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The Dirac generator fomulations for relativistic Hamiltonian dynamics is extended by explicitly separating the
question of dynamical evolution in an inertial frame from that of changes of frame.. We obtain a new eleven-
generator formalism: ten to realize the Poincaré Lie algebra, and one to provide equations of motion. For point-
particle systems, a new form of the world-line conditions is developed. It is demonstrated that with these extensions
one can consistently describe classical point particles with interaction in a relativistically invariant way while
maintaining invariant world lines. This paper uses the approach based on independent particle variables to set up

such theories.

I. INTRODUCTION

The requirement of special-relativistic invar-
iance for a classical dynamical system encom-
passes two distinct notions: one is the identity of
dynamical laws in all inertial frames, and the
other is manifest covariance. The independence
of these two notions is seen most clearly within
the canonical formalism, to which one is led
automatically if one has a Lagrangian starting
point. With a Lagrangian one has a definite pa-
rameter of evolution with respect to which one
has differential equations of motion. From the
Lagrangian description one can pass to the equi-
valent Hamiltonian one based on a phase space
and the idea of Poisson brackets; some definite
set of phase-space variables, referring to physi-
cal conditions at a common value of the evolution
parameter, is identified as forming a complete
set of variables, and suitable bracket relations
are postulated among them. Dynamical evolution
within an inertial frame, as well as the passage
from one frame to another, are both represented
by canonical transformations on the phase space.
Such a Hamiltonian description can be set up di-
rectly even in the absence of a Lagrangian. The
identity of physical laws in all frames is then
guaranteed by having a realization of the Poincaré
group by canonical transformations on phase
space. The added requirement that for selected
dynamical variables the canonical transformation
laws under the elements of the Poincaré group be
compatible with an independently stated geometri-
cal transformation law expresses manifest co-
variance.

To set up a classical relativistic Hamiltonian
theory one must therefore start with a suitable
phase space and then do two things: a definite
parameter of evolution must be specified, and

eleven distinguished functions on phase space must
be given. The first of these is the generator of
the canonical transformations describing dynami-
cal evolution in any inertial frame; the remaining
ten generate a canonical realization of the Poin-
caré group and so describe changes of frame. It
is the latter ten generators that must provide,

via their brackets, a realization of the Lie alge-
bra of the Poincaré group. Conditions of manifest
covariance provide additional restrictions.

Many years ago Dirac! proposed three natural
forms of Hamiltonian relativistic dynamics,
namely the instant, point, and front forms. These
correspond essentially to three different ways in
which one might pick a parameter of evolution out
of the four space-time coordinates that are as-
signed to an event in special relativity. Dirac’s
list of possibilities is not exhaustive in the follow-
ing crucial sense: It was assumed that the param-
eter of evolution is chosen kinematically, i.e.,
in the same way for all the states of motion. The
instant form, for example, uses the “laboratory
time”, one of the four coordinates assigned by an
inertial observer to each space-time event, as
the evolution parameter. Thus in this form the
generator of dynamical evolution in one frame
coincides with that element in the Poincaré alge-
bra that generates time displacements between
inertial frames. More generally in each of Dirac’s
forms of dynamics only ten fundamental quantities
need to be specified, fulfilling the bracket rela-
tions of the Poincaré algebra; the eleventh gen-
erator is always one of the ten, or a suitable lin-
ear combination of them. The fundamental phase-
space variables, out of which the ten generators
are built, vary of course from one frame to an-
other.

The attempt to describe a collection of classical
relativistic point particles within the Dirac pro-
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gram, with a condition of manifest covariance in-
cluded, led to the astonishing and deep result that
the particles must necessarily be free and no in-
teractions are possible. To be specific, this im-
portant no-interaction theorem? was proved within
Dirac’s instant form of dynamics with the follow-
ing detailed assumptions: (i) The set of three-
dimensional position coordinates of all the parti-
cles at a common laboratory time forms one half
of a system of canonical variables in the phase
space of the entire system; (ii) Under the Euclid-
ean subgroup of the Poincaré group (characteristic
of the instant form) the canonical and geometrical
transformation laws for these coordinates coin-
cide; (iii) If in any state of motion, as seen in one
inertial frame, the world lines of the particles
are imagined drawn in space-time, then the ca-
nonical rules of transformation that transfer the
description to another inertial frame preserve the
objective reality of these world lines. Assump-
tions (ii) and (iii) express the idea of manifest
covariance in the present context. .

The fact that the objective reality of world lines
is a definite condition not implied by the structure
relations of the Lie algebra of the Poincaré group
was recognized long ago by Pryce.® The explicit
expression of this condition in the language of
Poisson brackets and generators on phase space
was given by Currie et al. ,2 and is called the
world-line condition (WLC). This condition was
given by them within Dirac’s instant form of dy-
namics, but as we shall see the idea itself is much
more general.4 As we said above, Dirac’s pro-
gram uses only ten independent generators and
not eleven. In retrospect one can see that it is
the fact that the ten generators have to do double
duty, namely, obey the Lie relations of the Poin-
caré group on the one hand, and obey the WLC
on the other, that is the fundamental origin of the
no-interaction theorem. ’

