserved currents. If the vector
current of weak interaction is identified as the conserved
octet current of unitary symmetry it follows that the
low-momentum transfer limit of the matrix element of
these vector currents are independent of the perturba-
tion to lowest order in the perturbation.!2

While this result is interesting it does not furnish any
explanation whatever of the corresponding behavior
of nonconserved currents, say the axial vector current
of weak interactions, or the electromagnetic decimet-
octet matrix element. Similar questions arise in connec-
tion with the predictions of the SU (6) theory for baryon
magnetic moments, etc. We are therefore led to an
investigation of stability of tensor operators perturbed
by suitable perturbations even in the presence of
representation mixing. As long as the tensor operator
is not a generator, a straightforward calculation yields
terms of first degree in e coming from the transition
matrix elements between the representations 4 and 4’.
Hence further constraints must be valid if these terms
are to vanish. This constraint may be imposed in terms
of the behavior of some components of the tensor
operators. In the following sections we carry out such
an investigation with particular attention to perturba-
tions of unitary symmetry.

1M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264
(1964). :

2C. Bouchiat and Ph. Mayer, Nuovo Cimento 34, 112
(1964).
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I. PERTURBATIONS OF SU(3)
Octet Perturbations of Octet Operators

Let Jg* be an octet of operators representing a
suitable set of dynamical variables, say the density of
the axial-vector weak interactions. In the absence of
violations of unitary symmetry these eight components
transform as the eight components of the adjoint
representation of the group SU(3). The second-rank
mixed tensor Jg® is traceless

»=0. (1.1)

In the presence of symmetry violation the operator
Jg* will still satisfy the tracelessness restriction, but
will not any longer transform as an octet. To lowest
order in the perturbation we may write

Jg2=Tg*+eTg%*+0(e?), (1.2)

where we have assumed the perturbation to transform
like the /=Y =0 component of an octet. We may
include a unitary singlet perturbation also; such a
perturbation will not alter the tensor character of T'g®
but can change its intrinsic character. For example,
the D/F ratio of the octet could be changed. If we now
consider the matrix element of the operators Jg®
between two octets of baryons represented as the
traceless tensors Bg* the general expression for the
matrix element of 7* is

£(B'B)g*+nB's'B,*,
where £, 9 are parameters. We denote by (BB)g® the

expression
3™ ve{ (B',*)3, (Bg’) o}

for the axial-vector current density. For the baryon
matrix elements Ag® of the term e7s%,* we may write

Age=a (B'B),,“6f+a2 (BTB)gxﬁy“+blBT,s”B,z5y“
+8,B,B,*647+cBt4*B,*+dB',*By*
+e(BTB)Ba‘Suz+foBvaa‘suz’*"j(BTB)vvauaaﬂx
+g(BJ'B),”ﬁ,,’”é,g“-l—hlBTp“Bf—I-thT,,“Ba“

+k(B'B),"3%. (1.3)
The tracelessness of Ag* gives the constraints
a1+as+c+3k=0,
b1+b2+d=0, (1.4)
j+3g+e+f=0.

We now require that the a=g8=1 component of Jg* is
unchanged to first order in the perturbation parameter
e. This component is the electric-charge component of
the operator; for a conserved vector current it is the
density of electric charge and its matrix element in the
zero-momentum limit is strictly unchanged. For the
general case of a tensor operator, say the axial-vector
current density, this requirement of A;* vanishing to
lowest order in € is ¢ dynamical postulate which has to
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be justified. If we impose this requirement, we get

637133 31+dBT31-Bla+g (BTB)y”+hle1lB33+thfaaB !
+e(B'B){'+ Bt ?B,\+k(B'B)#=0.

This entails the constraints

c=d=e=f=g=h1=hy=k=0. 1.5
[It is worth pointing out that the perturbation con-
sidered is a mixture of singlet and octet perturbations.
If the perturbation were pure octet type, it would be
traceless in «, y and this would imply the constraints

a1+ as+-d+-3e=0,
bi+be+c+3f=0,
j+3g+k£=0.]

There exists a two-parameter family of perturbations
which satisfy the constraints

al+a2= b1+b2=6= d: e..—..f: g=j=h1=h2=0
of the form

a'{(B'B),*3s"— (B'B)s"8,%}
+¥{B'yB,*8,2— Bt ’B,6s%}. (1.6)
This term, however, has the opposite charge-conjuga-
tion invariance property (second class) from the
unperturbed terms. [The ‘terms with the opposite
charge-conjugation property are got by putting

G Fae=b1+bo=hithy=c=d=e= f=g=j=k=0.

