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The quantum theory of the infinite-component Majorana field is formulated. The present paper dis-
cusses the three classes (slower than light, lightlike, and faster than light) of solutions to this equation and
their Wigner classification. Particular attention is paid to the question of the normalization of the faster-
than-light solutions. The current operator is shown to be timelike even for the spacelike solutions, and
it is shown to lead to a finite process of emission of light by charged Majorana particles. The quantum
theory of the Majorana field is formulated in accordance with the substitution law, and the usual con-

nection between spin and statistics is recovered.

I. INTRODUCTION

HE usefulness of the local covariant field descrip-
tion of particle phenomena has been amply
demonstrated in the successes of quantum electro-
dynamics and of the chiral ¥—A4 weak interactions. It
has been conventional in such treatments to use local
fields, each of which describes only one kind of particle,
with a definite mass and a definite spin. Many years
ago the late H. J. Bhabha systematically investigated
the possibility of describing a family of particles with
varying masses and spins by a single irreducible equa-
tion.! As a special class of such equations, Bhabha
studied relativistic wave equations of the form

(iT#9/dx*—Kk)p=0, (1.1)

where the matrices I'* together with the spin matrices
S# satisfied the commutation relations of the de Sitter

* Supported in part by the U. S. Atomic Energy Commission.
1H. J. Bhabha, Rev. Mod. Phys. 17, 200 (1945).

group. Of course, the S* themselves satisfy the com-
mutation relations of the homogeneous Lorentz group,
and the matrices I'* constitute a four-vector operator
with respect to this group. Bhabha’s additional assump-
tion was that the matrices I'* among themselves
satisfied the commutation relations of the form

[T 7 ]=i\Sw.

From this de Sitter structure, Bhabha was able to obtain
a mass-spin spectrum in which the mass decreased as
the spin increased. These equations include the spin-}
Dirac equation and the spin-0 and -1 Duffin-Kemmer-
Petiau equations. But except for these special cases,
the Bhabha equations lead to the necessity of introduc-
ing an indefinite metric of an unsatisfactory kind. This
difficulty can be traced to the unfortunate restriction
to finite-component fields, which necessarily correspond
to nonunitary representations of the homogeneous
Lorentz group. We should therefore relax this restriction
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and search for Bhabha equations for infinite-component
fields.

It is curious that the simplest of such equations were
discovered by Majorana? several decades ago, and were
rediscovered by Gel’fand and Yaglom. There are two
equations, one of which describes a family of particles
with integral spins, and the other a family with half-
integral spins. Both of them can be written in the stand-
ard form of Eq. (1.1), with I'* and S* together furnish-
ing a Hermitian representation of the Lie algebra of the
de Sitter group O(3,2).

In spite of renewed interest in infinite-component
wave equations and their group-theoretic basis, there
are several problems connected with the quantum
theory of such a system. The first concerns the apparent
possibility of restriction of the field to only one sign
of the frequency and the consequent danger of violating
basic features of conventional field theory like CPT
invariance and the substitution law. The second
difficulty concerns the existence of spacelike solutions
to these equations. It was also found that the usual
proofs of the connection between spin and statistics
were not valid in these cases.

It is the purpose of this paper to resolve these diffi-
culties and to present a quantum field theory of the
infinite-component Majorana field. Necessary for the
accomplishment of this task are two theoretical
formulations. One concerns the quantum theory of
faster-than-light particles.® The other is a theorem on
the connection between spin and statistics.

The present paper deals only with the Majorana field.
The treatment of systems more complicated but
physically interesting is reserved for a forthcoming
publication.

The material of this paper is arranged as follows. In
Sec. II, we examine in detail the algebraic properties
of the Majorana representations of 0(3,2) and the re-
duction of these representations under various sub-
groups of interest.® Section IIT discusses the different
kinds of solutions of the Majorana equations, with
special attention to finding the representation of the
“little group” that goes with each class of solutions.
The solutions are separated subsequently into Poincaré-
invariant and Poincaré-irreducible sets. In Sec. IV, we
consider normalization and completeness of the set of
spinor solutions of the wave equation for a fixed value
of the space momentum at various energies. While no

2 E. Majorana, Nuovo Cimento 9, 335 (1932); D. M. Fradkin,
Am. J. Phys. 34, 314 (1966); I. M. Gel’fand and A. M. Yaglom,
Zh, Eksperim. i Teor. Fiz. 18, 703 (1948); 18, 109b (1948); 18, 1105
(1948); V. Bargmann, Math. Rev. 10, 583 (1949); 10, 584 (1949);
E. Abers, I. T. Grodsky, and R. E. Norton, Phys. Rev. 159, 1222
(1261\74).' E. Arons and E. C. G. Sudarshan, Phys. Rev. 173, 1622
(1968); J. Dhar and E. C. G. Sudarshan, sbid. 174, 1808 (1968).

1 E. C. G. Sudarshan, Proc. Indian Acad. Sci. A67, 284 (1968).

5 A discussion of the Majorana representations is also given by
A. Bohm, in Lectures in Theoretical Physics, edited by A. O.
Barut and W. Brittin (Gordon and Breach, Science Publishers,

Inc., New York, 1968), Vol. X B; and D. Stoyanov and I. Todorov,
J. Math. Phys. 9, 2146 (1968).
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new features are expected in the case of the timelike
solutions, we justify the careful treatment of the space-
like ones and provide such a treatment. In Sec. IV we
also discuss the behavior of the “current” operator T, in
various kinds of states and its relevance to the spon-
taneous emission of radiation by spacelike particles.
Section V discusses the quantum-field theory of the
Majorana field, and the spin-statistics connection. In
the Appendix we summarize a few properties of the
discrete representations of the group 0(2,1).

II. PROPERTIES OF MAJORANA
REPRESENTATIONS

We describe here the mathematical properties of the
two ‘“Majorana” representations of the homogeneous
Lorentz group.

The de Sitter algebra 0(3,2) is generated by the
elements Sip (= —Spa) satisfying the commutation
relations

—i[San,Sep]=grcSap—gacSED

+g8pSca—ganScs, (2.1)
with
=gym=-4+1,
§oo= 8w 2.2)
g11=g22=g33= — 1,
and all other g45 vanishing. Letting y, », . . ., denote the

space-time dimensions 0, 1, 2, 3, we identify .S}, with
the (spin part of the) generators of the homogeneous
Lorentz group 0(3,1), and

I‘,":S,Js

as the four-vector operator in the wave equation. We
write

(2.3

Sjk=%€jka0m ’
Soe=1(1'otCn'T—nTCorn) ,

2.4
To=3atn+1), 24
= —Yi(n'oxCn' "4+ 97Cown) ,
where
[yt 1= e’ ]=1,
[n1,m2]=[n1,ma'1=0, (2.5)

C=’50'2.

Tt is easily verified that the construction (2.4) satisfies
the de Sitter commutation relations (2.1), and, by
inspection, we verify that it is Hermitian. It is, however,
reducible since the nontrivial operator

exp(imnTn) = exp[inr (204 1)]

commutes with all the generators. According as $1'n
is an integer or a half-integer, we have representations of
the de Sitter algebra which, on restriction to its O(3) sub-
group, describes integral or half-integral spin represen-
tations. In what follows we will find it advantageous to
deal with the generators (2.4) directly without explicitly
mentioning the restriction to one or the other of the

(2.6)
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two Majorana representations. When needed, we may
use the projection operators 3[ 12=exp(imn'n)] to these
two different representations.

