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Dirac’s new infinite-component positive-energy relativistic wave equation is generalized by introducing para-Bose
internal dynamical variables. Electromagnetic interaction of Dirac’s particle is studied and the origin of the
difficulty in the original formulation identified. It is seen to be evaded by our generalization, a special case of which
for para-Bose variables of order 2 is discussed elsewhere. Our equation also describes a spinless positive-energy
unique-mass particle in the absence of external fields. We outline the new Dirac theory in 141 and 2 +1

dimensions.

I. INTRODUCTION

In the conventional treatment of relativistic
wave equations we are used to the appearance of
positive- and negative-energy solutions in a sym-
metric way. For finite-component manifestly
covariant relativistic wave equations however con-
structed, this is a consequence of invariance un-
der the complex Lorentz group, one of whose
elements is the strong spacetime reflection.
Dirac? has proposed a new relativistic wave
equation, hereafter called the Dirac equation,
which is not symmetrical between positive and
negative energies. This equation describes a
spinless particle of unique nonzero mass with
positive-definite energy; and there exists a con-
served four-vector current with a positive-defi-
nite density. An important but unwelcome feature
of this new equation is that the conserved particle
current cannot interact minimally with an exter-
nal electromagnetic field because the replacement
p,—~m,=p, -€A, leads to algebraic inconsisten-
cies.

Attempts have been made to generalize the Di-
rac equation. Kapuscik® has formulated a general
class of wave equations from which he derives
the Dirac equation as a special case. Biedenharn
et al.* have generalized the Dirac equation to des-
cribe particles of mass m and spin s, where s
can take on any of the values of 0, 3, 1,... .
These generalizations also allow only positive-
energy solutions, and have a conserved current
with positive density. As for the Dirac equation,
equally so for the generalized equations of Bieden-
harn ef al., a minimal electromagnetic interaction
cannot be consistently introduced.

The novel feature of the Dirac equation is that,
in addition to a spacetime coordinate subject to
the usual action of the Poincaré group, there are
also internal degrees of freedom involving two
harmonic oscillators. Biedenharn et al.® attemp-
ted an interpretation of such additional dynamical
variables as arising from a system of two sub-

particles interacting with each other through har-
monic forces. One may also seek an interpreta-
tion of the Dirac equation or its generalization as
an extended particle with a Gaussian type of dis-
tribution.

An attempt to construct a multilocal field theory
to describe extended particles was made by Yuk-
awa quite some time ago.® In the last few years,
interest in the Yukawa type of multilocal field
theory has been revived in connection with quark
confinement. In particular, a multilocal field
theory describing subparticles such as quarks in-
teracting with each other harmonically has been
discussed extensively.”® An important motivation
for constructing a multilocal field theory is to
have a divergence-free quantum field theory.

In the formulation by Dirac’? (or by Biedenharn
et al.*®) the internal degrees of freedom involve
two independent sets of bosonic variables. In this
paper, we present and study a generalization of
the Dirac equation obtained by replacing the bo-
son variables by paraboson variables. We shall
refer to the resulting equation as the generalized
Dirac equation. Since both Bose and para-Bose
oscillators for 2 degrees of freedom lead to an
SO(3, 2) structure, many features of the Dirac
equation might carry over to the generalized case.
In fact, we will see that our generalized Dirac
equation with para-Bose internal degrees of free-
dom is also a relativistically invariant wave
equation describing a particle with fixed mass,
zero spin, and positive energy. Furthermore, in
this case minimal coupling to an external elec-
tromagnetic field becomes possible. This possi-
bility was realized for a special case of the para-
Bose variables of order 2 in a recent paper.®

In Sec. II we study the algebraic structure of the
para-Bose system for 2 degrees of freedom. A
class of representations for this system is also
presented. In Sec. III we prove the relativistic
invariance of the generalized Dirac equation. For
the para-Bose representations used in this paper,
we show that the generalized Dirac equation des-
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cribes spin-zero particles alone. The problem of
introducing minimal external electromagnetic in-
teraction is examined in Sec. IV. It is found that
owing to the algebraic structure of the para-Bose
system no algebraic inconsistencies arise. Some
concluding remarks are given in Sec. V. In Ap-
pendix A, we demonstrate the emergence of an
S0(4, 2) ® U(1) algebra for para-Bose variables on
2 degrees of freedom, using Green’s ansatz.’® In
Appendix B we describe briefly the structure of
the Dirac equation and its generalization in 1+1
and 2+1 spacetime dimensions.