If the electric interaction has no such contribution,
hi=hy=0 and we get the two-parameter family given
in (1.6).] Hence, if the perturbation is assumed to be
charge-conjugation invariant, we may put ¢’=5'=0
so that

Ag=0. @.n
Hence if the a=B=1 term of the current has matrix
elements unchanged in fensor character from the corre-
sponding unperturbed matrix elements, the entire set
of operators have their tensor character unchanged to
first order in the perturbation.

Octet Perturbations to Second Order

We can carry out this calculation to second order in
the perturbation. The correction term would now
include a quantity of the type €#T5%?%®. The new kinds
of terms that have to be added to Ag* to obtain the
expression correct to second order are of the form

PIBT33Ban663+pZBT63B3363a+qlB1'3aB33653
+q2BT33Bﬁ353a+r(BTB) 33534153

+sB'yB,303%85°+ 1B Bs*6g*, (1.8)
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a+atc+r+3k=0,
b1+b2-l—d-l—s=0,
prtpetqitgat+3t=0, (1.9)

c+d+e+ f+j+38=0,

following from tracelessness of Jg*. With a charge-
conjugation invariant perturbation there would be the
additional constraints

(1.10)

If we required that the a=8=1 component of Jg* is
unaltered we can deduce

c=d=e=f=g=h=hy=k=1=0.  (1.11)

Hence the general perturbation of the octet Jg* to
second order in a charge-independent, charge-conjuga-
tion invariant perturbation is given by

Ag?=a{ (B'B)y*85*+ (B'B)s%65— 2 (B' B) 3;%64"}
+b{B'yB,*55+ Bl ¢'B,%6:2— 2B' "B, 3552543}
_I_P{ (BT33B3OL_ BTaaBSS) 6ﬁ3
+(B'#Bs—B'$#Bs*)06:%) . (1.12)

In addition to the sum rules generated by charge
independence, in this order there is one sum rule.

For second-class amplitudes there is a five-parameter
family given by

a'{ (BTB) 3a6ﬂ3_ (BTB)B363¢X} +b’{BTﬂvB”353a_. BTszyaaﬁii}
+h'{BTaaB33__ B'I'33Bﬂa} +p’{B’3333a6ﬁ3_ BTB3B3363'0:}
+q,{BT3aB33533—BT33.B§353“} . (113)

If, however, the electric interaction has no second-class
contribution %’ is restricted to be zero.

In third order of symmetry violation, in general only
charge-independence restrictions are valid. The first-
order perturbation results were obtained earlier by
Ademollo and Gatto.! The sum rules involving only =
and A hyperons that they obtain are consequences of
charge independence only.

The second-order perturbation results have been
derived by Zakharov and Kobzarev.? Both these groups
of authors have restricted their consideration to vector
currents which are conserved in the absence of perturba-
tions. We have remarked in the previous section that in
such a case the first-order results could be immediately
obtained for an arbitrary kind of perturbation.? Our
analysis above shows that the result is valid much more
generally when the tensor operators are not generators
of the group G. The essential point is the constraint
imposed on the charge-like component. In a subse-
quent section we discuss the case of the axial-vector
interaction.

3V, I. Zakharov and I. Yu. Kobzarev, Soviet J. Nucl. Phys. 1,
749 (1965); K. Kawarabayashi and W. W. Wada, Phys. Rev.

137, B1002 (1965). We thank Dr. S. Pakvasa for bringing these
works to our attention.

01— @e=b1—bs=h1—ha= p1— po=q1—¢q2=0.
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The restriction to octet currents and octet-type
symmetry violation studied here was made in view of
the physical relevance of such a scheme. The same type
of result would apply even if the scheme is suitably
altered. In the next section we study two examples.

General Perturbation of SU(3) Tensors
(2) 27-Type Perturbations of an Octet Tensor

Let Jg= continue to denote a (traceless) octet of
dynamical variables in the symmetric limit. Let us
consider a perturbation of the unitary symmetry which
behaves like the /=Y =0 component of a 27-dimen-
sional representation. The 27-type tensor can be dis-
played as a fourth-rank mixed tensor symmetric in
the upper indices, symmetric in the lower indices and
traceless. The first-order perturbation correction can
now be written in the form

Agr=e{Tp** —§ T +16 %"}, (1.14)

which we will denote by the symbolic expression
Ag*=¢€Tg% - -,
The baryonic matrix elements have the general form
Ap"‘=ale."B_'55'+agBT,'35'5,“+b1B“,'B,°‘63'
+b:B'sB.-5.*+cB' ’B,6.%6¢°
+d(B'B).-6 %6 +eBf -B.-g2. (1.15)

The tracelessness of Ag* yields the constraint '

a1+as+b1+b:+3e=0. (1.16)

The requirement that the electric-charge component
vanish gives

A11=0,
which entails

atas=b1+b:=a1+by=c=d=¢=0.