The two representations of 0(3,2) provided by the
construction (2.4) are remarkable in that they remain
irreducible when consideration is restricted to the O(3,1)
subgroup generated by S,,. The two representations of
0(3,1) involved here are, in the conventional notation,
(0,3) and (3,0); these are the only irreducible repre-
sentations of O(3,1) permitting the construction of a
four-vector operator. The first one belongs to the supple-
mentary series, and the second one to the principal
series, of unitary irreducible representations of O(3,1).
The irreducibility under O(3,1) leads to many relations
among the operators S,, and I',, which we now describe.

There are two Casimir operators for the O(3,1)
algebra:

Ci= %S""’S,W , Co= %6”’")“’5,,.,5)\0- ’

2.7

and in the realization (2.4) they have the following
values:
el:%:

Cy=0. 2.8

At the 0(3,2) level, one again has two Casimir invari-
ants. To define the first of them we first define the
five-vector R4:

RA=1¢ABCDES, Sp (2.9)

and then contract R4 with itself. However, the com-
ponent R?® is nothing but the O(3,1) invariant @,
which happens to vanish. It then follows, since R4 is an
irreducible tensor operator under O(3,2), that R4
vanishes identically, for all values of 4. The extra
relations we obtain in this way are

R0= Jkl‘k= 0 )
Rj= Pofj—EjlekI‘z= 0.
We have used the customary notation Kj;=S¢ and

Jr=2%€t1mS1m. The other Casimir invariant of 0(3,2)
is the quadratic expression

%SABSAB=F“P“—(‘31. (211)
Either from the constancy of this expression, or more
simply from the irreducibility of the representations
under O(3,1) and from the fact that I'*T, is a Lorentz

scalar, we deduce that I'*T', must be a pure number.
Using (2.4), we easily deduce that

[T, = —1. (2.12)

We now examine this at the 0(3,2) level. Taking the
commutator of T'y with (2.12) we find that

{Sy,,T#} =0. (2.13)

It is clear that if we define an irreducible tensor 7'5¢
under 0(3,2) as

Tp={Spa,5*°} —305%{SD4,54}
={S54,54°} —85°,

(2.10)

(2.14)
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then (2.13) expresses the vanishing of the components
7.5 It follows that in fact 75¢ vanishes identically,®i.e.,

{SB4,S4C}=065°. (2.15)

In addition to (2.12) and (2.13), we obtain from (2.15)
(T2 Tu) = (S} — 8- (2.16)

Since the commutator [Th,T,] is equal to —iSy,, this

yields
Ih\[= —%’iS)\,,—I-%{S)w,S"#} _%gkn- (2'17)

Using these identities, which are characteristic of the
Majorana representations of O(3,2), we can obtain a
great deal of useful information about how the repre-
sentations reduce under various subgroups of interest.
First we consider the reduction under the maximal
compact subgroup O(3)®0(2) of 0(3,2). Here, O(3)
acts on the indices 1, 2, 3 and is generated by the oper-
ators J;, while O(2) acts on the indices 0 and 5 and is
generated by So;=T,. Thus the reduction would be
accomplished by simultaneously diagonalizing the
three operators: J2, J3, T, the first being the Casimir
invariant of O(3). However, by using (2.17) for the case
w=v=0, we see that the eigenvalue of I, determines that
of J%:

(To?=J*+1%. (2.18)
Thus in the reduction under O(3)®0(2), each repre-
sentation of O(3) goes with one representation of O(2).
The corresponding basis is called the “canonical basis”
since representations of 0(3,1) are usually expressed in
it; we shall write its elements in the form

Yim®: @it D i D)= 82 jmrm.-

The range of j values is the set of all integers in the
representation (0,3), and all half-odd integers in the
representation (3,0). On this basis we have

T im D= 7+ Dpin®, T im D =mifjn @,
Tjm® = (j+%)¢jm(1) .

[Notice that the vectors ¥, form a basis in spin

space alone, and that the scalar product used in (2.19)

also refers to this space.] In terms of the construction
given in (2.4), we can write

YinD=[(+m)\(j—m) T2
X (1" #+m(pgt)m] 0).

The matrix elements of all the components of K can be
determined from those of K3, for which we have

KlimO=3[(G+1)2—m* 141,
+3(P=m) Y 1 mD.

The matrix elements of I' can then be obtained by

(2.19)

(2.20)

(2.21)

(2.22)

6 A. Bohm (Ref. 5) has shown that if one starts with the de
Sitter commutation relations and imposes the identi.ties (2.10)
and,(2.15) one_ends_up with the_ Majorana representations.
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using the relation

= ¢~ G ToKgGr/2To, (2.23)

This same basis is suited to the reduction of the 0(3,2)
representation under an ‘“unphysical” 0(2,1)®0(2)
subgroup defined as follows: The O(2,1) acts on the
indices 0, 3, and 5 and is generated by T', I's, and Kj;
the O(2) acts on the indices 1 and 2 and is generated by
Js. We shall refer to this O(2,1) subgroup as 0(2,1); it
is not contained in the physical O(3,1) group. The
Casimir invariant of 0(2,1) is

0= (T5)*+(K3)>—(T0)?; (2.24)
by using (2.17) for u=»=0 and u=»=3, we find that
Q=+ G—Ts). (2.25)

Since J; is quantized, only the discrete-class unitary
irreducible representations (UIR) of O(2,1) appear,
and since T is positive definite, only those of the type
D, appear in the conventional notation. Thus we
find that for a fixed value of m (eigenvalue of Js) the
states ¥j,® for 72> |m| form the basis for the UIR
Dimi43 of the O(2,1) group generated by T, I's, and
K. Each UIR of 0(2,1) that appears, in fact, appears
twice; once for Js=m and once for J3= —m.

Next we consider the 0(2,1)®0(1,1) subgroup of
0(3,2); this 0(2,1) is a subgroup of the physical O(3,1)
group’ and acts on the indices 0, 1, and 2, being gene-
rated by the operators J3, K1, and K», while the O(1,1)
is generated by TI's and is associated with the indices
3 and 5. The Casimir invariant of 0(2,1) is

Q0= (K1)*+(K2)*—(J3)*; (2.26)
by considering (2.17) for u=»=3, we establish easily

that
Q=1+ (T (2.27)

The reduction under the group 0(2,1)®0(1,1) would be
accomplished by simultaneously diagonalizing the
operators Q, Js, and T's. However, by virtue of (2.27),
this is equivalent to diagonalizing Js; and T's. Already
(2.27) shows that we will encounter only the continuous
nonexceptional series of UIR’s of O(2,1). From the
earlier discussion of the group 0(2,1), we see that the
problem of diagonalizing I's is a problem at the level of
the 0(2,1) group structure. In the canonical basis, we
have T'y and J; diagonal and at a fixed value of J; we
wish to pass from this basis to one in which T is
diagonal. This is equivalent to diagonalizing a non-
compact O(1,1) generator in a D™®)-type UIR of O(2,1)
starting with the basis in which the compact O(2)
generator is diagonal. The way to do this is explained
in the Appendix; here we quote the results. We shall

7 Reduction of O(3,1) under O(2,1) has been done by: principal
series—S. Strom, Arkiv Fysik 34, 215 (1967); A. Sciarrino and
M. Toller, J. Math. Phys. 8, 1252 (1967); N. Mukunda, zbid. 9,
?O (1)968); supplementary series—N. Mukunda, zbid. 9, 417

1968).
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use the variable ¢ to denote the eigenvalues of T,
and we shall write ¢,,,® for the eigenvectors of T's
and J. 3.