II. THE PARA-BOSE SYSTEM WITH 2 DEGREES
OF FREEDOM

In terms of “position” and “momentum” vari-
ables ¢,, p,, ¥=1,2, the commutation relations
defining two independent boson oscillators are

la,,p,]=15,,, la,,9,]=[p,,p,]=0. ¢y

Such variables constitute the internal degrees of
freedom in the Dirac equation. For convenience,
let us denote by & the column vector

-
e= "] . @)
P

2

Then Eq. (1) appears as
[Ea,Eb]=iBab, a,b=1,...,4,

0 0 10
0 01
p= 0 3)
-1 0 00O
0 -100

For some purposes it is more convenient to use
the non-Hermitian annihilation and creation op-
erators in place of the Hermitian ¢’s and p’s:

a ‘=—1(q +ip)
s ﬁ s s’ (4)

~7§_—( —ip,), s=1,2.

Then the Bose relations (1) take the form
la,,al]=6,,, [a, a,]=[al,al]=0 (5)

It is convenient to make a special choice of the
Y matrices at this point. We take

017 o, O
Yo=B=1ip,= y V1T P303= ’
-1 0 0 -0,
0 -1 -0, O
Y= —P1= y Y3=—P30,= .
-I 0 0 o

All the y, are real and obey

s ub=22,0, goo=-1. )
The fifth matrix is given by

-io, 0
75:70717273=—i93°2=< 0 o, ) Ys2=—1. (8)

The three matrices v, j=1, 2,3, are Hermitian,
while 7, and v, are anti-Hermitian. Because of
the transposition property

yI=-Bv, B, ¥T=Byp*, (9)

we find that the “vector” and “tensor” matrices
BYus B['Y,,,'y,] are ten independent symmetric real
matrices, while the “scalar,” “axial vector,” and
“pseudoscalar” matrices B, Bv;, Bvsy, are six
independent antisymmetric real ones.

It is an immediate consequence of the Bose re-
lations (3) that, if we construct the ten indepen-
dent symmetric bilinears in £ in this way,

=3By, mlE, V,.=-3ETBv,E, (10)

then (i) S,, and V, are Hermitian, (ii) on com-
mutation with £ we have

[Sur 81=5 e, [V, 8= Sy, (1)

and (iii) among themselves the Su,, and V, repro-
duce the commutation relations of the Lie algebra
of SO(3, 2):

[Sl-lvl” 00] (guasw gVPsIJ-U +guosnv gws )
[Sus V,1=i(2,,V,~4,,V,), (12)
[v,,V,]= —1iS,,

We recall here the following well-known further
features of this construction based on the Bose
structure (3): (i) if the commutation relations (3)
are realized irreducibly on a Hilbert space 3C,,
then on exponentiation the S,, and V, generate a
unitary SO(3, 2) representation [more correctly an
Sp(2, 2) representation] on 3¢,, in which an element
g in SO(3,2) is represented by a unitary operator
U(g); (ii) this SO(3, 2) representation, which is
characteristic of the fact that we started with
Bose operators, is the direct sum of two irreduc-
ible unitary representations, each of which is a
“remarkable” representation'’; (iii) on restriction
to the Lorentz subgroup SO(3, 1) generated by the
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S,,, we get a unitary representation A< SO(3,1)

- U(A) acting on 3C,; (iv) this SO(3, 1) representa-
tion, again characteristic of the underlying Bose'®
structure, is the direct sum of the two Majorana
representations thus each of the two irreducible
SO(3, 2) representations on 3¢, remains irreducible
on restriction to SO(3,1); (v) because of Eqs. (11),
under the unitary transformations U(g), U(A), the
¢ are transformed linearly

U(g)EU(8) *=S(g) 'k,
UA)EUA) ' =S(A)'E,

where S(g) is a real 4 x 4 irreducible nonunitary
representation of SO(3, 2) while S(A) is the 4X 4
reducible nonunitary spinor representation of
SO(3, 1) that occurs in the old Dirac equation; (vi)
the following additional relations obtain

UMV, UNA) =A%V,
U(A)S,, UA) *=A°, A%, S

S(AY,S(A)=A,"%,. (14p)

In the Dirac equation, the “wave function” ¥(x) is
a vector in JC, for each x.