Recently there have been several attempts4'5 to
set up theories of classical relativistic interacting
point particles which are designed to avoid the
no-interaction theorem, even though they are de-
scribed in a generalized Hamiltonian framework.
All of them are constructed in the constrained
Hamiltonian formalism. This formalism was in-
vented by Dirac® to express a theory based on a
singular Lagrangian, in a generalized phase-
space form; and introduced the ideas of con-
straints and Dirac brackets in that context. How-
ever, as Dirac himself pointed out, one can use
these ideas directly even in the absence of a
Lagrangian. One starts out with a suitable phase
space, adopts some number of algebraically in-

dependent constraints, and some Hamiltonian com- -

patible with the constraints; one can then write a

generalized Hamiltonian equation of motion with
respect to some (specified or unspecified) param-
eter of evolution. Such a formalism has two char-
acteristic features’: The initial phase space in-
variably has more independent coordinates than
are needed for the physical system one intends to
describe ultimately; (ii) The physical identification
of the variables in terms of particles, and the
final system of brackets, must both be delayed
until all necessary constraints have been set down.
It is important to understand exactly how one
has succeeded in avoiding the no-interaction
theorem, i.e., precisely which assumption or
assumptions underlying the theorem have been
given up. One gets the impression from the lit-
erature that what has been given up is the exis- ‘
tence of objective world lines; i.e., the WLC. If
this is so, it is hard to admit that recent work
constitutes a definite advance over. what had been
known for a long time. Indeed, soon after Dirac’s
paper on the forms of relativistic dynamics, but
well before the no-interaction theorem was
proved, Thomas® explicitly suggested that the ob-
jective reality of world lines be given up, and
interacting theories of relativistic point particles
be set up in Dirac’s instant form by constructing
ten generators for the Poincaré group. Such
theories were presented by Bakamjian and Thom-
as,? but were soon shown by Foldy! to have a
serious physical defect: they did not possess the
cluster decomposition property. This defect
shows in the recently presented models that at-

tempt to escape the no-interaction theorem.

It appears to us that there is no physically well-
founded reason at the classical level to give up
the objective reality of world lines for point par-
ticles, unless one points to the no-interaction
theorem itself. We intend to show that the way
out of this impasse lies in an altogether different
direction'!: One must go beyond the boundaries
of Dirac’s program for relativistic dynamics,
and envisage choices of evolution parameter that
are dynamically, not kinematically, determined.
In such a framework, all the eleven generators
for a relativistic Hamiltonian theory enter with
independent and equal status. The impossibly
strong conditions that the ten generators of the
Poincaré group obey the bracket relations of the
Lie algebra of that group, contain interaction,
and obey the WLC, get weakened: the WLC now
need to be obeyed by, or are a condition on, the
generators of the Poincaré group and the eleventh
generator of dynamical evolution. It is in this
way that the existence of interaction and of ob-
jectively real world lines become compatible with
one another: the implicit assumption of a clear-
cut separation of kinematics and dynamics under-
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lying all of Dirac’s forms of relativistic dynamics,
must be given up. The formalism of constrained
Hamiltonian dynamics is then to be viewed as a
very convenient means for the construction of
such theories. .

The problem of cluster decomposition10 remains,
however, unresolved.

Since the possibility of describing a relativistic
Hamiltonian theory with all eleven generators is
novel and unfamiliar, we start in Sec. II with a
description of a free single relativistic particle
in such a formalism. The case of two interacting
particles is taken up in Sec. III. It is explicitly
shown here that one recovers the no-interaction
theorem if one adopts a system of constraints that
reduce the framework to Dirac’s instant form;
but that with use of a different set of constraints
and the eleven-generator formalism, both inter-
actions and invariant world lines can coexist.
Basic to this demonstration are a careful analysis
of what exactly constitutes a state of motion for
the two-particle system, and a new form of the
WLC. The extension to a system of N particles
occupies Sec. IV. In both Secs. III and IV, we
use independent particle variables rather than,
say, “‘center of mass” and relative ones, and the
evolution parameter is essentially the time in the
center-of-momentum frame. Other ways of
choosing the evolution parameter are described
in Sec. V. The paper ends with concluding re-
marks in Sec. VI '

II. SINGLE FREE PARTICLE

Our objective is to describe a free relativistic
point particle with mass m in a formalism flexible
enough to allow for different choices of evolution
parameter. We will also develop the WLC in
this formalism, and show how and when it re-
duces to the form in which it was used in the proof
of the no-interaction theorem.

To this end we begin with an eight-dimensional
phase space I' with basic independent variables
x*, p*, and postulate the Poisson bracket relations

{xu’xV}zo’ {x",P"}'—‘—gw, {Pu»PV}=0- (1)

Denote a general element of the Poincaré group
by (A, a). Then the mappings of I onto itself
given by

R(A, a): x“-*x'“=A“.,x"+a“, p* "P'”:AMVP" (2)

evidently preserve the brackets (1) and so are
canonical transformations. This canonical real-
ization (A, a) = R(A, a) obviously has the following
set of infinitesimal generators:

J,,,=xup,,—x,,pu, Puzpu . (3)

The brackets among these generators reproduce
the relations of the Lie algebra of the Poincaré
group.

We now impose the constraint

K=p*-m?~0. (4)

The function K serves two purposes: on the one
hand it defines a constraint hypersurface = lying
within T and having dimension 7; on the other
hand it can be used as the generator of canonical
transformations on I" which have the property of
mapping T into itself. As for the former role, it
is clear, since K is invariant under the transfor-
mations R(A, a), i.e., since

,dJ,,}~0, {k,P,}~0, (5)

the region T defined by the vanishing of K is in-
variant under the canonical mappings R(A, a):

R(A, a)z=72. (6)

Turning to the second role, suppose we start with
some point (x, p) in T and then apply to it the one-
parameter family of canonical transformations
generated by K; we then build up a line L, the or-
bit of (x, p) under this group of transformations.
All of L will clearly lie in . One can set up a
system of differential equations with respect to
an unspecified independent variable ¢, say, by
solving which we can find the line L:

dx*(0) _

L) o (o), k), B <o {p(o), ),

(M
x*(0) = x*, p*(0)=p*.

Here v is an arbitrary multiplier. As a result
the line L is determined once (x, p) is given, but
the precise value of ¢ to be assigned to each point
on L is left free, since it depends on the choice
of ».