I‘swa,mm):(nl/a,m(”,
]3¢U'm(2)=m¢w,m(2) (—' o <g< °°)J
Worm D W om®) = 8prmd (0’ —0).

Then this basis is related to the canonical one:

qum(Z):Z G’]"‘H—%(j_l_%) _0)¢f-m(1) ’
J

(2.28)

Qimi+3(j+3, —0)
= 1 1 FP("”HHI)TNXZIMH
@) 2 12| m| + )L (= | m|+1)
Xe GO (|| =, || +3 =iz, 2| m| +1,2)
X|T(|m|+3+ie)|. (2.29)

The new basis states ¥,,.® in the spin space have two
alternative interpretations, as did the canonical basis
Yin®. For fixed m, the states Yo, ® span the space for
the UIR Djp1 ™ of the subgroup O(2,1) as o varies
continuously from —w to 4. On the other hand,
according to (2.27) we have

Qbon® = G2 Won®. (2.30)

Thus for a fixed value of o, as m varies in discrete steps
from — to + =, the states ¥,»® span the space of
an UIR of the physical O(2,1) group. The states Yom®
and ¥_,,® give rise to one and the same UIR of 0(2,1).
Thus in the reduction of the Majorana representations
of 0(3,1) we have found every continuous nonex-
ceptional representation of the subgroup O(2,1) twice,
these two occurrences being distinguished by the value
Of Fs.

Last of all we consider how the Majorana represen-
tations reduce under the Euclidean subgroup® E(2)
contained in the physical Lorentz group O(3,1). E(2)
is generated by the three operators Js, J1—K,, and
Jo+ Ky, and its Casimir invariant is

622 (J1—K2)2+ (]2+K1)2.

The combination of the T', that commutes with the
E(2) group is T'y+ T3, and as in the previous cases, this
operator can be related to e2. The easiest way to do this
is to start with Eq. (2.18), unitarily transform both
sides by means of the operator ¢?*X3, and then take the
limit as @ — 0. In this way one establishes that

62 = (P0+ 113)2 .

The reduction of the representation space under the
direct product of E(2) and the one parameter group
generated by T'g+TI's is accomplished by simultaneously

(2.31)

(2.32)

8 Reduction of 0(3,1) under E(2) has been done by S. Strom
(Ref. 7).
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diagonalizing J; and T'y+T's, since then € will be auto-
matically diagonal. As in the reduction with respect to
0(2,1)®0(1,1), this reduces to the diagonalization of a
parabolic generator in a D™ UIR of 0(2,1) starting
with the compact O(2) generator diagonal. We shall
write ¥e,»n® for the corresponding basis:

(P0+ P3)¢£,m(3)= q&e,m(:’) 3 ]3',/6,7»(3): m¢e.m(3) )
(‘pe’m' (3),¢em (3)) = 6m'm6(€""' é) (O< e< @ ) )

em® =Y n®.
From the analysis given in the Appendix, we have
Yem® =5 a3, Wi,
] 1 /I’(j-l—]m]-i—l))”2
T @] m|+D\T (G~ m]+1)
Xem 2l md(|m| — 7, 2| m| 41, 2¢).

(2.33)

Bmi3(j+3, =

(2.34)

Thus we find that the Majorana representations con-
tain each infinite-dimensional representation of E(2)
exactly once, corresponding to €? spanning the range
0-.

To summarize, we have introduced three different
orthonormal bases in spin space, namely, ¥;n®,
Yo @, and Ye,,®. The first one exhibits the reduction
of the Majorana representations under O(3)®0(2),
the second under 0(2,1)®0(1,1), and the third under
E(2)®(To+T;). Further, each of them exhibits the
reduction under the ‘“unphysical” J(2,1)®0(2) sub-
group, with an elliptic (compact), hyperbolic (non-
compact), and parabolic (noncompact) generator of
0(2,1) being diagonal iny @, ¢ @ and ¢ @), respectively.

III. CLASSIFICATION OF PLANE-WAVE
SOLUTIONS

Having examined the algebraic properties of the
Majorana representations in some detail, we are now
in a position to classify the solutions of the wave
equations according to the kinds of unitary irreducible
representations of the Poincaré group that they gene-
rate.’ The important question of normalization of these
solutions will be taken up in the Sec. IV.

Let us consider the Majorana equations

(iT*9/9x* —k)Y(x)=0, 3.1)

where « is a real positive constant and I'* is given by
(2.4). Here ¢/(x) is at the same time a function of ¥ and
an infinite-component vector in spin space transforming
according to the unitary representation of O(3,1)
generated by J and K. The plane-wave solutions of this
equation are of the form

Y(@)=o(p)e7=,

9 A general discussion of solutions of infinite-component field
e(:qua7t)ions is given in W. Ruhl, Commun. Math. Phys. 6, 312
1967).
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with ¢(p) satisfying the equation
(Pepu—r) o(p)=0.

Given such a solution ¢(p,), we can get another solu-
tion for a different value p’ (lying on the same hyper-
boloid as p, so that p2=p'?) by Lorentz transforming
the amplitude ¢(p,). If U(A) is the unitary operator for
a Lorentz transformation A, then

@' (pu)=U(A) o(pn)

satisfies the equation
(UP“U—IP# _K) Gol([’;t) =0.
Remembering that

3.2)

UT*U1=AmRI",

we see that ¢’(p,) satisfies the same equation as ¢(p,),
but with p, replaced by A”,P,. As a consequence of this
observation it is sufficient to consider certain standard
configurations and obtain all other solutions from them.
As long as « is nonzero, not all the momenta can vanish
at the same time. The solutions may then be divided
into three classes according as the momentum vector
is timelike, lightlike, or spacelike. In each case, it is
not sufficient to find the “mass spectrum,” but it is
also necessary to determine the “spin,” i.e., the be-
havior of the solution with respect to the “little group.”
This we shall do for each of these three classes.

Returning to (3.2) we can parametrize p* in general
as

p*=(E,p cosp sinb,p sing sinf,p cosb) , (3.3)

where p (20) is the magnitude of the space part of p*.
We can also demand that ¢(p,) be an eigenstate of
helicity with eigenvalue A, so that we shall write pa(p,),
and have
(TE—T"p sind sing —I'?p sind cosp —I'*p cos6—«)
X 99)\(?#) =0,
J-por(pu)=Npor(pu).