The para-Bose system for 2 degrees of free-
dom can now be defined: it is a set of four Her-
mitian operators £ which obey the trilinear com-
mutation relations (11), where the bilinear S,,
and V, are formed from £ by Eqs. (10) again. The
trivial solution corresponds to setting all £, equal
to zero. The Bose solution corresponds to obey-
ing Eq. (3), of which Eqgs. (11) will then be con-
sequences. A nontrivial para-Bose system obeys
Eqgs. (11) but not Eq. (3). Such a system may be
reducible or irreducible. Green’s ansatz pro-
vides us with reducible nontrivial para-Bose sys-
tems.!® Unlike Eq. (3), Egs. (11) possess infinitely
many inequivalent solutions, some of which are
described in the sequel.

For a nontrivial para-Bose system, defined on
a Hilbert space ¢, say, we may note several im-
portant properties. There will be some SO(3, 2)
unitary representation generated by S,,and Vv,
and a related SO(3, 1) unitary representation gen-
erated by S, ,, acting on3C,. We may denote the
corresponding operators by U(g) and U(A), with
the understanding that the nature of these group
representations certainly depends on the specific
para-Bose system chosen. All this happens be-
cause from Eqs. (10) and (11), we can derive Egs.
(12) as consequences. The system of Eqs. (13)
and (14) remains valid in the para-Bose case,
with no changes in the 4 X 4 matrices S(g), S(A).
Since in a nontrivial para-Bose system the com-
mutator [£,, £,] is an operator and not a ¢ number,
we can use the six antisymmetric matrices 8, Bv,,
and Bvy,v, to set up corresponding bilinears:

(13)

(14a)

-1
=TETB€,

-1
P= TgTB'ysg, (15)

-1
Au = TgTB.y{yug .
In terms of ¢ and p we have

S= -—:4£([q1!p1] +[q5,0.)), P= :41.([%"1)2] ~[2zp.]),
A= %([Qm Q1] +[p 1ap2]) , A= :Ii([ql’p?-] +[q2,1>1]) ’

Az=—f([qz’q!.] =[pu,0aD, A3='Tz (g1, 0. - [qz,é’%])) .
Like S,, and V,,, the operators S, P, and A, are
all Hermitian. For the Bose solution we see im-
mediately that P and A, vanish and S=3. (As we
will see later, it is exactly the vanishing of P and
A, that leads to the inconsistency in the Dirac
equation when interaction with an external elec-
tromagnetic field is introduced through minimal
coupling.) It can easily be shown that A, and P
transform as a five-component vector and S as a
scalar under the SO(3, 2) transformations U(g)
generated by S, ,, V,. Furthermore if we assume
that the para-Bose operators are given by Green’s
ansatz,'® we find that S,,, V,, A,, and P form an
SO(4, 2) algebra with S generating an invariant
Abelian transformation. This is shown in Appen-
dix A.

The above description of the para-Bose ring was
in terms of the Hermitian ¢’s and p’s, and more-
over gave prominence to the SO(3, 1) subgroup of
the naturally occurring SO(3, 2) structure. We
now transcribe the description to deal with the
more familiar oscillator operators a,a’, and ex-
pose the SO(3) ® SO(2) subgroup of SO(3, 2) to fa-
cilitate construction of a class of irreducible non-
trivial para-Bose representations. Let us arrange

the a’s and a'’s into the column vector
al

e |4 an)

2
-a,
The Bose relations (3), (5) would take the form
(&, &]=iB, B =p0,. (18)
If we use a new set of ¥’ matrices defined as
Y6=1py, VYi=-—p10y, (19)
V5= P02y V5T — PiPs,

then the symmetric bilinears S, , and V, appear as
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follows:

=2 ETB[v,,7 ]E=§£'Tﬁ'[n,7.,] , (20)

v =‘Tl £7By, E= 8T B

'3

The defining trilinear para-Bose commutation
relations (11) then read in familiar form:

[ar’% a.n u}

[a,, z{a,, .,}
nz{a.n u}]'_éru as
a #las, al}l =0, (21b)

[ar’ z{a}, a}] =5,,a,+ 5,07,

[a],3{a,,a,}]=-6,.a,-6,a,.

