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With the extension of the work of the preceding paper, the relativistic front form for Maxwell’s
equations for electromagnetism is developed and shown to be particularly suited to the description of
paraxial waves. The generators of the Poincaré group in a form applicable directly to the electric
and magnetic field vectors are derived. It is shown that the effect of a thin lens on a paraxial elec-
tromagnetic wave is given by a six-dimensional transformation matrix, constructed out of certain
special generators of the Poincaré group. The method of construction guarantees that the free prop-
agation of such waves as well as their transmission through ideal optical systems can be described in
terms of the metaplectic group, exactly as found for scalar waves by Bacry and Cadilhac. An alter-
native formulation in terms of a vector potential is also constructed. It is chosen in a gauge suggest-
ed by the front form and by the requirement that the lens transformation matrix act locally in space.
Pencils of light with accompanying polarization are defined for statistical states in terms of the two-
point correlation function of the vector potential. Their propagation and transmission through
lenses are briefly considered in the paraxial limit. This paper extends Fourier optics and completes it
by formulating it for the Maxwell field. We stress that the derivations depend explicitly on the
“henochromatic” idealization as well as the identification of the ideal lens with a quadratic phase
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shift and are heuristic to this extent.

I. INTRODUCTION

In the preceding paper! (hereafter referred to as I) we
have set up a general formalism, based on the front form
of relativistic dynamics,? for the treatment of paraxial-
wave propagation problems in optics. The treatment was
restricted to the case of scalar waves for simplicity, and
we analyzed in detail the group-theoretical basis underly-
ing the front form and the paraxial limit. It was shown
that both the free propagation of such waves and their
passage through ideal optical systems was very similar in
mathematical structure to the quantum mechanics of free
nonrelativistic particles in two dimensions encountering
harmonic impulses. Moreover, the significance of the
metaplectic group for this class of problems, first realized
in the work of Bacry and Cadilhac,’ was traced back to
the structure of the Poincaré group: It arises from the
fact that in the Lie algebra of the Poincaré group there is
a subalgebra isomorphic to (a central extension of) the
two-dimensional Galilei algebra, and this is exposed by the
front form.* We also analyzed the behavior of generalized
light rays® in this context and presented their extremely
simple free propagation behavior as well as their passage
through ideal lenses.

The present paper extends this work to the complete
electromagnetic field described by Maxwell’s equations, so
that a satisfactory account of polarization in paraxial
wave problems can be given. Since in I we have explained
in considerable detail how the front form description of
wave propagation is related to the more familiar one em-
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ploying separate space and time coordinates, we shall em-
phasize in this paper just those features that are particu-
larly associated with the Maxwell system. We shall extend
the group theoretical discussion given in I to determine
the effect of ideal optical systems on Maxwellian waves,
and we shall find that this procedure gives physically
correct results. Thus the relevance of the metaplectic
group carries over to vector waves.

We use the same metric conventions and terminology
for the Poincaré group as in I. Section II puts the
Maxwell equations into the front form,® pointing out that
in contrast to the instant form there are now equal num-
bers of constraint conditions and dynamical equations.
The generators of the Poincaré group, in a form suitable
for application to the six independent components of the
Maxwell field tensor, are worked out. Paraxial solutions
to Maxwell’s equations are described in Sec. III. It is a
very useful feature of the front form that it shows one
how to rearrange the field components in particular com-
binations and in a specific sequence, which makes the
description of paraxial waves most natural. The action of
a lens on such waves is determined by the principle that in
the lens transformation function of scalar wave theory,’
the role of the transverse position coordinates must now be
played by the conjugates to transverse momentum provid-
ed by the Galilean subalgebra of the Poincaré algebra. For
vector waves described in terms of the six field strengths
E,ﬁ, each thin lens is then represented by a corresponding
transformation matrix, rather than by a function, of di-
mension six. For the simplest case of an axially sym-
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metric lens this matrix is explicitly computed, and it is
shown that its action on an incident wave gives physically
expected results. In Sec. IV we give a treatment based on
the vector potential, leading to simpler matrix algebra.
We describe a new gauge associated with the front form
and particularly suited to paraxial waves, and calculate the
lens transformation matrix, now three dimensional, again
for the axially symmetric case. It is verified that the treat-
ments of Secs. III and IV give mutually consistent results.
In Sec. V we show how to define generalized rays of light
with polarization properties, in terms of the two-point
correlation tensors of the electromagnetic field. Their free
propagation and passage through thin lenses is briefly
described, always working within the paraxial approxima-
tion. Finally we summarize our work in Sec. VI, and
especially provide a simple reason for the correctness of
our principle based on the underlying group theory.