This conclusion would have held even if the perturba-
tion was a mixture of 27 type and 1 type so that

Ad+p(BY'Br—3(B'B)y)+4q(B'vB,'—%(B'B),) =0,
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which would imply
p=q=0.
The general kind of perturbation is of the form
Aﬂa=a’{BT'aB..aﬂ._BT..BB.(S.a
+B' -B.2g—Big:B 5.}, (1.17)

This term has, however, the wrong charge- conjugation
property since charge-conjugation invariance implies

(1.18)

Thus provided, the electric component continues to
behave like a component of an octet no first-class
contributions can arise; for second-class contributions a
one-parameter family survives; it will imply no second-
class contributions to the electric component.

(11—02=b1— b2=0.

(%) Octet Perturbations of a 27-Type Tensor

As another example let us consider the perturbations
of the 8 type but now consider the matrix elements of
a 27-type operator. An operator of the 27 type can be
realized by a fourth-rank mixed tensor symmetric in
its two upper indices and its two lower indices separately
and all whose contractions vanish. If M;*,f is a tensor
satisfying

M f=MP2=M,P,
then its 27-type part is given by
Jeof=M P —3{ M P04 M0 =0°

+M0U aanﬂ'i'Mv’Eﬂana}

+(1/20) M ,°,7 (8¢%3,P+58,%0:%) . (1.19)
If we denote this expression by M .- and the corre-
sponding 27-type part (with respect to the indices o3£7)
of the tensor M;*,fs® by M - -5*, we can write down the
first-order perturbation correction in the form
A =0a,Bt 3B -85+ asBt :B36 34-b.B" B 355

+b2B'yB.-8.5+¢(B'B).-6 %85
~+dBt?B,6 353 +eBf ‘B.-853.  (1.20)

The requirement that the “electric component” a=g
= ¢=y=1 vanish gives the relation

a1{4(3'r33311+3113331)_ (BTB);;S} +az{4(BT11B33+BflaB3l)—.BTa"B,,a}+b1{4(BfalBls+Bf11B33)'— (B'B)s*}
+bz{4(BT33B11+BT31B13) — BTa"Bﬁ} +¢{3(B'B),'— (BTB).,"} -I—(l{SBTl"B,,l— (B'B),"}

—e{20B",'B,'—4(B'B),!—4B'B,'4- (B'B),’} =0.

This enables us to infer that
aG=—0ay=—b1=by; c=d=e¢=0,

so that the first-order perturbations belong to a one-
parameter family

A -=d (B' B 8y—Bt By —B' ‘B363y+BiyB.63).
(1.22)

If we now make use of charge-conjugation invariance

(1.21)

which demands
a1=as,

b1=bs,

we could conclude that the first-order perturbation
vanishes.

II. STABILITY OF TENSOR OPERATORS
UNDER PERTURBATIONS

The computations in the last two sections point to
the existence of a group-theoretical stability principle
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which assures the vanishing to first order of the pertur-
bation of a tensor operator provided a suitable compo-
nent is held fixed. We have been able to state and demon-
strate such a stability principle: It can then be shown
that a variety of results of the type discussed in the
earlier part of this paper can be deduced under weaker
conditions. The principle can be stated in a fashion
which is applicable to any (simple compact) group G
though our interest is primarily in the unitary groups.

General Theory of First-Order Perturbations

Let o stand for the complete set of labels for the
components of an irreducible representation 4 of the
group G. We shall choose the labels in such a fashion
that the symmetry-breaking interaction transforms
like a specific component 8 of an irreducible representa-
tion B. Given any two representations 4, R we can
construct the component o’ of the irreducible rep-
resentation 4’ occurring in the product of 4 and R
making use of the Clebsch-Gordan (CG) coefficients:

‘/’a'A"a'_‘ Z CaAﬂRa’AI ’a‘paA‘/’pR . (2- 1)
a,p

The same representation 4’ may occur more than once
in the product of 4 and R; in that case we could choose
any linear combination of the relevant CG coefficients.
We can choose these coefficients so that the matrices
U(R,a,0) whose matrix elements are given by

4
Ua’a = CaApRa'A @

2.2)

constitute a set of trace-orthonormal and complete
set of matrices. As an immediate consequence of their
completeness and orthonormality any matrix M4, can
be expanded in terms of Uy, in one and only one way.