In fact, the four Eqs. (21b) are consequences of
the two Egs. (21a). We rearrange S,, and V, into
the following combinations:

(21a)

J,=3€,,S,, =1 (@o,a+aTcfa’T),

= =1 tT
L,—Soj+zV,-z a cjca

(22)
M,;=S,,—-iV,=-3a"co,a,
K=V,=%(d'a+a%a'?).
Here we have used the notation that
a= a1>’ a'=(alal), c=io,. (23)
a2

Writing the SO(3,2) generators in the pattern of
Eq. (22) exhibits the structure with respect to the
ma.xnnal compact subgroup which is generated by
J and K: both I and M are SO(3) vectors while
they, respectively, raise and lower the eigen-
values of K by unity. The SO(3, 2) commutation
relations (12) can be given equally well in this
form:

[!’ k]—ii.,“J,, [JJ’K]=O’ (24a)
[y Lyl =€y, Ly, [9;,M,)=i¢,,M,,
[K,L,)=L,, [K,M]=-M,
[L,,L]=[M,M]=0,
[L,,M,] =25,k - 2i€,,J,,

(24b)

’

(24c¢)

while J and £ are Hermitian, T.'=

Let us now study a class of representations of
the para-Bose ring for 2 degrees of freedom. We
restrict ourselves for the purpose of this paper
to those representations which have a unique
“vacuum” or ground state annihilated by a, and
a,; although the generalized Dirac equation will
be covariant with the use of any para-Bose rep-
resentation. As we will see in the next section,
the generalized Dirac equation will describe a

single spin-zero particle only if the vacuum is
unique. The general irreducible para-Bose rep-
resentations will be presented elsewhere. Let us
define the vacuum |0) as follows:

a,|0y=0, s=1,2. (25)

From its assumed uniqueness and the commuta-
tion relations (21a) we have

a,al|0=c,|0), (26)

where c¢,, are numbers. Furthermore, since

[3{al,a,},a,al]=0,,a,a! - 6,a,al, nosumonu,
@7
we have
(84 Cup — 8,4Csu) |O» =0, no sum onu, (28)

which implies
cur = 775“,. * (29)

Therefore, uniqueness of the vacuum implies ex-
istence of a (real nonnegative) 7 such that

a; [0),=18,,|0), . (30)

Here we have labeled the vacuum state by 1, which
may be called the para-Bose order. The case 7
=0 is the trivial solution in which all a; and a}
vanish. (Incidentally this possibility is excluded
for the Bose ring.) Adapting a method given by
Greenberg and Messiah,'® we may show that in all
other representations we must have

n=1. (31)
One computes the norm of the vector

|®) =3 (ala} - alal) |0}, (32)
to obtain

(@ |@)=2,(0|a,a,|®)=n(n-1). (33)

Since 1 cannot be negative it follows that if n#0,
it must not be less than unity. The case n=1 cor-
responds to the ordinary Bose solution since in
this case |®) itself vanishes. We have described
earlier in this section the SO(3,2) algebra gen-
erated by the Bose ring with 2 degrees of free-
dom; it has been studied by us elsewhere in con-
nection with Majorana’s infinite component rela-
tivistic equation.’® The integer values of 7 are
associated with the realization of para-Bose sys-
tems in terms of Green’s ansatz'® discussed in
Appendix A. Odd integer values of 7 lead to “re-
markable” representations.!