Such a ¢x(p.) can be obtained from the solution ¢\(E,p)
of the equations

(3.4)

3.5
]3<P>\(E;P): >\¢>\(E;P) ’ )
by means of a spatial rotation

ox(pu) = €% 720\(E, p). (3.6)

We can therefore work with (3.5). We consider now the
three classes of solutions in turn.
Solutions of Class I: Slower-than-Light Particles
In this case we parametrize E and p:

E=M cosh{, p=M sinhf (M>0,¢=0). (3.7)
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The standard configuration for slower-than-light
particles is that in which p=0. The little group corre-
sponding to this configuration is generated by Ji, Js,
Js with the Casimir invariant J2. The amplitude ¥»
in the standard configuration is obtained from oa\(E,p)
by a Lorentz transformation:

3&7\: e—irKsﬁo)\(E;p) )
(TM —ir=0, Jgpr=N.

In addition, we demand that ¥ be an eigenfunction of
J? with eigenvalue s(s+ 1), this being the square of the
spin. On the other hand, the eigenvalues of T'® are (s+3%).
The solutions of these equations are easily written down
in terms of the canonical basis ¢ ®. The structure of the
Majorana representations and the wave equation give
a relation between the mass and the spin:

M=M(s)=«x/(s+3).

3.8
and obeys

3.9

(3.10)

As the spin increases, the mass decreases. Labeling
the solutions by the mass, spin, and helicity values, the
amplitudes in the standard configuration are given, up
to a normalization constant, by

,l,)\M(S).s:,/,s’)\(l)' (3.11)

To obtain a(E,p), we have to apply the transformation
e¥Es 10 Py A1,

We note that the energy for a particle at rest is always
of the same sign (positive). This is in marked contrast
to the nature of the solutions of finite-dimensional wave
equations.

Solutions of Class II': Lightlike Particles

We now parametrize E and p appearing in (3.5) in
the following way:
E=p=xe (—oo<i< o). (3.12)
(Negative values of E are absent; see below.) The
standard configuration for lightlike particles can be
chosen so that the spatial momentum is of magnitude
« and lies in the positive third direction. The little group
corresponding to this configuration is £(2), generated
by J3, Ji—Ks, and Jo+ K, with Casimir invariant e.
The amplitude ¥, in the standard configuration is
defined once again by (3.8) and obeys

T+ T3—Dn=0, Jahhr=Mn. (3.13)

In addition we demand that ¥» be an eigenfunction of
e. The solutions to these equations are now given in
terms of the basis ¥® in spin space. We see that the
wave equation and the structure of the Majorana
representations single out a unique value for the
invariant ¢, namely, e=-1. Labeling the amplitude
by the mass (which vanishes), the value of ¢, and the
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helicity, in the standard configuration we have

¢k0,e=+l= ‘[,1')\(3) ,

again up to a normalization factor.

The representation of FE(2) involved is infinite-
dimensional, and the lightlike particle belongs to the
so-called “‘continuous-spin” type. Note that, in con-
trast to the previous class of solutions, here only one
irreducible representation of the Poincaré group has
been generated. Stated in another way, in the standard
configuration only one member of the basis yem®
corresponding to e=-1 is involved in constructing
solutions of the wave equation, whereas in the case of
solutions of class I, in the rest frame each element of the
basis ¥;»" gives rise to a different physical solution.
Notice also that we do not have lightlike solutions in
which the energy is negative; this is due to the fact
that both Ty+Ts; and Ty—T; are positive-definite
operators. As before, the solutions to (3.5) are obtained
by applying the Lorentz transformation e®%s to ;1,2 ®.

(3.14)

Solutions of Class III : Faster-than-Light Particles

This, the most novel case, is not normally encountered
in finite-component wave equations.’® We can para-
metrize E and p appearing in (3.5) in the present case as

E=Isinh{, p=Icosh¢. (3.15)

The quantity / is the positive square root of the Lorentz-
invariant expression —p#p,; we shall continue to refer
to it as the mass of the particle. The standard configu-
ration is now one in which the particle has infinite
velocity and zero energy; and the momentum is oriented
along the positive third axis. The amplitude in the
standard configuration, ¢, is again related to oa(F,p)
via (3.8), and obeys

(Tl—x)r=0, Jghr=Mh. (3.16)

The little group O(2,1) leaving this configuration invari-
ant is generated by J;, K1, and K,. The solutions to
(3.16) belonging to definite representations of O(2,1)
are the vectors ¢, . The relation between the “‘square
of the spin” and the “mass” is given by (2.27):

l=k/o, Q=%i+0". (3.17)

Thus we find a continuous set of (positive) values for
the mass I, varying from zero to infinity. For each
value of the mass, a unique infinite-dimensional
continuous nonexceptional type UIR of the little group
0(1,2) is determined by (3.17). This relation looks more
familiar if we write

s'=—%+1i0,

—Q0=s(s'+1).

10 For a systematic discussion of class-III particles, see O. M.
P. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan, Am. J.
Phys. 30, 718 (1962); their quantum field theory of spinless class-
IIT particles is formulated in the papers cited in Ref. 3.

so that
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Then the mass formula (3.17) can be put in a form very
similar to the slower-than-light mass formula (3.10)
by rewriting it in the form

1= ik/(s'+3).

Since the faster-than-light particles have an imaginary
rest mass, this is the analytic continuation of the mass
formula for the slower-than-light particles. The ampli-
tude in the standard configuration can be labeled by the
mass /, the spin o, and the helicity A, and is given up to
a normalization by

1(0),0 ~ (2)
1;0)\ ’1047.)\ .

Notice that in the standard configuration, only those
members of the basis ¢,,,? that correspond to positive
eigenvalues o for T's give rise to solutions of the
Majorana equation. Thus in the respective standard
configurations, each member of the basis ¥;,®, half
the members of the basis ¢,,,* (with ¢>0), and one
member of the basis Ye,® (with e=-+1) give us solu-
tions of the wave equation.

For the faster-than-light particles, energy can take
either sign. There is no invariant distinction between
the solutions of class ITI with positive energies and those
with negative energies, since a Lorentz transformation
can carry one kind of solution into another.

Thus, we have found three classes of solutions
Y\ M@s 0=t and ¢, 1 .e which correspond, respec-
tively, to slower-than-light, lightlike, and faster-than-
light particles. The first and third families of particles
contain an infinite number of Poincaré irreducible
solutions, while there is essentially only one lightlike
solution. The class-I particles constitute a denumerable
infinity, each labeled by a mass M and spin s with the
mass formula (3.10) relating them. The class-I1I
particles, on the other hand, constitute a nondenumer-
able infinity labeled by an imaginary rest mass # and
a complex spin s’= —%-ic, which denotes a member of
the continuous nonexceptional family of representations
of 0(2,1). All three classes have all single-valued repre-
sentation or all double-valued representations according
as the operator (2.6) has the eigenvalue 4-1 or —1.