Consider now a set of operators J, which, in the
symmetric limit, behave like the components of a
tensor of type R. Under the effect of a perturbation
which transforms like the 8 component of a tensor
operator of type B with, possibly, an additional singlet
perturbation, to first order in the perturbation, the
operator J, may be written

]p=SpR+ TpRﬂB
=S, 4 20 CofgB BTy Bior,

R’rp’

(2.3)

If we now compute the matrix element of both sides
between states belonging to the representations 4 and
A’ we may write

(Ao! [T, da) =20 Co? Far®2t(s)+ 20 CoFpPp ™"

R’rp’

X Co pr® 5t (r,R)5).  (2.4)

This equation is valid (to first order in B) for every
component of J,. If we further postulate that the
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special linear combination
297,
P

happens to have matrix elements which coincides with
the matrix elements of the same linear combination of
a suitable tensor J,® of the type R, with reduced matrix
elements j(s) which may or may not be equal to #(s),
we then have the relation

2 ¢*{X UR,s,0)t(s)

+ 2 CRgPy B rU(R5,0")t(r,R )}
R'rp’s
=2 ¢ 2 URsp)j(s). (2.5)
P s

Because of the linear independence of U(R,s) we now
deduce that

¢*0re{t(s) = (N} H2 ¢°CoR6%p 7t (r,R',5)=0. (2.6)
pr

This is the fundamental equation. It is interesting to
note that no immediate reference to the representations
A and A’ appear in this equation. As is to be expected,
the structure of these equations is independent of s.
However, indirectly the set of nontrivial representations
R’ that can contribute depends on 4 and 4’. For the
case of R#%R’ we have the simpler equation

2 ¢°C gy R rt(r,R 15)=0. 2.7
pr

In the case of SU(3) violation 8 refers to an =Y =0
component so that unless p=p’ the CG coefficient
vanishes; hence for all p for which ¢?>0 we get

2 C BB R ri(r, R 5)=0, ¢r5%0. (2.8)

Hence, unless for all such p the CG coefficients are
linearly dependent, we can deduce that

i(r,R',5)=0, (2.9)

and hence we may drop the corresponding tensor
contribution of the first-order breaking. Thus, for
example, in the SU(3) case for R=_8 and B=8 we know
that the CG coefficient does not vanish for the
p={I=1, Y=0} component for R'=27, 10, 10*. Hence
from the isovector components alone we deduce that
the corresponding reduced matrix elements are all zero.

For the R'=R cases we have an equation of the form

2 ¢°CoR 6Py ®ori(r,R,5)+ g7 [1(s)— () ]=0.
p,T

We again consider the special case where § is such that
p=p' for the CG coefficient not to vanish. Then for
all p for which ¢# did not vanish, we could deduce

Z CR,nu(r,R,8)=j(s)—1(s).  (2.10)
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Since the right-hand side is independent of p the left-
hand side should also be independent of p. However
this is not in general true; if ¢* is nonvanishing for more
than one value then at least one of these representations
should be absent.

For the particular case that B behaves like the
adjoint representation, we know that in general one of
the CG coefficients reproduce the matrix elements
of the generators (antisymmetric in the two representa-
tions R) and the other CG coefficient is symmetric in
the two representations R. For the SU(3) octet type B
these are the usual F- and D-type octets. For the CG
coefficient realizing the generator matrices, the CG
coefficient vanishes for the =Y =0 component for the
(nonstrange) values of p for which ¢g°0. Thus it follows
that the corresponding reduced matrix element #(FRs)
is the only nonvanishing one. :

Application to Special Cases
We now examine each case in turn.
() R=8, B=38, ¢*5#0 for I=1, Y =0 only.

This already eliminates all reduced matrix elements
except R'=8, r=F-type CG coefficient. (But charge-
conjugation invariance of B now makes this coefficient
also vanish for the baryon-baryon vertex.) It is interest-
ing to note that the /=0, ¥=0 component was not
constrained. This observation will be important in the
application to the stability of the axial-vector octet.
The =0, Y =0 component could not replace the 7=1,
Y=0 component since the R’=10, 10* reduced matrix
elements would then not necessarily vanish.