In the general case it can be shown that

J;|0,=0, K|0),=37]|0),. (34)

From the vacuum we can construct states which
are simultaneous eigenstates of J,, J2, and K. In-
deed let us define
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limnyy = 1 Hal, a ' (@)L [al, ] |0) N _(G+m)1 241
"N ) 22 27218y 8|00, Ny =5 51— Ny,
2_1'\” + -
r 3
. @llem+n+2j-2)11 Nl r+n+2i =111
X(n+2j+1)!!(n+n—3)!!n!! 9 e+ 2N M+n-2)11 - 1)1}
N o= @j+D1T(m-2)! @j+D11(n-2)! (35)
J=im
Q- +n+2j - 1)1 @ - m+n+2i-1)11
n+1)V1(N+n-3)1n!l ><(n+2j+1)!1(17+n—2)!l(n—1)lI
L @) (n-2) @)1 -2)!

7

where the + means even and — means odd. Then we can show that these are normalized eigenstates of
J,, 32, K with eigenvalues m, j(j+1), and (j +n+n/2), respectively. Here j takes the values 0,%,1,...
and independently » takes the values 0,1,2,.... Of course m runs over j,j—1,..., -j+1,~j. These

states |jmn>,, span a Hilbert space ¥, carrying an irreducible para-Bose representation with a unique vac-

uum and characterized by 7 >1. The representation is completely specified by giving the action of a, and
af, on these basis states. These equations are

a [imny=a, it m—4n)+B,, i +3m —kn-1,
ay|imny =y, i —sm+3ny+ py|i+im+in-1y,
a”jmn) =@/ met/an Ij +3M +3n) +Byo1/2 marfonar lj —sm+zn+l),

a; |]7nn) =Yinlam-1/2n |j+%m ~ZM) +Pse1fo merfana |j —zm-zn+l),

Nj-1/2 msl/2n 141/2 me1/2n-1

1/2 1/2
Q= (m +J')<NL'—‘&MJ’-> Yimns Bimn=(m+i)(=2j - 1)<§1*—‘12-"‘—‘z-“—'1 “) ,

n

27 + -
(n+2j +1)(G —m)] 2 M+n+2j —1)G -m)|*2
Y - * [ % +1 ] [ %+l ]
fmn —
_[(n+n+2j—1)(j—m)]'/2 [(n+2j+1)(j—m)]1/2
2% 2j (36)
n

N _
[pneten ] [oreie D=0 |

2j+1 2j+1
Pjmn =
" nm+j+1) ]‘/2 [(m+j+1)(n+n—2)j|l/2
- 27 +2 2j+2
T
IIIl. THE GENERALIZED DIRAC EQUATION obeying four partial differential equations.

Let us first study the relativistic invariance

The equation is given by of this equation. For this we specify that under

the inhomogeneous Lorentz transformation
(v, 8 +m) €y () =0, (37) &
e AU v K
with £ any solution of the para-Bose algebra XEEAS xT Al (38)
(other than the Bose solution) in some Hilbert the wave function ¥(x) changes according to
space 3C,. Here y has only one “component, ” S lr)
that is, ¥(x) is a scalar function of x with values Vler) = UA)() . (39)

in 3¢,. We have a one-component wave function Here U(A) is that unitary Lorentz group represen-
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tation in 3C, that, according to the previous sec-
tion, is generated by the bilinear S,, in §&. With
the help of Eqs. (13), (14b), (38), and (39), we
see that if y(x) obeys the generalized Dirac equa-
tion, then so will ¥*(x’):

by, 8 +m)Ey (x7) = (v, AL8* +m ) EU(A)Y(x)
=[S(A)y,S(A) 18" +m] U(A)S(A) Ed(x)

=S(A)UA )y, 8% +m)Ep(x)=0. (40)

Therefore, like the Dirac equation, our general-
ization of it is also relativistically invariant: the
replacement of the internal Bose variables by
para-Bose variables in no way spoils this prop-
erty. The only difference is that the specific
Lorentz group representation U(A) by which ¢
transforms depends on the para-Bose solution
used.

Next let us consider the plane-wave solutions

dx)=eF*u(P), u(P)eie,. (41)

Assuming P is timelike, in the rest frame we
have

(iP°%,+mq,)u=0, (iP°%,+mq)u=0, 42)
(—iP°%,+mp Ju=0, (—P°q,+mp,)u=0.