(3.18)

(3.19)

IV. NORMALIZATION, COMPLETENESS,
AND BEHAVIOR OF CURRENT

The covariant wave functions ¥(x,f) in (3.1) furnish
several irreducible representations of the Poincaré
group. We can construct a four-vector of charge current

Ju(xD) =Y (X)L (x,0). (4.1)

Under Lorentz transformations these quantities trans-
form as the components of a four-vector density. It is
also conserved, by virtue of the equations of motion:

g, (x,1)=0. 4.2)

As a consequence, the space integral of the time com-
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ponent is Lorentz-invariant and time-dependent:

Q) =0= [¥I(xDT(x,)d*. (4.3)
This quantity is positive definite and serves to define
a norm for the wave functions. Thus in spin space,
the physically relevant norm is not the one with respect to
which the M ajorana representations of O(3,1) are unitary,
but the one that uses the positive-definite matrix Ty as a
melric operator.

We wish now to verify that the solutions of the
Majorana equation for fixed p and various values of E
are orthogonal to one another with respect to the metric
Ty, and can be normalized appropriately. For the time-
like solutions (class I) we could have expected this to
emerge, since these solutions are generated from the
elements of the canonical basis ¥/, in spin space, and
between these vectors all the operators I', have finite
matrix elements. However, the situation is completely
different for the solutions of class III, which are ob-
tained by Lorentz transformations from the elements
of the basis ¥,,»® in spin space. It is a known fact that
the notion of “matrix elements” of the operators T,
between such vectors is mathematically meaningless;
in other words, the vectors ¢,,,® are not in the domain
of the operators T', for u>%3. Thus, it is necessary to
verify in detail that these solutions do submit to a delta-
function normalization with respect to T'y (since there
is a continuum of such solutions).

Since we are concerned with the solutions of the wave
equation for a fixed spatial momentum p and various
values of E, we can assume that the momentum p is
directed along the positive third axis. Thus we are
dealing essentially with Egs. (3.5). Further, since T,
commutes with the helicity operator, we can work with
one fixed value of the helicity; in other words, we can
restrict ourselves to Eq. (3.5), in which it is understood
that T, I's, and the Lorentz generator K; generate a
single discrete UIR of the unphysical 0(2,1) group.1!:12
If the fixed value of the helicity is A, the UIR of O (2,1)
involved is Dj ™. For brevity we shall write
k= |\ 2.

Let us first consider the normalization of the timelike
solutions. For a given value of the spin s, and corre-
sponding mass M =«/(s+%), the solution of Eq. (3.5),

(POE_ I‘sp —K) @X(E:?) =0 )
B=[pe/(s+3T2,
is given, according to (3.8) and (3.11), by
gp)‘(E,P) = ei;’(s,p)Kaws’)\ o 5

tanh{(s,p) = p/[p*+«*/ (s+5)2]12.

11 On the .0(2,1) representations in an O(1,1) basis: E. C. G.
Sudarshan, in Proceedings of the Coral Gables Conference (W. J.
Freeman and Co., San Francisco, 1966); and N. Mukunda J.
Math. Phys. 8, 2210 (1967). ’

12§, G. Kuriyan, N. Mukunda, and E. C. G. Sud
Math. Phys. 9, 2100 (1968). udarshan, J.

where

(“.4)
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Since

¢~ TKe0gitKa— [0 cosh¢+ ¥ sinhy,  (4.5)

and since I'® has no matrix elements connecting ¥,,, @
to itself [see (2.22) and (2.23)], we get

o\ (E,P)T°o\(E,p) = cosh (s,p) (s+3)
= L/M?(s) JLp*+M2(s) 12,

On the other hand, from (3.5) we can show easily
that two solutions corresponding to different values of
mass and spin are orthogonal with respect to I'°. The
matrix elements that enter in this demonstration are all
finite, since any matrix I', acting on one of the states
Yo gives back a finite linear combination of these
states. We therefore choose the timelike solution corre-
sponding to mass /(s+1%), spin s, helicity \, and momen-
tum p in the third direction as

MO = M (LM () T
Xk @)Ky o 1) ,

(4.6)

(4.7)
so that
30)\',pM(")”'I‘O;b)\,pM(")"= 857 50N

For the discussion of the continuum of spacelike
solution, we use the realization of the UIR’s D, of
0(2,1) described in the Appendix. In this realization, the
operators I'’) %, and K3 are linear differential operators
in a real variable 2, 0<2< . The infinite number of
components of ¥ is replaced by a dependence on the
continuous variable z. The effect of a Lorentz trans-
formation generated by K3 is given by

e % Eap(z)= ety (zef). 4.9

For a fixed value of p, the values of the mass / that
appear, and the possible values of E, are both para-
metrized by the variable { varying from —o to 4 in
(3.15). For the present, let us denote the solution of
(3.5) for a given value of { by ¢ itself. This solution is
obtained by applying a Lorentz transformation to an
appropriate eigenfunction of I'¥. (These eigenfunctions
have been given in detail in the Appendix.) Therefore,
the solution to the equation

(T sinh{ —I'*] cosh{ —«) p¢(2) =0

(4.8)

is given by
0¢(2) =€ BENY_ (4 cosht) /p(2)
—mk/2l ;
e e
@2m)12 T(2k)
X®(k—ix/l, 2k; ize5)z% 1 exp(—3ize?).

)

(4.10)

[¥—«n(2) is an eigenfunction of I'® with eigenvalue —«/I,
and /= p/cosh{.] Let ¢y (z) denote another such ampli-
tude. In the space of the UIR D;™), the product
(ceeyee ) involves an integration with respect to z
from 0 to . We denote this integral—with, however,
the upper limit being a finite quantity A rather than
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w—Dby (---,-++)s. Then, using the differential equa-
tions .obeyed by ¢¢(2) and ¢r(z) and the relation I'®
=T0—1z we get
(tanh¢ —tanh{”) (¢p, T0¢;)a

= (1—tanh{")[(¢¢,T0¢r)a— (M0, 0)a]. (4.11)

In each term here it is understood that I' acts as a
differential operator on the function of z standing im-

_mediately to its right. Now the quantity in square

brackets on the right-hand side of (4.11) can be evalu-
ated as A—o. First, since the integrand involved is
a perfect differential, we have

(ee, Toee)a— (M0, o) a=20:(3) (d/dz) [20s*(2) ]
—2¢p™(2)(d/dz)[ze:(2)].

Using next the asymptotic form of the confluent
hypergeometric function,'® we write, for large A,

Aep(A)= (2/m)1?
Xcos[3A¢f — (/1) InA— (/D)§ —5mk—n(s)],
n(§)=argl'(k—ix/l).
Putting all this together we find that
(tanh{ —tanh{”) (¢, I ¢¢) x=(ef /) (1 —tanhg”)

e —ef’ 11
Xsin[ A-{-K(————)
2 VA

/

(4.12)

¢
XlnA+K<

7_

%)—I—n(s“')-—n(s“):'

+-(oscillating terms which vanish at {'=¢). (4.13)

We can now divide both sides by the factor tanh{
—tanh{’ and go to the limit A—w. In doing so, we
use the rule that

_ sin(a'—x)A

im ——————=7n(x"—x), (4.14)
A—>o0 (x/__x)

and also the rule that an oscillating quantity without

a singular denominator is to be counted as vanishing

in the limit. In this way we obtain
(o5, T0¢;)=cosh{ 8(5' —¢). (4.15)

This detailed analysis shows that even though the space-
like states are generated by Lorentz transformations
acting on eigenfunctions of the operator I'}, and that
these eigenfunctions do not lie in the domain of I,
nevertheless the spacelike states can be normalized in the
delta-function sense in the T° meiric. This happens
because we are not required to compute directly the
(nonexistent) matrix elements of I'® between eigen-

13 For the behavior of confluent hypergeometric functions, see
Higher Transcendental Functions, edited by A. Erdélyi (McGraw-
Hill Book Co., New York, 1953), Vol. I,
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vectors of T'%. Between I'® and these eigenvectors stand
the finite Lorentz transformations generated by K.