II. MAXWELL’S EQUATIONS IN THE FRONT FORM

The free Maxwell equations in conventional three-
dimensional notation appropriate to the instant form are

3E— VxB=0, (2.1a)
3B+ VXE=0, (2.1b)
V-E=0, 2.1c)
V-B=0. 2.1d)

In (2.1a) and (2.1b) we have genuine equations of motion
for E and B; (2.1c) and (2.1d) are two constraint equations
to be obeyed at each time. Of course, the former ensure
that the latter are maintained in time. If a conserved
external current j¥ is included as a source, the equation of
motion (2.1a) and the constraint (2.1c) acquire — j and j°
respectively, on their right-hand sides, while (2.1b) and
(2.1d) are unchanged. As parts of a relativistic covariant
antisymmetric tensor field F,,,, we identify E and B by

Esz}O N Bj:%ijlel . (22)

To express these equations in the front form, we need a

set of conventions for defining new components of vectors

and tensors. Just as the space-time coordinates x° x> are

replaced by the combinations 7=5(x’+x3) and
o=x%—x3, for any contravariant vector X* we define

X' =3(X°+Xx%, X°=Xx°-Xx?. (2.3)
Similarly for a covariant vector Y, we define

Yo=7(Yo—Y3), Y,=Yo+Y;, (2.4)
so that the invariant takes the form (indices a,b, . . ., take
values 1,2)

XFY,=X;Y;+XY=X,Y,+ XY, +X"Y,. (2.5)

The accompanying form of the metric and the rules for
raising and lowering indices o, 7 are

8ab =8ab » 8or=8ro=—1, (2.6a)
X'=—X,, X'=—X,, X°=X,. (2.6b)

Partial derivatives with respect to o and 7 are
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d 9
aaz§=%(80—63) , a,za=ao+a3 ) 2.7
Consistent with Eq. (2.6a) we have 3°=—9,,0"=—39,.
We now introduce combinations U,, ¥, of the transverse
components E,, B, in the following way:

Us=Fyu=—+5(E,+¢4By) , (2.8a)

Vo=F,=—(E, —€3B,) . (2.8b)

The remaining two components E;,B; are carried along
unchanged, noting only that

E3 :F‘ra ’ B3:%6abFab . (2.9)
From these definitions we can see that in the front form
(B3,U,) form a natural “magnetic” triplet of field com-
ponents, while (E3,¥,) form an “electric” triplet. Note
that the components U, are defined in terms of F uv in the
same way in which the Galilean generators G, are defined
starting with the homogeneous Lorentz generators M,,
since G, =M,,. We will see in the next section that the
sets of field components U,;E; and B;;V, are very well
suited to describe paraxial waves.

With these definitions it is straightforward to rewrite all
the Maxwell equations in the front variables. We now
find that there are four equations of motion specifying the
7 derivatives of certain field components, and four con-
straint equations:

9.-E3=3,V,, (2.10a)
9:By=€40,V5 , (2.10b)
3,U,=—5(3,E3+€,43,B3) , (2.10c)
9,E;=-9,U, , (2.10d)
9,B3=€40,U} , (2.10e)
3oVa=7(3,E3—€q433B3) . (2.100)

As for the maintenance of the constraints in 7, we find
that (2.10f) together with the equations of motion
(2.10a)—(2.10c) ensures this for (2.10d) and (2.10e); while
(2.10f) itself is maintained because of the wave equation
for V,.

Let us now compute the generators of the Poincaré
group suitable for action on the field tensor F,,. Under
the infinitesimal Poincaré transformation

xtoxF=xt+o*x,+a* (2.11)
the geometrical transformation rule for F,, is
Fl(x")=Fu(x) + 0, 'F (x) — 0, F),(x) . (2.12)

This means that the change in functional form in F,, is of
amount

8F 1y(x) = —(0™x g +a®)3o F 1 (x) + @, *Fy, (x)

— w0, Fy,(x) . (2.13)

In I we set up a generator G to accompany the transfor-
mation (2.11) (Ref. 8):