These equations imply (P°?=m?2, so we must have
P°=xm. At this point we restrict the analysis to
the class of para-Bose representations given in
Sec. II, having a unique vacuum state. For the
negative-energy case, P°= —m, Eqs. (42) require

du=alu=0, (43)

and clearly no such vector u exists in 3¢,, For P°
=m, Egs. (42) become

au=au=0, (44)

with the unique (up to a factor) solution u = |0),.

The eigenvalue of J 2 gives us the (nonorbital)
angular momentum. From Eq. (34) we have for
the vacuum state j=0. Since we must interpret
angular momentum in the rest frame as the spin,
we see that our generalized Dirac equation des-
cribes a spin-zero particle with mass m and posi-
tive energy, just as does the Dirac equation,
provided we consider para-Bose representations
with unique vacuum. It may be easily checked
that our generalized Dirac equation has no space-
like or lightlike solutions.

IV. MINIMAL ELECTROMAGNETIC INTERACTION

We now study the problem of minimal coupling
to an external electromagnetic field. The inter-

action is introduced by simply replacing 9, by
m, =8, —ieA,, when Eq. (37) becomes

(v, m™ +m)EP(x) = 0 (45)
or
T,(x)=0,

T,= (v, +m), €, a=1,...,4.

(46)

It was stated by Dirac that his equation becomes

inconsistent in the presence of such coupling.

This fact has been explicitly proved by Bieden-

harn et al.® by a series of elegant calculations

which differ somewhat from the following analysis.
The consistency of Eqs. (46) requires that

[T, Told(x)=0. (47)

In what follows we will show that this consistency
condition leads to constraint equations which imply
for the Dirac equation either F,,=0 or §=0; but
for the generalized Dirac equation no such con-
sequences are implied. The commutator in Eq.
(4'7) may be decomposed into two parts:

[7,, o) =[ (v, 7 +m), &, v,1* +M),,E,]

=Xab + Yab ’
ie
Xab =?7ﬁcy:4Fuu{gc’ gd}’ (48)

Y, =5l mt +m), g, (v +m)y i &, &

Both terms X, and Y, are skew symmetric in a
and b, and so each may be expanded in terms of
the six independent skew-symmetric matrices 8,
Bvs, and gy.y, with unique (operator) coefficients:

Xab =&Bab + (B(ﬁ')’5)ab +C x(BYng)ab )
(49)
Y, =[@L,B,, +®%,(BYs)a +e iy (BYsyy) wllée, &1

It is somewhat tedious but straightforward to com-
pute these coefficients; they are

@ =—ieF*’S,,,
=% guvoo F,“)Spu R (503.)

et =iee™™F, V|

@oy=— (M =m?B,,,

®;, = (12 +m?)(By;),, +2m Byy,m),,,
= 2mm(By,)  +[rom + whn° (50p)
+(m? - 1) (Y5, ), -

Since B, Bys, and By,¥, are linearly independent,
the consistency conditions (47) reduce to the fol-
lowing system of equations on :
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{ieF»*S, , +(1* —m)B [ £, £ ]} =0, (51a)
{%e- €“"F .S, +[(@% +m?)By, + ZmBYSVuﬂ"]c,,[Ec, Ed]}ll’ =0, (51D)
(ie€™™F, V, +{2mm* By, +[m*1° + w1 + (m? — n2)g™]BysH £, £,)9=0. (51c)

It is easy to show that (45) implies
(mBys+BYsY, ™) gy [Ecs §410=0. (52)

On using Eq. (52) in Eqs. (51), and also introduc-

ing the “antisymmetric bilinear” S, P, A, as de-

fined in Eq. (15), the consistency requirements on
Y take the compact form

[ieF**S,,+8(n% —m?)S]y=0, (53a)

[iee»oF, S, +8(r® - m?)P]y= 0, (53b)

[ie€e™*™F ,V, +8ieF™A, —8(r*—m?)AMp=0.
(53c)

In the field-free case, i.e., F,,=0, these con-
ditions reduce to

(8,0 —m?*)Sy=(8,8* — m*)Py

= (0,04 —m?AX=0. (54)

These are indeed satisfied since the allowed so-
lutions of Eq. (37) lie on the mass shell. In par-
ticular, for the Dirac equation with Bose variables
when S=% while P and A, vanish, we just obtain
the Klein-Gordon equation for ¥; this was of
course obtained by Dirac.