It is more convenient to convert the delta function
appearing in (4.15) to one involving Lorentz-invariant
arguments. We define the normalized amplitude corre-
sponding to mass /(¢), spin-(—21-10s), helicity A, space
momentum (in the positive 3 direction) p, and sign of
the energy €, by a formula as close to (4.7) as possible:

o)

Yrp @0 = S— R SN
KI/ZEPZ_ZZ(G.)]IM (4.16)
tanh{(e,p) =[p*—P(0) '*/p, Uo)=x/o,
e==, (k/p)<o<x.
With this definition, we have
a0 L0 0= 5, 80\8(0" —0).  (4.17)

Thus one can think of (4.16) as an ‘““analytic continu-
ation” of (4.7), and of (4.17) as a continuation of (4.8).
It is worth emphasizing that here we have a complete
and unambiguous definition of the spacelike solutions,
since the basic ingredient, namely, the eigenfunctions
of T are also unambiguously normalized by their
scalar products with one another [see (2.28) and the
Appendix]. From (4.16) follows (4.17). Note that e is
not a Lorentz-invariant quantity; also that in the defini-
tion of ¥, p,!¢"): appears the square root of the mag-
nitude of the energy v/| E|.

The last solution left to be discussed is the lightlike
one. It is easy enough to write down the function of z
that this solution corresponds to: It is obtained by
applying the operator e%¥%® to the eigenfunction of
T°4-T® with eigenvalue 41 [E and p being para-
metrized as in (3.12)]. Thus the lightlike solution is

given by e{a(Zeg-__z)

up to a normalizing factor. Now the main question is
whether this has a finite T norm (in which case it
would appear as a discrete contribution in the complete-
ness relation involving all solutions for a fixed momen-
tum p), or whether it has an infinite I'® norm (in which
case it is to be treated just as a limit of the spacelike
solutions). It is not hard to convince oneself that the
lightlike solution has infinite Ty norm, so that it does not
have to be taken into account in a discrete form.

We are now in a position to write down the basic
completeness relation involving all the solutions of the
wave equation for various energies and at a fixed
momentum p. (That a timelike solution is orthogonal to
a spacelike one in the I'” metric is shown by a method
similar to the one we used to normalize the spacelike
ones.) Using (4.8) and (4.17), we have

Z ¥ pM(s),slp)\ pM(S),sTPO
7N
00

+2

€N

do %'“l(a),v%,p,él(a),ﬂpo =1.
k/D

(4.18)
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Since this is a relation at a fixed value of spatial mo-
mentum, all the timelike solutions, but only a subset of
the spacelike ones, are present. The generalization to an
arbitrary direction for  is achieved via a space rotation,
and amounts to replacing p everywhere by p. For p=0,
the set of solutions corresponding to slower-than-light
particles at rest by itself forms a complete set.

At this point, it is worthwhile clarifying certain
aspects of the completeness relation (4.18) which are
peculiar to our dealing with an infinite-dimensional
spin space. The originally defined space of the unitary
Majorana representations of O(3,2) is a Hilbert space
H in which a vector is assigned the norm (Y¥)'/?
= (Y'y)1/2. With respect to the corresponding scalar
product, T, is a Hermitian operator. Now the set of
vectors ¥ in H which have the added property that

@, T%) =Y T <

forms a linear set D which is a proper subset of H
because I'° is unbounded. D is clearly dense in H; if
completed with respect to the scalar product (¥,¥),
then D yields H. However, D forms a Hilbert space in
its own right if we define the norm in D to be the
quantity (,I'%)!2. The completeness relation (4.18)
actually refers to D viewed as a Hilbert space in this
sense. In other words, if ¢ is a vector in D such that
¥, %) <, then there follows an expansion

Y=2 a(s;\ ¥,
8,

+ f do S b(o,6 @0, (4.19)
k/p

€N

where a(s,\) is a sequence of complex numbers and
b(o,¢,)) is a sequence of Lebesgue-measurable functions
of o, such that

PTY=F |a(sN) |+ / do|bo,eN)|2< 0. (4.20)
8,N €N &/D

Since the space D is dense in H, one may expect that
an expansion of the form (4.19) is valid also for vectors
in H that are not in D. However, for such vectors, the
right-hand side of (4.20) will diverge. [ It is to be noted
that if we wish to express the quantity ¥y in terms of
the representatives a(s,\) and b(e,¢,)\), one will obtain
a nonlocal expression in these coefficients. ]

We conclude this section with some comments on the
behavior of the “current” ¢, in the spacelike states.
As we have noted previously, since TI'y is positive
definite, the UIR’s of O(2,1) generated by T, I's, and
K; are of the discrete (positive) class. In such a case,
the quantities T'y+T's and I'y—TIs are both positive-
definite operators. Since without loss of generality we
could transform the charge current density at any point
to have components only along the 0 and 3 axes, this
leads us to assert that the charge-current four-vector is
always positive timelike. We could deduce this alter-
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natively by noting that §.(x,f) transforms as a four-
vector density whose time component is always positive
definite.

In the case of a timelike solution, this is easy enough
¢ to understand; in fact, by routine manipulations one
can show that the expectation value of T', in a given
timelike state with four-momentum p, is directly
proportional to p, apart from normalization factors
involving the energy:

Y™ @D M @ 2= (/) E)Sarn.

What seems somewhat puzzling is that the expectation
value of T', in a state with spacelike four-momentum p,,
assuming such an expectation value exists, should turn
out to be timelike.

In order to examine this point further, for the moment
we only consider solutions of the wave equation in one
space and one time dimension, namely, those based on
the operators I'y, I's, K3 and involving a single UIR of
0(2,1). In this case, K3 is the (sole) generator of physical
Lorentz transformations. Let ¢ and ¢’ be two solutions
corresponding, respectively, to momentum two-vectors
(E,p) and (E',p’) both of which are spacelike, i.e.,
p*>E? and p"*> E"? s0 ¢ and ¢’ obey

(I°E—T*p—k)e=0,
(TOF' —T*p' —k) ¢’ =0.