The seven-dimensional ¥ is thus the union of
one~dimensional lines L, so the latter constitute
a six-parameter family. The relations (5) which
earlier led to the consequence (6) can now be
“read” in another way: in its action on =, each
transformation R(A, @) will carry a line L onto
another line L’. "

Up to this point the development has been purely
mathematical, and we have yet ‘to make contact
with the physical system we really wish to de-
scribe, namely, the single free particle. This is
achieved by adjoining to the constraint (4) another
one,

x(x, p, 7) =0 (8)

The purpose of this constraint is to assign to each
point (x, p) on a line L a definite value of an evolu-
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tion parameter 7; the choice we make for x will
determine whether 7 is kinematically or dynam-
ically determined. To serve this purpose x must
obey two conditions: (i) it must be explicitly de-
pendent on 7, (ii) it must vary along L for fixed
T, i.e.,

{x,K}+0. 9

This will ensure that, for each 7, there is just
one point on L at which x vanishes.

The physical interpretation of the system as a
free particle emerges only after both constraints
K, x are imposed. The true physical variables
and brackets among them are obtained [for the
choice of evolution parameter determined by (8)]
when we pass from the Poisson brackets (1) to the
Dirac brackets® determined by K and x:

{f, &Y ={r, g} = {F, K}x, g} - {f> x}K, gD /{x, K .
(10)

This is a nondegenerate system of brackets for a
six-dimensional phase space, just the correct
number of variables for a single particle. As a
result of Eq. (5) we can see that the Dirac brack~
ets between the ten quantities J,, P, reproduce
the Lie relation of the Poincaré group, just as
their Poisson brackets did. We can therefore use
these same generators to set up a new realization
of the Poincaré group, by transformations R*(A, a)
that are canonical with respect to the Dirac brack-
et. It is these transformations R*(A,a), and not
the original R(A, a), that must be physically iden-
tified as representing changes of inertial frame
0-0'=(A,a)0. The two transformations R(A, a),
R*(A, a) for the same element (A, @) in the Poin-
caré group are related in this way: they both map
= onto T; if R(A, a) maps a line L onto another L’,
then R*(A, a) also maps L onto L’; beyond this,
R*(A, a) preserves the value of T when it carries
each point on L to its image on L’, while this is
not generally so for R(A, a).

Now that-Eq. (8) has supplied us with a definite
evolution parameter along an L, the arbitrariness
in the multiplier » in the differential equations (7)
is lifted: v is fixed by the condition

ax . 8 ~ ~_
e +o{x, K}=0=v aT/«{)(,K}. (11).

We now have definite equations of evolution for
any phase-space function f(x, p, 7) restricted to =:

ar _of _{f,K}ox (12)

dr a7 {x,K}e7’

The following results now hold. It is always pos-
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sible to find six independent functions of %, p, T
such that the Dirac brackets (1) among them are

a nondegenerate system, and furthermore when
these Dirac brackets are expressed in terms of
these six functions there is no residual 7 depen-
dence; when both constraints (4) and (8) are valid,
then any f(x, p, T) appears as some function of
these six independent variables and 7, thereby
giving a new meaning to the term “explicit depen-
dence on 7”. Denoting by 8’/97 the partial deriva-
tive with respect to such explicit 7 dependence in
the new sense, a “Hamiltonian” 3¢ will exist such
that it acts as the generator of dynamical evolution
via the Dirac brackets,

i~ﬂ'—gﬁg%“%+{m}*. (13)

The eleven generators for the single free particle
are then the ten quantities (3) giving rise to the
realization R*(A, a) of the Poincaré group, and
the Hamiltonian 3C; all eleven quantities are ulti-
mately functions of the six independent degrees of
freedom remaining after the two constraints K, x
have been imposed and one has switched from the
original Poisson to the Dirac brackets.

The relation to a space-time description is
straightforward. Let O and O’ be two inertial
frames connected by an infinitesimal element
(A, a) of the Poincaré group, so that the space-
time coordinates x*, x'* that are assigned to one
and the same event P in O and in O’ are related
geometrically by

0'=(A,a)0: x™=x*+w*x,+ta*, |w],|a|<1.
(14)
We set up the generator
G=13w*J ;- a’P,. (15)

If the particle is in a state of motion corresponding
to the line L in the constraint surface Z, the points
on L supply us with a one-parameter set of space-
time position vectors x*(7) with which, in a frame
O, we can set up a world line in a space-time
diagram—we plot spatial positions X(7) at lab-
oratory time x%(7) in ©. The line L is carried,

by the infinitesimal Dirac canonical transforma-
tion generated by G, into a line L’ in a manner
that preserves the 7 values. The points on L’

now supply us with a one-parameter set of space-
time position vectors x’*(7) which by definition

are what must be used to reconstruct a world line
in 0"

x"4(7) = x*(7) +{G, x*(7)}* . (16)

The space-time constructions carried out in ©
and in O’ describe one and the same objectively
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real world line if, for each 7, x'*(7) obtained by
canonical means in (16) is related in the geomet-
rical manner of Eq. (14) to x*(7 + 67) for some
infinitesimal 07:

x'(7) = *(T +6T) + W, (T +67) +a" . (17)

Here 67 is permitted to be a linear expression in
w"? and g* with coefficients that could depend on
dynamical variables. Combining Eqs. (13), (16),
and (17) and retaining those linear in w"¥ and ¢*
alone, the WLC is the condtion that there exist
an expression for 87 such that

[
{G,x“}*:w““xu+a“+(—85§—+{x“,8€}*)67. (18)

In this form, the WLC is written exclusively in
terms of the final physical brackets and it shows
explicitly that in general it is a condition to be
obeyed jointly by G and 3C.