With an external field but with Bose internal
variables, i.e., for Dirac’s equation, Eqs. (53)
become

[ieF**s,,+4(r* -m?)]yp=0, (55a)
ie€* " F, .S =0, (55b)
ie€™"F, V $=0. (55¢)

Equations (55b) and (55¢) are the constraint equa-
tions found by Biedenharn et al.* One can see that
these constraints are inadmissible by considering
the simple case of a constant external magnetic
field along, say, the third axis. These constraints
imply that # is annihilated by Sy,;, V;, and V,. How-
ever, V, is positive definite. Therefore, we de-
duce that F,, itself should vanish: for the Dirac
equation we cannot introduce minimal coupling to
an external electromagnetic field.

For our generalized Dirac equation with non-
trivial para-Bose internal degrees of freedom,
Eqgs. (53b) and (53c) do not disappear as F,,— 0;
correspondingly when F,, is nonzero, these are
equations of motion for ¥, involving the space-
time derivatives of ¥, and not merely algebraic

r

constraints on . Hence minimal electromagnetic
coupling is no longer forbidden.

V. CONCLUDING REMARKS

The Dirac equation of 1971, while built on a
fascinating algebraic structure, was seriously
flawed in its inability to consistently interact in
minimal fashion with electromagnetism. This
problem has been solved in this paper via a gen-
eralization in which the Bose internal variables
give way to para-Bose variables generalizing our
earlier work.® Our equation does not belong to the
general pattern considered by Kapuscik.?

The particular para-Bose representations used
here are distinguished by the existence of a unique
vacuum, and so the generalized Dirac equation
describes spin-zero particles. However, other
para-Bose representations exist, with several in-
dependent vectors being all annihilated by a, and
a,. With their use one expects to describe via the
generalized Dirac equation particles with nonzero
spin, of course again able to consistently interact
with the Maxwell field. In this manner we would
have been able to obtain the higher spin analog of
the Dirac equation without introducing an ever-
increasing number of spacetime derivatives in the
equation (cf. Ref. 4).

The essential complication arising with the use
of para-Bose variables is that simple descriptions
of the internal space 3C, no longer exist; for in-
stance, we cannot assume ¢, and g, diagonal. For
the same reason, a limiting semiclassical des-
cription, along the lines indicated by Dirac,? seems
considerably harder for our equation.
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APPENDIX A: PARA-BOSE ALGEBRA

Let us combine the ten SO(3, 2) generators Sy
V, of Eq. (10) into a set S,z =~Sz,, A, B
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=0,1,2,3,5 by identifying V, with S,5. Then the
commutation relations (12) are
[Sass Scpl =i(gacSsp—gscSan
+g4pScs = &spSca) s (A1)
go=gs==1, guu=gn=gp=1.

By making use of the defining para-Bose rela-
tions (11), which in fact give (A1), we can now
show that S, and Az (where A;=P) obey

[Sans Ac]=i(gacAs — gacAd) . (A2)

Thus A transforms as a five-vector under
SO(8, 2), whatever representation of the para-
Bose system is chosen.

Let us consider the cases with integer n which
arise on reduction of Green’s construction.!® We
assume the form

& =§; £a> (A3)

where the ¢] satisfy the mixed relations

{EZ, E:}=O, r#S, [E;a 5;] =By (A4)

We immediately see that

{ea, sb}=§; {en, £1h,

(A5)
(£ &) =By +2 D0 187
TS
Therefore we may write S,5, Az, and S as
Sll-v:'{i;- Z’r grrﬁ[’)/u’ ,}/v]gr,
Ve=Su5= % Zr: ngB'Yu'Er }
-1
A= e Bt (A6)

T#S

-3 ,
P:A5=—4-‘ E £ T,B')’5§s,
T7S

. i v
b:é—n—zz& T’ygs.

r#s

We have already the attractive set of commuta-
tion relations (A1) and (A2). Let us now find the
commutators among the Az. To simplify the no-
tation we write

Ap =My (B) D ETES . (A7)
T#8

For each B=0,1,2,3,5, M, (B) is an antisymmet-
ric matrix. We then have

[Ag, Ap] =M (AIM (B) DD [£1Es, £462] . (A8)