G=30""M,,—a"P,

=(00jKj+(023J1+0)3|J2 +(012J3—0”P# . (2.14)
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The basic generators M,,,,P, must now be determined in
such a way that on applying iG to F,, we get just the
To be speciﬁc, let us arrange

change 8F,, of Eq. (2.13).
» into a six-component column

the components EBof F
vector (/). Then each of the generators M,,,P, is

simultaneously a differential operator on space-time vari-
ables and a six-dimensional matrix. Wherever the unit
matrix in six dimensions is to appear we do not explicitly
indicate it but let it be understood. Then the various gen-
erators are

P,=—id,,
- . |So
J=—iXXV+ N (2.15)
0S
. _ 0 S
K=i(x°V+%X3y)+ | -
—-S 0

Here S denotes the triplet of Hermitian three-dimensional
spin-1 matrices taken in the Cartesian form, i.e.,

(Sj)klz_iejkl . (216)

It is a straightforward matter to rewrite these generators
M,,,P, suitable for application to a column vector in
which one lists the components of F,, in the sequence,
say, U,,E;,B3,V,, but we shall leave them in the above
form.

For determining the effect of a thin lens on an incident
paraxial wave we recall from I that the particular genera-
tors G, =M, are needed. They can be easily found from

Eq. (2.15) and are
G,=Mx, —7P, + G,

G(spin)_l —Sz Sl
P72 =8 =8, 017
2.17

G(spm)_l Sl 52

N

M =3(P°+P*=id,

We shall use these generators and explore their properties
in the next section.
|
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III. PARAXIAL SOLUTIONS AND THE LENS
TRANSFORMATION

We saw in I for the scalar case that since we are dealing
with waves traveling precisely with the speed of light,
there is a class of solutions of the wave equation that can-
not be described in the format of an initial value problem
with respect to the front label 7. These are antiaxial waves

depending on 7 alone but not on o and x,. For the
Maxwell system (2.10), these solutions are
Ua=E3=B3=O, V le, fa N (3.1

with the two functions f,(7) arbitrary. In wave-number
space such solutions involve only wave vectors for which
k°= —k?3, k, =0, and on these the mass operator M of the
two-dimensional Galilei group vanishes identically. Out
of the seven generators of the Poincaré group associated
with transformations leaving the front invariant, G,, P,,
and M annihilate each solution of the type (3.1), while J3
and K; —(P°— P3) rotate and scale it, respectively. As in
I, we will here exclude such solutions from consideration.

We turn now to setting up a convenient description of
paraxial solutions of Egs. (2.10), corresponding to waves
propagating roughly along the positive x * axis. We are in-
terested only in analytic signal solutions, and the terms
quasihenochromatic, henochromatic, paraxial, etc., will be
used in the same sense as in I. An exactly axial wave has
vanishing E;,B;,V, while each U, is an arbitrary function
of o; so this is a 7-independent solution. One therefore ex-
pects that for the paraxial case the important components
of the field are U,, while E3, B3, and ¥, will be smaller in
comparison. A quasihenochromatic paraxial wave will in-
volve a mean value .#, and a spread A.# in values of M,
and a range of values |k, | <Ak of the transverse wave
vector, which will obey as in I the conditions

Al << My, Ak << M. (3.2)
In the region of space-time where o and 7 obey®
27 | Ao
— (3.3)
lol <=~ |au
2
B 47 | Mo Mo
Sy |Aw || Bk

all components of the field will be henochromatic to good
approximation. For U, in this region we assume the
forms

Ulosx srime 7 [ %, folk ) explitk,x, —kir/2400)] (3.4)

where the two functions f,(k,) are nonzero only for |k, | <Ak. From the constraint equations (2.10d)—(2.10f) we are

able to determine all the other ﬁeld components in the region (3.3) directly in terms of U,:

—1 oo ka
Eslosx sm) =S fd kika falk)exp |i |kyxi— 5= ||
e-: o k%’r
Bilosx ;1) ~ — fd Ki€aska folky)exp i |kyoxy— 5= = 3.5
0

—1. //00

Voloyx ;7)) =~ — ¢

fdzklnk —k3)ps+2k kypilas folky) exp |i [k x, —

k fT
240 ||
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To simplify the expressions for ¥, we have used a pair of
Pauli matrices p; and p;. One can now check that the
remaining Maxwell equations, the true equations of
motion (2.10a)—(2.10c) in the front form, are all obeyed by
the expressions (3.4) and (3.5), with no conditions arising
on f,(k,).