We discuss two choices for x, one corresponding
to a kinematic choice for 7 and the other to a
dynamical choice. Suppose we take

x=x"=-7. (19)

Then one finds that the Dirac bracket (10) is a
nondegenerate one in the six variables x/, p oJ
=1, 2,3 and the brackets between them are 7 in-
dependent:

{xj’xk}*=0’ {x’,pk}*=6i, {l’j’[’k}*zo' (20)

Now the coefficient v in the equation of motion
(11) has the value

v=1p", P ="+ m")?. (21)

The Hamiltonian JC is to be such that via the Dirac
bracket it reproduces the right equations of mo-
tion for x/ and p f (its existence being guaranteed):

)
x’={x’,3€}*=§-5, p'={p!,5*=0. (22)

Evidently we have
se=(pt+m?)/2=p". (23)

We have automatically reviewed the description
of the single free particle in Dirac’s instant form:
the basic variables are x/, p ;> the former are
physically interpreted as position at some lab-
oratory time 7; the basic brackets are given by
(20); and the eleven generators are

J]kzxjpk_ XpDys Jszij— x/(t)z +m2)1/2 ’
(24)

P]=Pp Po=(1>2‘+m2)“2, je=P",

The WLC (18), which is certainly expected to be
satisfied, behaves as follows: there is no need

for 67 to contain terms involving w,, and a, which
describe a Euclidean transformation. The re-
maining terms in (18) are

Wy, 2P = (P, 2} = (08 x, = 0 T) + o

+(9a—f +{x“,:}c}*)67.(25)

The choice u=0 serves to determine 67,
6T==-a"- w‘“xl . (26)

The use of this in the remaining components of
(25) then shows that the only nontrivial part of the
WLC refers to pure Lorentz transformations and
is

{Joj, 2¥PF = —6k7 xj{xk, ey . 27

This is the form of the WLC originally used in
proving the no-interaction theorem; and for the -
free particle case (24) it is clearly obeyed.

As another choice for x we next consider

X=p-x—mT. (28)

The Dirac brackets can be computed and again
one finds that x%, p ; are a complete set of vari-
ables with 7-independent brackets,

{xj’ xk}* = (xkp" - x’P")/mz )

p'p (29
*
{o, ppyr=0]- ” 75 {bpbay =0.
The multiplier » is now
v=3m, (30)

so 3C must be so chosen that through the brackets
(29) it generates the equations of motion

1
xf ={x?, 3C}* =%, p!={p’,5¢f"=0. (31)

The solution is
se=-min2l, py=(@ +m)!/2. (32)

We have now a new description of the free parti-
cle, not belonging to any of Dirac’s forms: the
six basic variables x,, p; have brackets (29); the
x; are not spatial position variables at some lab-
oratory time but at that point on the world line which
is 7 units of proper time away from the point
where p and x are orthogonal; the eleven genera-
tors are

I =%0p~ %0 J01=(m1-+ﬁ-5€)&’ = %0,
(33)
bo

P,=p, Py=p, 3=-mln>
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The brackets among J,,, P, computed on the basis
of (29) will have the proper values, and 3C is not
in the Poincaré algebra. This time the WLC (18)
has a different behavior than previously; there is
no need for 87 to depend on w,, at all, it must be
chosen only to satisfy

—{a-P, P =a"+ %7"+{xu,3c}* 67.  (34)

The =0 case determines 67 to be —a.p/m, and
the remaining conditions are

ety Py =0y~ Pafus 5y (35)

These nontrivial parts of the WLC refer to the
behavior of x, under spatial translations, and are
of course obeyed.

Because of the simplicity of the present system
(essentially the fact that each L is one-dimen-
sional) one can easily show that the WLC (18) can
be satisfied for any choice of x. (This means
that we can view different choices as various ways
of describing the same physical system, namely,
the free particle.) We can rewrite (18) in terms
of the original Poisson brackets and then it reads

9
{6, xHK, #*}=~ Bé{x“,K}ﬁr ) (36)
The choice
ax
67={G, x} = (37

will always work. In any event we have demon-
strated, with the simplest imaginable system,
how one can arrive at new Hamiltonian relativistic
descriptions not encompassed by Dirac’s pro-
gram. We have also seen that the methods of
constrained Hamiltonian mechanics serve only as
convenient tools to ultimately arrive at various
descriptions of one particle, always characterized
by six independent variables, suitable brackets,
and generators; it is just that the system defined
by (29) and (33) would have been awkward to de-
fine directly.

III. TWO INTERACTING PARTICLES

We begin with a sixteen-dimensional phase space
T with variables x,,, puo» @=1,2, the only non-
zero Poisson brackets being

{xua’ Pv8}=6aeguv . (38)
The transformations
R(A7 a): Xpa™ xlll.a = Au.uxva + Ay pu,a"'p;: a= Auupum

(39)

OF
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are canonical, provide a realization of the Poin-
caré group, and have as generators

Juv=2(xuapva_xvabua)7 Pu=ZPua- (40)
o« ]

We must now choose two independent constraints
K,, K, such that each is invariant under R(A, a)
and they are a first-class pair. We make the
ansatz'?

Ki=pl=-m®+V, Ky=p’-m’+V, (41)

incorporating a common “interaction term” in
addition to the free-particle forms. The first-
class condition is

9 9
{K,,K2}={p12_p22, V}zz(l’x' ;x_l -Prs;) V=0.

(42)

The most general V is easily discovered. Invar-
iance of V under R(1, a) tells us that V is some
function of xy-x,. The condition (42) then says
that V is unchanged if x; and x, are changed to
x;+ €py, x,-€py, respectively, with € small. Thus
V must be some function of the part of x; ~ x;

that is transverse to P=p; +p,. Writing
P.
i =4(xf = x3), ri=r"-p* —prr ) (43)

and finally invoking the invariance of V under
R(A,0), we see that we can take for V any function
of Lorentz scalars formed out of ¥, p{, and p,.
For simplicity we shall consider V to be some
function of ri alone, so we finally have the two
first-class constraints

Ki=pll=m+V(£), Ky=pt-m?+V(E),
2 (Pe9) (44)
-

One could now choose to work with the two com-
binations K+ K,, in one of which V is absent; but
we will use the above set as given.