T#S u#y

With the help of Eq. (A4) we can easily see that
the last commutator here vanishes if all four
superscripts », s, u, v are distinct. For terms
with one equal pair of superscripts, for example
r=u, s+v, we have

[65Es, Ecty] = (E0EC+ ECED £t - (A9)
Similar expressions result for the other three
ways in which just one of the pair (7, s) coincides
with one of the pair (u,v). Taking this set of four
kinds of terms together and invoking the antisym-
metry of M(A) and M(B), we find that these terms

cancel against one another and drop out. For
r=u, s=v, we have

[6285s £28a] = [0, £alE56a T £CELIED €3]
=tPeatska T iBarkits - (A10)

The case ¥=v, s=u behaves similarly and gives
a factor of 2 since M(B) is antisymmetric. There-
fore the only surviving terms in (A8) are

ZMab(A)Mcd(B) Z [EZE:, E;gﬂ

T#S

=2 ) [£TM(A)BTM(B)E® + " M(B)BM(A) "¢

r#S

=2i(n-1)Y, £7[M(A)BM(B) - M(B)BM(A)]" .
' (A11)

Now the matrix standing between ¢"7 and &7 is
symmetric, so we can exploit the first Eqs. (A4)
to rewrite (A11) as

[A4, Ag]=2i(n - 1)ET[M(A)BM(B) - M(B)BM(A)]E ,
(A12)

where the total £ of Eq. (A3) appears. By taking
M(p)=(=i/4)Bysy, and M(5)=(~i/4)Bys, we get

[ 4,] =2 (1= DE7B[8,, 7, Je =i(n - 1S, ,
; (A13)
[Au s As] =2 (- 1)ETBn£ =i(n=-1)S,5.

Thus, the set of 15 Hermitian operators S,z and
(n=1)"/%4, realize the Lie algebra of SO(4, 2).
Since we can also show that S commutes with all
of these 15 operators, the entire collection of 16
bilinears in ¢ generate an SO(4, 2) ® U(1) represen-
tation.

APPENDIX B: DIRAC’S NEW EQUATION
IN (1+1) AND (2+ 1) DIMENSIONS

We have seen that the essential reason why
Dirac’s new equation became inconsistent under
minimal interaction by new unsatisfactory con-
straints arising. We traced this to the vanishing
of the several antisymmetric bilinears in the in-
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ternal Bose variable ¢ in Dirac’s theory. The use
of para-Bose internal variables ¢ resolved this
difficulty.

In this appendix we investigate Dirac’s equation
in a spacetime with only one or two spatial dimen-
sions. The equation may be written

(7“ 2 +m)g¢=0. (B1)

ax

The demonstration of the relativistic invariance
of the equation follows the arguments given by
Dirac and in this paper.

The interesting fact is that in 1+1 and 2+1
dimensions, the Dirac matrices may be chosen as
2xX 2 matrices. This simplifies the calculations
enormously since there are three symmetric
matrices and only one antisymmetric matrix. In
the (2+ 1)-dimensional case the symmetric ma-
trices are By" which are the same apart from
normalization as the matrices B[y,, v,]¢"**, while
the antisymmetric matrix is 3. We may define

V=¢"gy e, S=&"Bt. (B2)

These operators have irreducible representations

(labeled 2 to 1) by a parameter 7.%'** In all rep-
resentations (apart from the trivial one) 1 is a
positive (nonzero) number.

The consistency conditions are rather simple in
this case:

[(7* = m*)S+eV,B*]y=0, (B3)
where
B =™ (0,4,-0,4,). (B4)

This is the same equation as obtained by acting
on the differential equation (B1) by £¢7(y"r, - m),
and is, thus, an equation of motion rather than a
constraint. Whether £ isapara-Bose variable ora
Bose variable this leads to a consistent equation of
motion.

For the (1 +1)-dimensional case we need to re-
strict u to the values 0,1 and replace gy® by go™
and use only 8;4, — 9,4, in (B3) and (B4). In this
case also we have a consistent system.

In both cases it follows that in the absence of
electromagnetic fields the system describes a
particle of mass m, and positive energy [com-
pare Egs. (42)-(44) in the text].
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