The paraxial nature of the wave is determined by the ra-
tio Ak /.#,, which is assumed to be a very small number.
Viewing this as a controlling parameter we see that in the
henochromatic case the field components E;,B; are 1 or-
der of magnitude smaller than U,, while V, are 2 orders
of magnitude smaller:

2
Ak U, . (3.6)

Ak
70Ua y Vo~

0

E3,B3~

In addition each individual field component depends most
strongly on o, relatively weakly by the factor Ak /.# on
x,, and even more weakly by the factor (Ak /.#,)* on 7.
From (3.6) we can say that in the paraxial region the
equality

E,~€;By~—U, (3.7
is good up to and including first-order terms in Ak /.# .
The evolution of each component of the field in 7 is given
of course by a Schrodinger-type equation:

Po Py

. 0
IS:(Ub7E3’B3’Vb)= o (3.8)

(UbyE37B31Vb) .
0

We shall now calculate, to lowest nontrivial order, the
effect of a thin circular lens of focal length f on a
quasihenochromatic paraxial electromagnetic wave in-
cident on it from the left. The lens will be assumed to be
placed centrally on and normally to the axis. This calcula-
tion will be based on the idea that the relevance of the
metaplectic group for such problems, disclosed by the
work of Bacry and Cadilhac for scalar waves,® must be
maintained in a natural way for vector waves. The way to
achieve this has been recognized already in I. After writ-
ing the generators of the Poincaré group for the Maxwell
case in the form suited to the front variables, one isolates
the (2 + 1)-dimensional Galilean subalgebra. This
subalgebra supplies us with canonical conjugates G, /M to
the transverse “momenta” P,. We now use these in place
of the transverse position coordinates x, in the lens
transformation law for scalar waves described in 1. We
need to assume as in I that the wave is such that the
parameters .# o, A.#,Ak obey

Bk _,
My~

(3.9)

172
A
My ’

This will permit us to say, when Egs. (3.3) hold, that a
lens located in ordinary space at, say, x>=0, can be
thought of to good approximation as being “located” at
7=0 in the front language.’

For a scalar paraxial wave incident on the lens, the ef-
fect of the lens is to introduce a phase factor’
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e o)) mdlo(nBo—x3/2f) . (3.10)

Here, n and A, are the refractive index and lens thickness,
respectively, and it is understood as part of the paraxial
approximation that this expression for @ must be used
only for |x,| <<f. From Eq. (2.17) on setting 7=0 we
get the analog of x, for the Maxwell case:

G,(0) 1

o =x, + HG{gspin)

Xg—>

(3.11)

1 .
g+ G

0

We are therefore led to suggest that when a paraxial
Maxwell wave encounters the lens, the effect will be
described by a lens phase transformation matrix

i,
2f

where a constant inessential phase has been omitted. We
now evaluate this matrix: The algebraic properties of
GP™ allow us to do so exactly.

Let us introduce a set of auxiliary Pauli matrices
P1:P2:P3 such that

1 (spin)
x __G pin
1+J/{0 1

Q(x,)=exp , (3.12)

pi=pi=pi=1, pipr=—papi ,

etc. We may then write the six-dimensional matrices
G*P™ as Kronecker products of p’s and S’s in this way:

G(lspin) = %(zpz.S'] —Sz) y

(3.13)
G(zspin) — %(Sl +ip2S2) .
From here we see that
G(Zspin) — _isz(lspin) . (3.14)

It is obvious that G™™™ and G5P™ commute: This is con-
sistent with their being parts of the commuting Galilean
boost generators. Moreover, since S; are the generators of
the spin-1 representation of the rotation group, S; and S,
obey the relations'”

S1=S$,, S3=S,,

538,+8,5,8,+85,82=S, , (3.15)
S]S%+52S152+S%S1=Sl .
Using (3.14) and (3.15) we have the results
G(spin)G(spin):O
° (3.16)

G;spin)Gl(,spm)Gc(spm):O .