(i) R=27, B=8, g0 °or I=1 ¥=0 only.

All reduced matrix elements should vanish except
R'=27, r=F-type CG coefficient. (Charge-conjugation
invariance of B makes this also vanish for the baryon-
baryon vertex.) Note that we have not used the I=Y
=0 component. If instead of the /=1, ¥ =0 component
we used only the /=Y=0 component, the reduced
matrix elements for R'=35, 35%, 10, 10* would not be
zero. Of course if we are considering baryon matrix
elements of J, the 35 and 35* contributions would
identically vanish.

(i#i) R=8, B=21, ¢#50 for [=1, ¥=0.

The only reduced matrix element not eliminated is
for the case R=27 and one coupling (called 27, by
deSwart). (Charge-conjugation invariance ' eliminates
this also for the baryon-baryon vertex.)

It is relevant to point out that the results obtained
from (2.6) are more general than the explicit calcula-
tions of the previous sections, since they are valid for the
entire operator without anmy restriction on the tensor
character of the initial and final multiplets A and A’,.

STABILITY OF TENSOR OPERATORS

1429

provided the requirement

2 q"{TpR+RZ C, BB BT, B} =3 gvg, B (2.11)
P ‘rp’! P

holds valid when the matrix elements between the
multiplets 4 and A’ are taken. Thus, if we require that
the pion-baryon octet-baryon decimet vertex is of an
octet type it would follow that, to first order in sym-
metry violation, the octet of pseudoscalar-octet-decimet
vertices continue to remain octets. Observation that the
magnetic moments of the decimet-octet transitions
behaved like an octet would likewise imply that the
corresponding weak-magnetism terms would behave
like an octet.

Perturbations in Higher Order and
Mixtures of Perturbations

We now deal with the question of treating perturba-
tions to higher order and of treating perturbations which
are not components of an irreducible tensor but are a
linear combination of several such. We have already
considered the question of the admixture of a nontrivial
singlet term added to the perturbations. We shall see
that the two problems are interrelated.

(¢) Mixtures of Perturbations

Let us first consider the case of a perturbation which
is a linear combination of various types B’ with the
component 8’ labeled in the same fashion. The first-
order perturbation equation now becomes

J,=S2+ Y ¥ C,EsB BT, BB (212)
B/,BI R’,T,ﬂ'

The constraint equation may now be written without

loss of generality in the form

Z Z qupRﬁ’B'p'R”'l(B’fR,S)=0.

(2.13)
» BIf'r

In the case of SU(3) we would restrict B’ to the self-
conjugate representations and B’ to be the I=¥Y=0
component, so that this equation may be simplified to
yield

Y C,RB B t(B'rR's)=0, ¢°50. (2.14)
B'r

For each value of p for which ¢* is nonvanishing we have
an equation connecting the reduced matrix elements
{(B'rR’s) for R';s kept fixed and B’, r varied. These
equations may or may not require the reduced matrix
elements to vanish. In general, several of these reduced
matrix elements will be nonvanishing, but with definite
relations between them.

As an example consider the case where B’ runs over
the representation 1, 8, 27 with charge-conjugation
invariance imposed and where R is an octet. The



1430 E. C. G.

possible values of R, » are

R yr=[1;8;; 85; 10; 10%; 27 B'=8
—18.10; 10%; 27,; 27,; 35, 35%, 64 B'=27
=18 . B'=1,

Among these only the R’=8 have both types of matrix
elements within the baryon octet; if it is an octet-
decimet vertex it has only one matrix element; we may
now look up* the CG coefficients C, %% %", where p
has Y=0 and I=0, 1. Equation (2.14) for I=1, ¥=0
yields

10
—1(27,64,5)=0,
W,
4
(\/'13_0)t (8)27’3)_‘_\77_01 (27,27175) =0 ’

1 2
1(8,81,5)———1(27,8,5)=0, (2.15)
Vs

/5
31(8,10,1)+34(27,10,1) =0,
14(8,10%,1)—3£(27,10%,1)=0,
/5 2/5
23 01 35,9 =2Y 217 35% ) =0,
9 9
For I=0, Y=0 they yield
—1(27,64,5)=0,
A7

4
2(V5)1(8,27,8) ——1(27,274,5)=0,
(V) s) V70 ( 15)
) ) (2.16)
1(1,8,5) =—1(8,81,5) ——#(27,8,5)=0,
(1,8,5) s (8,81,5) s ( )