(4.21)

(4.22)

If the “rapidities” corresponding to ¢ and ¢’ are ¢ and
¢’, and the masses are  and I’ (tanh{= E/p, etc.), then
¢ is obtained from an eigenfunction of I's with eigen-
value +«/1:

o= 6i§K31//_|_,‘/l, (423)

and similarly for ¢’. Now from (4.22) we deduce that

P—p (' —p)x
el '_he(f_?)dw’
p'E—p sinh({—
(4.24)
E'—FE (E'—E)x
plfr3¢=————x’ /1 =———————————(p"r .
p'E—pE’ Vlsinh(¢—¢”)

As long as { and {’ are different, both sinh({—¢”)
and ¢'fe are finite and nonzero quantities. The latter
is in fact the matrix element between eigenvectors of
I';, with eigenvalues /!’ and «/I of the finite Lorentz
transformation e~*¢"—$)Xs generated by Ks; and as
long as {' —¢0, this is a finite quantity. Further, both
¢ —¢ and ¢t are invariant when one and the same
Lorentz transformation is applied to both ¢ and ¢'.
From this we see that the matrix elements of I'’ and I'®
do behave as a two-vector, since in the degenerate case
of only one space dimension (p,E) forms a two-vector
if (E,p) does. However, if we now try to take the limit
¢’ — ¢ in (4.26), all the expressions diverge. As for the
matrix element of I, we know that we get 6(E —E)
on taking the limit ’ — p and that this would become
infinite when we set E'= E. The situation is similar
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for I'%. Thus, in a spacelike state which is an eigenstate
of energy momentum, the operators I', have no well-
defined expectation values; they either diverge or are
nonexistent. The trouble arises essentially because an
attempt to evaluate such an expectation value amounts
to evaluating “matrix elements” of T', between eigen-
vectors of the “noncompact” operator I';, and such
things do not exist.

In the realistic case of three-dimensional space it is
not possible to rewrite the matrix elements of T,
between two arbitrary spacelike states in as simple a
form as the above. However, one can express them in
terms of the “kinematic” operators S,, and the four-
momenta p and p’ corresponding to solutions ¢ and
¢’ of the Majorana equation. For this, one can make
use of the identity (2.17). The expression is

4K(¢’,Pu(p)= —-P“(gal, @)
FPMe {Sun SV} o)+ ¢, Sine)

P=p'+p, Q=p'—p.

From these remarks one sees that the current operator
T, has finite matrix elements between two spacelike
states if these four-momenta do not coincide; but these
diverge if we allow the four-momenta to approach one
another. This fact prevents us from a direct verification
of the statement that even in a spacelike state, the
expectation value of the current operator is a timelike
four-vector.

These properties are of interest in connection with the
emission of radiation by spacelike particles. Assuming
that the coupling to the electromagnetic field is via the
operator I',, we see that there is a finite amplitude for
the spontaneous emission of a photon by a spacelike
particle. For, in such a process the photon would carry
away a nonvanishing four-momentum k,, so that the
initial and final momenta, p, and p,’, of the spacelike
particle would differ by the amount %,. This transition
would generally result in a change in the mass / of the
spacelike particle. Thus, at least in lowest order of
perturbation theory, there is a finife process that could
lead to emission of radiation by such particles, if they
exist, a process quite distinct from the Cerenkov effect.

(4.25)

V. THEORY OF QUANTIZED
MAJORANA FIELD

While Egs. (3.1) and (3.2) admit solutions for slower-
than-light and lightlike particles, in a proper quantum
theory we expect to be able to have both positive- and
negative-frequency parts of the field operator so as to be
able to describe both absorptions and emissions of the
particles described by Eqgs. (3.1) and (3.2). In the more
familiar case of finite-component relativistic wave fields,
the positive- and negative-frequency parts are irreduci-
bly contained in the same local operator. The decompo-
sition into positive- and negative-frequency parts is, in
these cases, a nonlocal operation. In the present case,
however, the negative-frequency class-I or -IT solutions
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do not appear. Instead, the irreducible parts contain the
infinity of solutions which belong to the three classes of
particles that we have described. It therefore follows
that the construction of a quantum theory of this field
would involve the introduction of another field with
negative-frequency solutions of classes I and II. The
necessity of doing this for class ITI, namely, of assign-
ing the complete set of solutions of the primitive field
to only annihilation operators and the need to introduce
a conjugate field with only creation operators of class
IIT was elsewhere demonstrated for a simple scalar
field of faster-than-light particles.® This suggests that
the proper method of quantization is one in which the
entire Majorana field ¢(x) obeying (3.1) is assigned to
absorption operators, and in which a conjugate local
field obeying a different equation and consisting entirely
of emission operators is to be introduced. We must
further demand that the absorption part of the field
and the emission part of the (conjugate) field enter the
dynamics of the quantized field on the same basis; and
they can be interchanged without altering the dynamical
law. This property is automatically present in usual
finite-component field theories and leads to the so-called
substitution law. We would have to involve the sym-
metry between emission and absorption as a constraint
on the dynamical law; in this wider context we shall
refer to the requirement of symmetry between emission
and absorption as the S principle.*

Let us now return to the problem of quantization of
the Majorana field. We could deduce (3.1) as an Euler-
Lagrange equation from an action principle where the
Lagrangian density is

L=y, — )T —y, (5.1)

where ¢ is the Hermitian conjugate of ¢. If (5.1) is
considered as a classical Lagrangian density, the
momentum-density conjugate to ¢ is given by

=08/ 0y,= i T),. (5.2)

The Weiss-Schwinger action principle also leads to the
Poisson-bracket relation

W),y (y)TJeb.=1Xo(x—y).

The four-vector

(5.3)

Ju()= Yr ()T ()

is conserved by virture of the field equatlons, and the
Lorentz-invariant quantity

(5.4)

0= f VRTY (x)d% 5.5)

is time-independent. The quantity Q could be seen to be
the generator of gauge transformations in the field

Y(x): o
[O¥(x)Ipb. =i (x). (5.6)
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In a similar manner we can construct the dynamical
variables of energy and momentum:

= / ) (D p () ds,
6.0)
= / Yi(x) Topy (x)d3x,

which act as the generators of time and space
translations. v

In constructing this Hamiltonian version of the
classical theory it was necessary to introduce the
quantities ¥f(x), which obey a different wave equation.
Hence the theory requires the use of two fields, ¥ and /..

We can now proceed to construct a quantumfield
theory for the Majorana field along parallel lines. But
the theory so constructed would not necessarily possess
any symmetry between the positive- and negative-
frequency solutions. If this symmetry is required, we
should do two things: First, we should consider both
¥(x) and ¢7(x) as field variables to be treated on an
equal footing. Second, we should demand a certain
symmetry under the exchange of the positive- and
negative-frequency parts. This is characteristic of all
finite-component relativistic fields, but we impose it in
the form of the demand that the action be invariant
under the interchange of ¥(x,/) and VyiT(+x, —i).
Here V is the real matrix V= exp(irJ,)=exp(3imnToam)
chosen to ensure that the two'quantities ¢ and Vyi7
transform in the same manner, so that the interchange
is explicitly Lorentz-invariant.