As a consequence, we get a closed-form expression for
Q(x)); reinstating the constant phase it is
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Qx,)=e' ™ exp —%xaGéSpin)J=ei¢(M) 1__}_xaG‘;spin)_z;_i(xaG;spin)y
(y2—x?) —Xxy —X Xy (y2=x? y
I+ 2 2 2 — 37
8f af 2f af 8f 2f
— Xy 1+ (xz—yz) :_y_ (yz-xz) —Xy —X
art 8f2  2f 8f2 4f? 2f
x Y 1 %}i x 0
_gesn| Y 2 7 2f (3.17)
- —xy (x2—y* -y 1y wl=x?) —xy —x
4f? 8/2 2f 8/? af? 2f
x?—p?) Xy x =X PO S S R
8f2 4f2 Zf 4f2 8f2 2f
. —x x Y 1
2f 2f 2f 2f

This matrix applied to the column vector made up of the
functions E;,B; for the incident wave is expected to yield
the column vector of the wave after passage through the
lens.

Since we are only interested in exhibiting how the prin-
ciple expressed by Eq. (3.11) works, we shall retain only
the lowest-order term x,/f of the paraxial aproximation
and neglect the quadratic terms in x and y in Q(x), apart
from the piece e'?. We also remember from Eq. (3.7) that
we can set E,=B,, E,= —B, to leading order, and treat
E; and B; as being small quantities of first order relative

. —i MO
to E;,B,. Then after dropping a factor e ~° common
to all the field components, we find that the outgoing
E',B’ are related to the incident E,B by

E)(x ;0 ~e "™ E, (x,;0) ,

B (x,;0)~e **VB,(x,:0), (3.18)

E3(x ;00 me " V[ Es(x130) + (x, /NE,(x500]
B (x,;0)~e' " [ By(x,30)+(x, /B, (x ;0] .

These formulas show that for a paraxial incident wave, the
passage through a lens contributes a small additional axial
component which agrees with what one obtains from a
more direct calculation based on the condition that the
Maxwell equations (2.1c) and (2.1d) must be maintained
both before and after the action of the lens.!! The natural
geometrical interpretation of this result will become clear
in Sec. V.

To assure ourselves of the correctness of Egs. (3.18), it
is interesting to consider the following simple situation.
Let the incident wave be a strictly axial plane wave, so
that to the immediate left of the lens we have E,=B,,
E,=—B;, E3=B3;=0. Then on passage through the lens
the wave picks up small nonzero axial components Ej,Bj.
These show up vividly in the Poynting vector of the out-
going wave, the components of which are found to be

Re{E'(x,;0) X [B'(x,;0)]*}

~+(|E|24+ |B|)(=x,/£,1). (3.19)

For a converging lens with f >0 we see that at each x, to
the immediate right of the lens (assuming |x, | << f) the
outgoing Poynting vector points exactly to the focus
(0,0,f), which is just what is expected. [If the terms
x4E,,x,B, in E5,BY in Eqgs. (3.18) had been absent, it is
clear that the outgoing Poynting vector, like the incoming
one, would have been parallel to the system axis at each
x;.] At the level of the field components we see for ex-
ample that the electric vector E'(x 1;0) is orthogonal to
(—x,,f) which is the vector leading from (x,,0) to the fo-
cal point (0,0,f), and similarly for B'(x,;0). Thus for an
incident axial plane wave the lens transformation (3.18)
yields an outgoing wave which locally can be described as
a set of vector plane waves, all directed to the focal point.
This justifies the extension to vector waves of the well-
known Debye integral representation for focused fields.'

In principle similar calculations can be carried out for
other situations of interest. The identification of the ac-
tion of various kinds of lenses (in the quadratic phase ap-
proximation) with corresponding elements of the group
SL(2,R) when one has axial symmetry [and more general-
ly the group Sp(4,R)], and even of free propagation ac-
cording to Eq. (3.8) with an element of this group, goes
through with no changes at all compared to the scalar
case.

IV. RADIATION GAUGE IN THE FRONT FORM

The description of paraxial solutions of the Maxwell
equations and their passage through thin lenses given in
the preceding section is physically transparent since the
behavior of all six field components F,, was specified.
However, it is somewhat unwieldy in that one has to con-
tend with six-dimensional matrices, so one may try to give
a more economical treatment using a vector potential. For
the class of problems one is interested in here, namely,
paraxial beams passing through optical systems, one must
choose the gauge judiciously, so that the particular genera-
tors G, in the Poincaré algebra act in a simple way. We
show in this section how this is to be done.
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To begin with, we recall the Poincaré transformation
properties of the radiation gauge vector potential suited to
the instant form. For free fields, this potential is defined
by the conditions

Aog(x)=0, V-A(x)=0 4.1)

so that the usual relations F,,=0,4,—9,4, are in this
case

E=—3,A, B=VXA . 4.2)