The region in I" wherein both K; and K, vanish
will be a fourteen-dimensional constraint hyper-
surface Z. Clearly T is mapped onto itself by
R(A,a). K, and K, themselves generate commut-
ing canonical transformations that also map =
onto itself; these follow from the first-class
property. Given any point (x, p) in T we can de-
velop its “orbit” under the Abelian group of ca-
nonical transformations generated by K, and K,.
This will be a two-dimensional “sheet” S lying
wholly in . One can imagine getting S in this

E=rl=7r
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way; we solve the differential equations

B _ tonto), Kayos, LD p(0), Koo,

x‘&(c) =xﬁ1 p‘&(O) =Pl& )

for all possible choices of the v; and then collect
together all the points of T that can be reached
from (x, p) in this way. The fourteen-dimensional
Z thus breaks up into a union of two-dimensional
sheets S, which must then form a twelve-param-
eter family. And this breakup of T with disjoint
sheets is preserved by R(A, g); each S will be
mapped by R(A, a) onto another entire sheet S’.

So far again the development has been mathe-
matical; more needs to be done before we arrive
at a physical system of two interacting particles.
It is necessary to identify precisely what consti-
tutes a “state of motion” for the two particles;
and this must be such that, in each state of motion
and in each frame O a paiv of world lines in
space-time is unambiguously determined. Re-
flection shows that it would be physically inap-
propriate to identify a sheet S as a state of motion
of the two-particle system. It should be clear
that x,° and x,’, the “time components” of x“,
vary independently over a sheet S, so on a given
sheet we can view X, and X, (and p% as well) as
functions of xlo, xzo. Except in the noninteracting
case, we expect each of X, X, to depend on both
of x°, xzo. If therefore all of S were to be used to
reconstruct space-time world lines for the two
particles, we would end up with a skeet and not a
line for each particle. In order that each state of
motion lead uniquely to a world line for each par-
ticle it is necessary to choose some one-dimen-
sional curve C in S and call that alone a state of
motion; the rest of S is to be then discarded as
being of no physical significance.

A curve C on each S can be specified by choosing
one constraint x,(x, p) with no explicit dependence
on any parameters,

X, (x, p)=0. (46)

It is only necessary to ensure that the function x
is not constant over an S. To then assign a value
of an evolution parameter 7 to each point of C we
must set up an explicitly 7-dependent second con-
straint

X2(%, p, )~ 0. C)

The pair of constraints y, added to the earlier
pair K, then defines the physical interacting two-
particle system: the system is not veally defined
until the x, ave chosen; and one cannot view
different choices of the x, as giving different

descriptions of “the same physical system.'*’

For this scheme to work it is clearly adequate
that the set of four constraints K, x, be second
class, i.e.,

det | {xo, K g}| # 0. (48)
Let us now write
aaﬁ{XB’ Ky} = bay . (49)

Then the true physical variables are obtained by
imposing all four constraints

Ky~0, x4~0, (50)

and the physical brackets are the Dirac brackets
relative to K, Xq:

{f:g}* ={f,g} __aotﬂ({f9Ko(}{xB’g} "{f:xs}{ng})
-{f, K} aq B{X 8> Xpe} QqrgriK or, gy - (51)

This system of brackets support a twelve-
dimensional phase space. States of motion are
the curves C on sheets S, with parameter of evo-
lution 7. Since the K, were constructed to have
vanishing Poisson brackets with J,, and P, the
latter quantities continue to provide, via their
Dirac brackets, a realization of the Lie algebra
of the Poincaré group. They thus integrate to

a realization of the Poincaré group by transfor-
mations R*(A, a) canonical with respect to the
Dirac bracket. EachR*(A, a), like R(A, a), maps
> onto itself; moreover if R(A, a) carries S to S/,
so does R*(A, a); beyond this, R*(A, a) takes the
curve C in S determined by (46) to the curve C’
determined similarly in S’, and preserves the
value of 7 in the process. From now on the
change of inertial frame ©-0'=(A, a)0 is re-
presented by the transformation R*(A, a) acting
on the physical system. )

The hitherto arbitrary quantities v, in (45) are
now fixed since the constraints y = 0 must be
maintained:

The resulting general equation of dynamical evo-
lution along any C,

L (4, p, 1) = L~ {7 Kok 0 S (53)

can be rewritten in Hamiltonian form with the
Dirac bracket provided the meaning of explicit
dependence on 7 is suitably altered:

af _ 3f
ar = or TlAsk. (54).

[We must pick twelve independent variables sur-
viving after all constraints (50) are imposed,



such that their Dirac brackets are 7 independent
when expressed in terms of themselves; if f in
(54) is expressed in terms of such a set of in-
dependent variables, any residual 7 dependence
is what contributes in (54)]. Subject to discussion
of the WLC, the relativistic system of two inter-
acting particles is defined by the ten generators
(40) and the Hamiltonian 3¢, all viewed as func-
tions of twelve independent degrees of freedom
left when on the original phase space I all four
constraints (50) are operative.

The WLC are easy to set up. The point x,(7),
po(7) on C in some S leads, in a frame O, to the
pair of space-time points x¥(7), x5(1). These are
the points on the two world lines to which, in the
considered state of motion, and in the frame 9, a
common value 7 of the parameter is assigned.
In the frame ©’ = (A, a)® with (A, a) infinitesimal,
one assigns the common value 7 to the pair of
points

0 2 (T) = (1) +{G, x4 (1)}*, (55)

G being formed again as in (15). The reconstruc-
tions in @’ and O refer to the same world line if
there exist two expressions 6,7, 6,7 such that

a=1,2.
(56)

K1) = xB(T + 8o7) + WMV 2y 6T +847) +aF,

»m -2
({Xu’KB}) =

pg+2p°(P )’ VI(E) pr+2P° —5— (P ’) V()

)=
v©)= 2L ©.