We now use the action pr1n01p1e in the form

[ @),841=+ibg(x). 5.9)
We choose, in place of (5.1), the amended action
A= [ aly 5B BT ()
(5, —O V@~ BT, —)]. (5.9)

But we know that V is antisymmetric for the two-valued.
representation (half-integral spins) and symmetric
for the one-valued representation (integral spins). In
either case I'® commutes with V. Hence, at t 0, we
have

/ d3§’[¢(X),~PT(Y)F°6¢(y)+6¢T(y) VDOV (y)]

= f Ay (), ()T (y) F T () T (y) J=0¢(x),
(5.10)

with the 7 signs chosen according as V is antisymmetric
(half-integral spin) or symmetric (integral spins). We
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still have the freedom to choose the field variation
¢(y) to commute or anticommute with all the field
quantities. Consistency of (5.10) demands that anti-
commuting variations be chosen for the half-integral-
spin case (with ¥V antisymmetric) and commuting
variations be chosen for the integral spin case. Ac-
cordingly, we obtain the fundamental relations

Y )¥'(y) L= (T°)"8(x—y) (¢.11)

and the standard conmection between spin and statistics.

We now expand the fields ¢ and ¢ in terms of an-
nihilation and creation operators, respectively. For a
given three-momentum p, we can for brevity label the
set of spinors appearing in (4.18) by the energy E
(—|p|<E< ), and indicate the process of summing
over the timelike ones and integrating over the space-
like ones by a formal integration with respect to E.
Omitting also the helicity labels, we write

Y(x)= j &p / dE e*7 "y pa(p,E)
(5.12)

xlzf(x)=/d3p ]dE P2y, wla(p,E).

Then the orthonormality and completeness properties
of ¢p, 5 at fixed p (and with respect to I'y) together with
(5.11) imply

La(p,E),a' (', E') o= 8(p—1p')3(E—E).

In terms of these operators we can rewrite the particle
number, energy, and momentum operators:

(5.13)

N= f d3p / dE a'(p,E)a(p,E),
H= / @ / dE Edt(p,E)a(p,E),  (5.14)

P= / d*p / dE pa'(p,E)a(p,E).

These expressions enable us to interpret the second-
quantized Majorana fields as assemblies of an infinite
number of types of quantum-mechanical particles
obeying Bose or Fermi statistics according as the spin
is integral or is half-integral. This association extends
also to the spacelike particles, the relevant thing then
being whether the representation of the little group is
single or double valued.

APPENDIX: THE DISCRETE UIR’S OF 0(2,1)

Here we describe a few of the properties of the positive
discrete class UIR’s of the group O(2,1). There is one
such UIR for each value of a parameter %, where %
goes over the range 3, 1, 3, -+ -. These are denoted as
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Dy ™. The three generators Jo, J1, and J, obey
[JoJid=iTz, [JoJol=—iJy, [JuJol=—ils (Al)

and are Hermitian. J, generates the compact O(2)
groups, and its eigenvalues 7 in D, consist of m=£,
k+1, -+, . Jiand J, both generate the noncompact
0(1,1) group, and each of them has every real number,
both positive and negative, as eigenvalues, with ex-
actly one eigenvector per eigenvalue (in the UIR’s
Dy ™). The operators Jo=J are of parabolic type, are
positive definite, and have every positive real number
as eigenvalues.

Elsewhere we have described a construction of these
UIR’s in a Hilbert space H of functions on the positive
real line. Elements of H are functions f(z) of a real
variable z in the range 0<z< e, and the scalar product
of two functions f and g is defined by

&.f)= f sds g*(2) /(). (A2)

In this space, the generators are given as linear differen-
tial operators as follows:

1d d kr=1)

0= 2 2,
2 dz dzI z e
1d 2d k(k—1) s

1=———z%— ——3z, A3
zdz dg z ¢ (43)

One may verify explicitly that the Casimir operator
Q= (J1)*+(J2)*—~(Jo)? has the value k(1—Fk).

We turn now to the determination of the eigenvectors
of the generators and the scalar products between them.
Let us write ¢n, ¥», and X, for the eigenvectors of J,,
J1, and Js, respectively:

Joon=mem, Juhr=An, JoXu=puX,,

m=k, k4+1,---,00; —oo<\ u<co, (ad

In properly normalized form, these are found to be

B 1 TOm+k) :ll/zk o
m\%) = 1 —2/2 _ )
T renlre—nd 7 ° (k—m, 2k; z),
) er)\/2 ‘P(k—l)\)[
a(z)= 2m)yz  T(2k)
Xt e D (hti), 2%; 82),  (AS)
X”(Z) N (Qw)l/zzm——l .

(® is the confluent hypergeometric function.) Each set
of eigenvectors obeys the following orthormality and
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completeness relationships:

(‘I/)\'}‘p)\) = 6(A - >‘/) )
(X, X) =8(u" =),

(¢m’; ‘PM) =0m'm ’

i; on@eon@)= | D rE*E)

—00

(A6)

i 1
=/ du Xu(2)Xu* (2") =—0(z—2").
o 3

It is worth noting that with our choice of the eigen-
vectors ¢ of Jo, the generator J; as given in (A3)
has the standard form

Jign=3Lm—1)(n+ k=1 T "0,

+i[(n+E) (m—k+1) 1P onir. (A7)

1 1T I'(m-+k)
(2m)12 TR)LT (m+1—F)

(‘pmyxﬂ) =

(X)) = (1/2m)eilme ) —km 1212 =iu[ gm =) 28 lme () =nk 1= (4 — IN)F (k+1N, 1 —k~+i\, 14\ —iu; 34)

Lastly, we consider the parabolic generators Jo==J;.
The combination Jo—J; is particularly simple, since it
is just equal to 3z. Therefore, the solutions to the
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Next we turn to the scalar products between these

eigenvectors. Between eigenvectors of Jo and Ji, we
find

Qr(m\)=( )= [ _eh :lm
HmA) =(emb (2n) 2 TR)LT(m+1—8)

X2k T(E—i\) | im0 F (h—m, k4-i; 2k; 2).

(A8)

Using this expression, one can write each eigenvector of
Ji in terms of those of Jo:

@) =3 Gulm\) on(@)

m=k

(A9)

and vice versa. The scalar product of a ¢ with a X, and
of a X with a ¢, can also be worked out (though we did
not use these in the text). They are

12
] 2%HuT (k+ip)F (k—m, k+iu; 2k; 2),

(A10)
+em eN 2l =1 2=kT (IN — i) F (k+-1u, 1 —k~+-iu, 14du—ik; 14)].
Jo—J in terms of those of Jy:
BE)= 3, Gulm)on(s). (A1)

equations

(Jo—JTDE(2)=rE(z) (0<r< ) (A11)
are fy(z) — —1/25(2—21/) (A12)
and obey

(&, 8)=08("—). (A13)

From this one sees that
1/2
I r F(m+k) :I 2kyk——1/26—v
rR)LT(m+1—F)
X®(k—m, 2k; 2v),

(Bk(m7y) = (¢m)£v) =

(A14)

and there follows an expansion of the eigenvectors of

The eigenvectors of the other parabolic generator
Jo+J1, normalized in the same way as &, turn out to be

1
&(2) =(_2z;7;] ar—1(n/ (2v2)).

In the use we have made of these results, we have
identified the generators T'y, T3, and K3 of O(2,1) with
the J’s in the following way:

I‘o"‘>]o, I‘s—‘>—J1, K;— J, (A16)

and of course, & corresponds to |m|+3.