1
——1(8,1,5)=0.
2\/2( )

These equations do not impose any restrictions on
£(8,82,5) and #(27,27,,5). By virtue of the constraint
equations we deduce

£(27,64,5)=1(8,27,5) = £(27,27T1,9)
=1(27,35,5)=1(27,35%,5)=1(8,1,1)=0,
£(27,10,1) = —34(8,10,1) ,

(2.17)
£(27,10% 1) =+34(8,10%,1) ,
3
£(27,8,5) = +24(8,81,5) = +—(1,8,5).
(27,8,5)=+31(8,84,5) \/5( )

Under charge conjugation the two reduced matrix

47. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).
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elements #(8,8,,5), #(27,272,1) are both constrained to
vanish since the corresponding CG coefficients vanish.
No constraint is imposed on £(27,8,s), £(8,8,5), £(1,8,s).
Charge-conjugation invariance requires

#(8,10,1)=1(8,10%,1),

£(27,10,1)=—1#(27,10%1) , (2.18)
which are consistent with the restrictions already
imposed on the reduced matrix elements by the con-

straint Egs. (2.17). Thus the nonvanishing reduced
matrix elements are

t(27’873) =%t(8:8173) = (3/\/5)l(1,8,3) )
£(27,10*,1)=351(8,10%,1)=$4(8,10,1)
=—1(27,10,1).
For the baryon-baryon vertex we have a three-param-
eter family (F- and D-type octet matrix elements and
the 104-10* matrix elements), while for the baryon-
baryon resonance vertex there are a two-parameter
family of matrix elements. For the baryon-baryon

vertex a direct calculation gives the general change in
the current:

Ag*=a{ (BT.B) 3%0g%+ (BTB)ﬁ353“— 2 (BTB),,”63°‘553}
+b{BTIg”B,,a5ﬁ3+BT5”By353a— 28%"3,,3530‘553}
+6{Bta333“5ﬂ3+37a333353“

— BT 3a'B336ﬁ3_ BT33BB363¢!} s

(2.19)

(2.20)

in accordance with the above conclusion.

(#2) High-Order Perturbations of SU(3)

To treat perturbations of a definite tensor type B in
higher order we may proceed as follows: In second
order we have

Jo=S8,+T BB+ T, "%,
We may rewrite

T RePsB= 2 T, *CaPePp® =3 T,Fe®, (2.21)
Blbﬁ' Blﬂl

where the coefficients CgPgBs'B’? are independent of R
and p and 7,4 B’ are a set of tensors. The problem of
second-order perturbation of pure tensor type B is thus
essentially the same as the problem of perturbations to
first order by a linear combination of perturbations B’
(which occur in the product of B with itself). For the
case of SU(3) the component 3 is taken to have =¥V =0
so that the sum on 8’ can be omitted. The same proce-
dure can be continued to arbitrary order in the perturba-
tion; in each case we would couple the tensor product of
B with itself to the required order and treat the mixture
of representations so generated considered as an effec-
tive perturbation to first order.

As an example, consider the perturbation of the octet
type in SU(3) taken to second order. The familiar
reduction rule 8X8=1+48-+48-410+10*+427 together
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with the restriction to the /=Y =0 component tells us
that the effective perturbation is a mixture of 1, 8, and
27. This is therefore essentially the problem discussed
above. To study the perturbation of an operator of
type R we would now proceed to couple R and B’ to
obtain R/, r and so on. For the special case of R=8 we
get to second order in an octet perturbation a 3-param-
eter family of corrections to the baryon-baryon vertex,
provided the =1, ¥=0 and /=0, ¥=0 components
are both used to constrain the perturbations.

We can make further use of this analysis to study in
which order of what kind of perturbation all sum rules
would be lost. We again restrict attention to SU(3).
For the baryon-baryon vertex only R'=1, 8, 10, 10*, 27
have nonvanishing contributions. If R is chosen to be
an octet current it follows that B’ must be 1, 8, 27, or
64 to contribute. A mixture of 1, 8, 27, 64 for B’ would
therefore imply no restriction. If one or more of these
terms are absent they will imply corresponding sum
rules. (We point out once again that the singlet pertur-
bation is nontrivial in the sense that it can alter the
D/F ratio of the octet current.) An octet perturbation
taken to third order will generate all these terms for B’
so that no sum rule will survive for octet baryon-baryon
vertices ; the same will be true of a 27-type perturbation
to second order (or a mixture of 27 and 8 taken to
second order). A mixture of 1-, 8-, and 64-type perturba-
tion in first order would imply one sum rule: This case
is of interest in that the 64-type perturbation cannot

contribute to the mass formula and this mixture of*

perturbations would give a pure octet mass formula in
first order. Incidentally, if we were considering a singlet
operator like the mass and its perturbation it would
follow that B’ must be restricted to 1, 8, 27 for baryons
and hence the baryon mass formula is destroyed in the
second order of an octet perturbation.