The inverse matrix is then

(61)

v'(€).

p=2p0p0+2(p L p’)

Owing to Euclidean invariance of the y’s, the
Poisson brackets {G, x o} simplify to

{6, xak =™ ¥ {Gyxat = a0+%woj(x;1+ x;z) . (62)

If the 6,7 exist, they must be linear expressions
in a°, »° and must obey
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(Thus the pair of points with a common 7 value in
O’ could have different 7 values in ©.) Thus the
WLC is the requirement that there exist expres-
sions 4,7 so that

1l
{G, xi}* = WPV x, 0 +a* + (aa—:“- + {xb ,3C}*
(57)

All eleven genevators of the system gre again
involved.

For the two (or more) particle case it is not
true that expressions 5,7 can be found to satisfy
(57) for any choice of y,. This reinforces our
view point that the choice of x is part of the defi-
nition of the physical system. To examine if
(57) can be obeyed for various choices of x,, it is
simpler to rewrite it in terms of the original
Poisson brackets

9
{rh Ketag, (G, x, ={xh K s} aps ‘gf 007, @=1,2.
(58)

Let us first see what happens with the choice
X=7"=20(x3-%3), X2= 3(x3+x3) —7. (59)

This corresponds to adopting Dirac’s instant
form. The matrix in (48) is

(60)

{x%, K g} ag10% v, + {xh, K g} agy[a®+ 5 0™ (x;y +x5) ]
= '{x‘c‘x’KB}aﬂz 04T
or equivalently,
{¥5 K g} ag,w® 7;
~ —{x4,K 5} agy[47+ a+3 w°’(x,1 +%45)]
no sumon . (63)

If 6,7 do exist, it must happen that the expres-
sions

0 1
0T+ @’ + 5 w% (x;; + x;5)

are proportional to w%y, for both @ values. Thus
the 6,7 will exist, and the WLC will be obeyed, if
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out of the four vectors
A= D{x’;uKB}aBli B = D{xlcjxaKB}aBz ’ (64)

AY is parallel to Bf and A} to BY. These vectors
are

. 2
A=2 [p2+2P° (P’T") V’(&)] P

P-r

+2(py - p2) I ViEr,,
0 P-r _,
B,=2Pp,-2P° 7 V'(E)r,,

. 2
Ay= —2[1>2+2P° (Pp—f) V'(gﬂ P2

P-y
pZ

+2(p7 - p3) V'(E)7r,,

Bo= 2035, -2P° T v/ (O,

In the absence of any interaction, V’=0, A, and
B, are parallel, and so are A, and B,. Thus for
free particles the WLC (57) or (58) can be obeyed.
But if Vv’ is nonzero, then the WLC demand that
7, be parallel to p, as well as to p,, and these
conditions cannot be met, since it is not a conse-
quence of the given constraints that p, is parallel
to p,. In this way the no-interaction theovem ve-
appears in the present framework.

On the other hand a dynamical choice of evolu-
tion parameter can easily be made for which
the WLC are obeyed. In fact, Eq. (58) shows the
way. Let us choose y, explicitly invariant under
R(A,a): -

X1= P7, Xo=3Pe(x,+%,) 7. (66)
Then for both values of ¢, if we set
8o7=={G,xo} =—a- P, ' : (67)

the WLC are obeyed, whatever be the interaction
potential V. As expected, it is only the behavior
under space-time translations that leads to a non-
trivial WLC with the yx, of (66). The system of
constraints K , x, of Eqs. (44) and (66), the Dirac
brackets (51), the ten generators (40), and the 3¢
of Eq. (54) taken together describe an interacting
two-particle system with objectively real world
lines, in the framework of a dynamically deter-
mined evolution parameter. Since the choice of
twelve independent physical variables, their
brackets, and the generator 3 all can involve the
interaction v, the constraint formalism is a
convenient technical means to set up the system in

an implicit fashion.

It is trivial to remark that any choice of y, and
x> such that y, is invariant under R(A,a) and y,
alone carries a T dependence explicitly gives a
system with acceptable world lines. One need
only choose

8,7 = 6,7={G, X2} /(9%2/3T) (68)

to obey the WLC (58). However, we stress that
the choices of V, x, and y, all together define
the particular two-particle system in interaction.

IV. THE N-PARTICLE PROBLEM

The model of Sec. III can be generalized from
2 to N particles for any N. We start with vari-
ables x4, Ppo» @ =1,2,...,N giving us an 8 N-
dimensional phase space I', the only nonzero
Poisson brackets being

{xutx’puﬁ}=gpv6aﬂy a,=1,2,...,N . (69)

We must next choose N-independent first-class
constraints K ,, each invariant under the canoni-
cal transformations R(A, a) (which act in the ob-
vious way and have the obvious expressions J,,
p, for generators). We assume there is a com-
mon “potential” V and take

Ko=pl-mg+ Vx,p), a=1,2,...,N. (70)

The first-class conditions are

9

= L9 8 N\
{Ka,KB}—():a(pa 5o ~Ps axﬁ>V 0. (71)

Moreover V must be invariant under R(A,a). The
(N - 1) independent conditions (71) on V can be
expressed in this way: For each of the values
a=1,2,...,N~-1, V must be unchanged by the in-
finitesimal changes

Xag=Xat €Poy Xou1= Xou1 — €Pou > (72)

the remaining x’s being held fixed. Translation
invariance restricts V to be a function only of the
(N —1) differences y,= X, — X3, Y2= Xz —Xgy+ ++ Yyo1
=xXy-;—%y, and of all the p,. We must ex-
tract from the set of (N-1) four-vectors

(915 V25 - - + » Yy -1) just those combinations (depen-
dent on the p, also) that are unchanged under each
of the (¥ — 1) transformations (72). Let us write,
in view of (72), the set y,,...,yy_; as a column
vector with 4(N ~ 1) components, and also set up
(N - 1) similar column vectors made up from the
P in this way:



~
B
q h 4
" D1+ b2 bt By
Y2 ~Pe - bs
0
y= s 1= y R2= 0 >
YN -1 ’
L) | o
- 0
< J
(73)
0 A ( 0o )
~ by _
_Z_3- p3+p4v ) ’ _Z_N"l=
- Da 0
0 _pN—].
by-1tby
“ o
0
- J

Then we need to form expressions linear in y that
are unchanged if we were to add y to any linear
combination of z,,...,zy._,: V can then be any
Lorentz-invariant function of such expressions
and the p,. Let us equip these 4(N —1)-compo-
nent quantities with a metric in which we sum up
the Lorentz scalar products of corresponding
component four-vectors: thus we have

y-21= 9, (py+Ps) =y Ds»
(74)

zy°2;= = (pytpa)opa—poe (Patpa),... .

If the symmetric (W —1)x (N - 1) matrix z, * 2
has an inverse B, (these are all functions of the
p’s), then the 4(N - 1)-component object

¥-24BygZs*Y (75)

has the desired property. It gives us the (N -1)
Lorentz four-vectors each being linear in the y,
and unchanged under every transformation (72).
V can then be any Lorentz-invariant function
of these (N —1) four-vectors and the N vectors
po- (It must be noted that in place of (74) one
could have used other definitions of a metric for
the quantities (73); but one finds that one is not
led to anything essentially new.)

The constraint hypersurface ¥ in I" defined by

K,=0 (76)

is TN dimensional; in it the K , generate an N-
parameter Abelian group of canonical transforma-
tions, giving rise to orbits in the form of N-dimen-
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sional “sheets” S. So the sheets form a 6N-
parameter family. Again it is inappropriate to
identify a sheet with a state of motion of an
N-particle system. One must give a rule for
selecting a one-dimensional curve C on each S,
parametrize it with a variable 7, and view each
such curve above as a state of motion. Then as 7
varies along a given C, in a given frame O the
quantities x¥(7) give a set of N world lines. The
specification of C and then of 7 is achieved by
adding a set of N constraints

Xa(x;p)zoy e=1,2,...,N-1, XN(x’p;T)ZO’('?q)

to (76). Only x, carries explicit 7 dependence,
and the K ,, x, must together form a second-class
system. In Egs. (49) and (51) if we now let
a,B,... run from 1 to N, we can write the re-
placements for (52) and (54). There will exist s
dynamical generator 3¢ such that along any C one
has a general equation of motion

af 1 y !
ar - :{r ~{/ 'K o} aay ?fr = :{ RUECAE
(78)

The eleven generators J,,, P,, and 3 used within
the Dirac bracket system, and all constraints
K ., x o Operative, define the relativistic N-parti-
cle system.in interaction. Of course changes of
inertial frame are implemented by transforma-
tions R*(A, a). )
The WLC is, as before, given by the require-
ment: For any infinitesimal transformation (A, a)
there must exist expressions 6,7, «=1,...,N,
such that

gl
{G, i} *= wh? x, o +a* +(—%aa: + {x‘&,ﬁ(ﬁ}*) 8T

a=1,...,N. (79)
For computational ease we rewrite this as
{5 Kstas,{G,x,}
={xt,K gt agy@Oxy/387) 6,7, a=1,2,...,N.
(80)

A simple choice of x, yielding a physical system
obeying these WLC is
x1= P- (x1 —xz)s X2= P~ (xz —xs)’

(81)
Xv-1= Py 1—%y); Xy=P-x,-7,

for then the value 6,7=-a- P for all o fits the bill.
Note that 7 in (81) has the dimensions of action.
V. SPECIAL CASES OF N-PARTICLE SYSTEMS

It should be clear from the development so far
presented that the real reason we have succeeded
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in not being bound by the no-interaction theorem
is this: We have enlarged the framework of
relativistic Hamiltonian dynamics in an essential
way by allowing for a dynamically determined
evolution parameter. But this new framework so
greatly increases the possibilities of construct-
ing models with interaction that we devote this
section to looking at some novel possibilities.

(a) Both in the two-particle and N-particle
models so far discussed the evolution parameter
7 had the following meaning: In any state of
motion observed in a frame O, 7 was the time as
measured in the center-of-momentum frame.

[In (81) this involved measuring 7 in units of

vp?.] Since P, is a constant of motion, keeping

O fixed we see that for each state of motion the
center-of-momentum frame is also an inertial
frame, but one that depends on P, and so on the
particular state of motion.f5 This is the case then
with y, chosen as in Eqs. (66) and (81). But we
can consider another kind of system with the
choices

Ko=pol—mg’+ Vix,p), a=1,2,...,N,
Xa:pl'(xct_xou.l)’ a:1’2""7N"‘1) (82)

Xn=P1°%—T.

The K , can be taken to be the same set of first-
class functions as in Sec. IV; so the transition
from I" to ¥ and the subsequent breakup of ¥ into
sheets S is exactly as before. But thereafter

the model changes. The curve C we pick out on
each S to identify with a state of motion is no
longer the same as before; so even with the same
“potential” V we have now a completely diffevent
physical system of N-interacting particles: the
Dirac brackets and 3¢ will all be different from
the case with Eq. (81). In particular, since in

the present model the first particle is not free,
i.e., p, is not a constant of motion, 7 no longer has
the meaning of being the time in some (dynamical-
ly determined) inertial frame. Nevertheless all
the requirements of special relativity and also

the WLC remain fulfilled. In particular the WLC
(80) is now satisfied with the common choice

6uT=—a-p, a=1,2,...,N. (83)

(b) The case we just considered was this: One
of the particles in the N-particle system, subject
to interaction similar to the rest, “carries a clock
with it” and that gives us a parameter 7. We can
easily make a model in which this “time keeper”
is free but is not the “center of momentum?” of the
total system. To have a system of N particles in
interaction, we adopt the formalism of the pre-
vious section appropriate to a system of (N + 1)
particles, and make the choice