For the octet-decimet transition vertex of octet type,
B’ must be restricted to the same values 1, 8, 27, 64
and hence no sum rules survive in the third order of
octet perturbations while in second order one sum rule
survives. For the mass operator within the decimet we
would be able to have B’ run over all these values and
hence there is a mass formula to second order. For the
decimet-decimet vertex of octet type, B’ could be
allowed to run over the values 1, 8, 27, 64, 125. Hence in
third order of octet perturbation there will be one sum
rule (coming from the absence of 125). However, if we
consider a 27-type perturbation even to second order
this will be destroyed.

III. STABILITY OF VECTOR AND AXIAL
VECTOR OCTETS

Following Ademollo, Gatto,! Bouchiat and Meyer,?
one could provide some grounds for considering that
the vector current in the leptonic decays of hyperons
(or the three-body leptonic decays of mesons) continues

to remain an octet in spite of SU(3) violations of the
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first order. We emphasize that as long as the vector
currents are considered to be conserved in the absence
of symmetry violation, it is unchanged under an
arbitrary perturbation treated to first order. To second
order there are perturbations, but there is one sum rule
which has been discussed already by Zakharov and
Kobzarev,?

{V(EZH)+V(En)}
+ WOV (EA)+V(Ap}=0. (3.1)

For the decimet-octet transition through a (weak)
conserved vector leptonic transition we have the transi-
tions vanishing to the lowest order for the simple
reason that the baryon decimet is a §* system and hence
the transition to the baryon octet of 3+ particles can
take place only through a Gamow-Teller transition. One
may consider, however, the momentum-dependent
transition form factors, in particular the magnetic
moments for electromagnetic transitions. The assump-
tion that this magnetic moment behaves like an SU (3)
octet gives rise to the familiar relations®

RV = p) = (V% — ) = — (V¥ — 3¥)

2
=2u(V*— 20 = —\73-[4(1/*0—-) A)

—

= _#(E*O - ':‘0) )

(3.2)

with the other transition moments u(¥*— =),
w(E*=— E~) vanishing. If one considers the transition
moment to be the a=f=1 component of an octet of
operators whose a=2, 8=1 and a=3, 3=1 compo-
nents, respectively, yield the strangeness-conserving and
strangeness-violating Gamow-Teller matrix element (for
small-momentum transfers) we conclude that similar
relations hold for these leptonic decay amplitudes as
well. For the strangeness-conserving weak-interaction
amplitudes we get

W(N*— p)
1
=—VIW (V% — 2+)=\73_W(N*———> n)

== W@ —E)=— (VW (T*— )
=—\2W(Y*—ZH)=4+V2W (V* -3, (3.3)
and for the strangeness-violating decays the relations
VIW (V%0 — ) =W (V*=— n) = — (y I (2 — )
=—W(E¥ — ) =V2W (E*~ — 20)

=—W@Q—E%. @G
" @—E9). (3.4)

5 A. J. Macfarlane and E, C, G, Sudarshan, Nuovo Cimento
31, 1176 (1964).
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In general we would expect these relations to be lost
when an octet perturbation is considered.

We shall restrict the perturbation by the requirement
that the magnetic-moment relations (and hence the
corresponding strangeness-conserving Gamow-Teller
matrix-element relations) are unchanged by the
perturbation. The strangeness-violating amplitudes
would then be perturbed. It turns out that this per-
turbation has the curious property of preserving the
relations (3.4), but uniformly scaling all the strangeness-
violating matrix elements by the same factor (relative
to the strangeness-conserving amplitudes). Thus the
net result of the perturbation within this framework is
to change the Cabibbo angle for the leptonic decays of
the decimet.

It is interesting to note that the remarks made in the
Introduction about the lack of renormalization of any
conserved operator, to lowest order in an arbitrary
perturbation, does not hold for the octet-decimet
transitions since the perturbations on the decimet could
produce an octet or vice versa. Hence, in this case, a
conserved operator could have transition matrix
elements in first order of perturbation.

However, the leptonic axial-vector matrix elements of
baryons also seem to transform like an octet with the
same Cabibbo angle.® In this case we certainly cannot
make use of any conserved current. If we believed that
the chiral SU(3) X.SU (3) scheme gives a good descrip-
tion of the baryons the axial-vector current also would
be conserved in this limit.” But this limit is expected to
be rather poor for the physical baryons; in any case it
would not be satisfactory to talk about the symmetric
limit in the chiral group and first order in SU(3)
violation. We must look for an alternative justification.

If, on physical grounds, we could guarantee that
the I=1, Y=0 component of the axial-vector current
is not affected by the symmetry violation, we could
appeal to our earlier results to show that to first order
in the perturbation the entire axial-vector current
should remain an octet with the same Cabibbo angle
(between the AS=0 and AS=1 components). We
emphasize that the /=1, ¥=0 component alone, which
enters strangeness-conserving weak decays, have been
used to constrain the amplitude. It follows that to
first order in SU(3) violation, the Cabibbo angles for
the vector and axial-vector interactions must be equal.
If we believe that the pure octet nature of the strange-
ness-conserving decays remains valid to the second
order in the perturbation, the Zakharov-Kobzarev sum
rule should hold equally for the axial-vector amplitudes
to second order. Related arguments could be applied
to discuss the ratios of octet-decimet transitions in
reactions initiated by high-energy neturinos.

6 N. Cabibbo, in Proceedings of the XIIIth International Con-
ference on High Energy Physics, edited by M. Alson-Garnjost
(University of California Press, Berkeley, California, 1967).

7 G. S. Guralnik, V. S. Mathur, and L. K. Pandit, Phys. Letters

20, 64 (1966); J. Schechter and Y. Ueda, Phys. Rev. 144, 1338
(1966).
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In searching for a constraint on the I=1, V=0
matrix element we note the following circumstance:
The Adler-Weisberger relation?® for the renormalization
of the axial vector current in nuclear 8 decay,

1 . 4M2/ Wdw (1) )
—=1l—-— — {7 —0o~ ,
ga? g2 W2— M2

is in good agreement with the experimental value. The
pion total cross sections used here get their major
contribution from final states without any kaons. It is
likely that the same would be true for the axial-vector
renormalization constants of other baryons also. To the
extent that the violation of SU(3) invariance is imple-
mented through baryon and meson mass differences it
is plausible that the renormalization constants for the
strangeness-conserving (8 interactions are not affected.
If we accept this argument it implies that the I=1,
Y=0 components of the axial-vector current remain
unchanged by perturbation of SU(3) ; they are of course
renormalized (and the D/F ratio may have been
changed) but the renormalization is invariant under
SU3).

Universality of the Cabibbo Angle

The two-body leptonic decays of pions and kaons
proceed purely via the axial-vector interaction. In this
case we know that only an 8-type tensor could cause the
transition. For I=1, ¥=0 particles (the pions) the
weak-decay amplitude could be taken as a component
of a pure octet coupling. Assuming that the absolute
value of this amplitude is unchanged by SU(3) per-
turbations to first order in SU(3) violation there
should be no violation of the octet nature of the meson-
decay amplitude. In particular the Cabibbo angle for
the meson two-body leptonic decays must also remain
unrenormalized to first-order symmetry violation.

If we choose the vector and axial-vector Cabibbo
angles to be the same in the SU (3) limit, we have thus
deduced to first order in the SU(3) symmetry breaking
that the “observed” Cabibbo angles of vector and
axial-vector baryon decay amplitudes, the three-body
leptonic modes of mesons, and for the three-body
leptonic modes of mesons must all be equal. This result
is in good agreement with experiment.®

While in most of the applications we have restricted
attention to SU(3) symmetry and its violations, they
could be equally well adapted to the discussion of
departures from SU(6) and other such symmetry
groups. The tensor analysis on these groups is much
more complicated and we shall not be able to deduce the
results in such an immediate fashion. We hope to study
these questions elsewhere.’

8 W. I. Weisberger, Phys. Rev. Letters 14, 1047 (1965); S. L.
Adler, ibid. 14, 1051 (1965).

9 Note added in proof. A term of the type Bt,*B,#55* in Eq. (1.3)
has been omitted, since it is expressible as a linear combination

of the terms included in this equation. We thank Professor A.
J. Macfarlane for pointing this out to us.