Ka=pol =m oS +V (X1, ovy Xy Prye v e s Dy)

a=1,2,...,N,
KN+1:PN+12 - mN+12 ’ (84)
Xoa=Pys1® Wa—%g1)y a=1,2,...,N,

XN+1TPNe1° X1 — My 1 T

The function V is of the kind we investigated in
Sec. IV. We have then an initial I of dimension
8(N +1); the surface ¥ defined by the vanishing
of &y, ks, ... ,ky,, is of dimension 7(N +1); these
first class K’s generate in T sheets S of dimen-
sion (N +1); and the final Dirac bracket system
refers to a system with 6(N +1) phase-space
variables. The following bracket relations are
checked:

{Ka’KN+1}:07 lI:l,Z,...,N,
{KN+1’X0(}=0: C!:l,z,--.,N—l,
{Kyer Xt =2my,* (85)

{Kw XN+1}=07 a=1,2,...,N,

{KN+1! Xn+ g = 2myy P

The equation of dynamical evolution

ar _3f .y

E = 8_T + ;1 {f’Kct}va+{f1 KN+1}UN+1 (86)
has coefficients » which are fixed by the require-
ment that each y be preserved in time. In this
way we find

dy 1
GXNs1 =
dr 0=y 2my,, (87)
For the equations of motion for x,,, py,; we
have
LE2%Y e APysy =0. (88)

’
dar my, ar

Thus the (N +1)th particle indeed moves freely,
but it supplies its own “rest-frame time” as the
evolution parameter for the entire system. In
particular, let us note that the physical changes
of inertial frame 0- 0’ =(A, a)O are represented
by Dirac canonical transformation R*(A, a) in the
final phase space of all (N +1) particles with the
generators being

N+1 N+1
Jul/ = E (xu aPra _xvotpuot) ’ Pu = E puay
a=1 a=1

(89)

even though it is true that the contributions to

Jy, and P, from particles 1,2,...,N and from

particle (N+1) are separately constants of motion.
This particular model suggests that we may have

succeeded in avoiding the no-interaction theorem
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merely by including the dynamical variables of a
noninteracting but observing particle, in short

a passive observer, in the overall framework.
However, it is more appropriate to say that such
a possibility is one of many that arise in our ex-
tended form of velativistic dynamics.

VI. CONCLUDING REMARKS

The work described in this paper is devoted to
an analysis of relativistic theories of N interact-
ing particles making use of the constant formalism
of Dirac. The starting point is a collection of
quadruplets of canonical pairs one for each parti-
cle. The four-momentum variables of each parti-
cle is constrained by one constraint each; and
these N constraints are required to be first class.
Even with these constraints the system is not yet
a collection of particles since the allowed region
> of phase space is TN-dimensional and mapped
into itself by the Poincaré group R(A, a) acting
on the primitive 8 N-dimensional space. In view
of the first-class nature of the N constraints K
these constraints generate commuting canonical
transformations. Any point in the 7TN-dimensional
constrained surface ¥ is taken into an N-dimen-
sional sheet S by these transformations. On the
other hand a collection of N particles would have
an initial state labeled by 6N variables; and
dynamical evolution should be described by a
one -dimensional curve indexed by an evolution

" parameter 7. We shall have to introduce then N
constraints y, which form a second-class system
together with the K ,, and the parameter of evolu-
tion 7 should enter at least one of the constraints.
When equipped with these constraints the system
may be viewed as a system of N particles.

We recognize that much of the spirit of our
study follows the various discoveries and ideas
of Dirac, we find that our formalism for relativis-
tic dynamics goes beyond the four forms of
velativistic dynamics that weve outlined by Divac.
We need to allow dynamically (rather than
kinematically) defined Lorentz frames. In the
process we have been led to consider eleven dis-
tinguished generators corresponding to the
Poincaré transformations and the dynamical
evolution of the system. The dynamical evolution
may be identified with the time-translation
operator as a special but not useful choice when
describing interacting particles. It is our belief
that we have definitely made an advance in rela-
tion to the formulation of relativistic dynamics.

It would be incorrect and unsatisfactory to
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consider the choice of the y constraints as “gauge”
conditions.' The physics of the evolution of the
system does critically depend upon the choice

as well as the relativistic invariance.

The world-line condition is an added restriction
to the dynamics going beyond that of relativistic
invariance. The no-interaction theorem having
been proved cannot be set aside or invalidated
without abandoning the theory. The N-dimensional
sheets are relativistically invariant, but they do
not yet describe particles and their existence and
characterization neither affirms nor denies the
no-interaction theorem.

What we need therefore is to try to impose a
requirement different from the ones that led to
the no-interaction theorem. The world-line con-
dition® discussed in the text is such a choice.
With this choice and in the framework of the
post-Dirac formulation of relativistic dynamics
we are able to obtain dynamical results.

The requirement of cluster decomposition
brings in a host of new problems.'® QOur discus-
sion of these should serve to focus attention on the
fact that these go beyond all the other require-
ments imposed on the system.

The particularly interesting results on the time-
keeper particle may evoke different responses
from different readers. On the one hand every
clock is a more or less isolated subunit; and as
such treating it as a “particle” (free or other-
wise) or a subcollection of particles is no essen-
tial limitation. Therefore, one may argue, we
have essentially overcome the limitations im-
posed by the no-interaction theorem. On the
other hand, one could argue that as long as the
frame of the clock is a dynamical system we
have gone outside the dynamical framework for
considering objective world lines which are purely
geometrical. We leave it to the reader to decide
how much of an advance we have made.

The authors themselves are not in complete
agreement about the physical significance of the
x constraints. In this paper the attitude is taken
that the dynamical system is not defined until the
x constraints have been specified. However, in
the following paper, the point of view is taken that
the dynamics of the interacting particles is given
by the K constraints while the y constraints define
a class of observers by fixing the relationship
among the particle coordinates at a definite value
of the evolution parameter r. The “kinematic”
or “dynamic” choice of 7 then appears as a rela-
tively unimportant choice of clock and clock-
rate. To some extent this difference in point of
view is only semantic. It does, however, give
additional insight into the meaning and signifi-
cance of the WLC.
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