It is well known that this vector potential transforms sim-
ply under space-time translations and spatial rotations, but
has a nonlocal behavior under pure Lorentz transforma-
tions. In fact, the various generators of the Poincaré
group act in this gauge in the following ways!?:

P”K(x)z-—iau;‘:(x) )

(JjA)(x) = —i(X X V); A5 (X)+(S; a4y (x)
=—i[(XX V);8 + € 4(x) ,

(KA (x)=i(x99; +x;39) 4 (x)

i 1
+——0 [ d’x'————3,4,(%",x°) .
47 f |X—%'| 0%

It follows that the nonlocality of the action of K ; will be
present in the combinations G, as well, so this gauge is
unsuitable for the present situation. We need a gauge
which is natural from the front point of view.

We could try setting one of the two components 4, or
A, equal to zero. From the Lagrangian point of view it is
natural to make the choice 4,=0,° but it turns out that
this still involves a nonlocal action of G,. (This will be-
come clear later.) However, this problem does not arise for
the choice 4, =0.!* Therefore, for free fields we shall de-

|

Py=—id,, M=+5(P°+P%=id,, H=P°—P3*=i3,,
J3=—i€upx,0,+S3,

~(spin)  ~(spin) 000 ~(spin)
Gy=Mx,—1P,+G, , G, =|000|, G, =
i 00
000
Kiy=rH—oM+ |00 0],
00
Ay(o3x157) 00 ]| |4
(K, +J,) |Ay(03x37) |= |Hx—0oP;+ [0 0 0 A,
A (o;x;7) 000/} |4,
Ay(o3x157) 000]] |4
(K, —J,) |Ay(05x,37) |= |Hxy—oPy+ [0 O i A,
A (o3x,;7) 000]] |4,

N. MUKUNDA, R. SIMON, AND E. C. G. SUDARSHAN 28

Jfine the vector potential in the front form radiation gauge
by the conditions

A,(x)=0, Ao(x)=A;3(x)=7A4,(x),

04, (x) =03, 4,(x)=03,4,(x) . @4
Then the various components of F,, are given by

Us=09,4, ,

Ey=—8,4,= —3,4, ,

By—e,3,4, , 4.5)

V,=0,A4,— 3,4, .

One easily checks that the Maxwell equations in the front
form, (2.10), behave in the following way when these ex-
pressions are put in: The equation of motion (2.10b) and
the constraints (2.10d), (2.10e) are identically obeyed; the
equation of motion (2.10a) leads to the wave equation for
A.; the equations of motion (2.10c) as well as the con-
straints (2.10f) lead to the wave equations for 4,.

The forms of the generators of the Poincaré group, suit-
able for application to this vector potential, can be ob-
tained in a straightforward way. For those infinitesimal
transformations which preserve the conditions (4.4) when
we naively tranform 4, as though it were a four-vector
field, there is no difficulty at all. In other cases, we find
that conditions (4.4) can be restored by a suitable gauge
transformation after we have first transformed 4, as a
four-vector. In this way we get for the generators acting
on the column vector

4,
A,
A,

the following expressions:

(4.6a)
(4.6b)
000
000, (4.6¢)
0i0
(4.6d)
. al
i , , :
T 9, fdlelnlxl_xl [0.4,(0;x;7),
9,
(4.6¢)
9
i 2 ' ,
—— |9, fd xiIn|x;, —x| |9,4,(0;x ;7).
7 d
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In comparison with the situation described by Eq. (4.3)
and pertaining to the instant form, we notice two interest-
ing points: (i) out of the ten generators only two have a
nonlocal action in the front form radiation gauge; (ii) this
nonlocality is with respect to two of the “spatial” variables
x, in the front alone, and not with respect to o. From
(4.6¢c) and (4.6¢) it is also clear that if we had chosen the
gauge A,=0 rather than 4,=0, which amounts to inter-
changing the roles of o and 7, G, would have had a nonlo-
cal action but K; +J, and K, —J, would become simple.
We want now to set up a vector potential that will yield
the quasihenochromatic paraxial solution [(3.4) and (3.5)]
of the Maxwell equations, and are interested only in the
region (3.3) where it is effectively henochromatic. This
potential can be easily guessed from Egs. (4.5) and it is

Agloyx ;) =——U,loyx;7)

0 4.7)

—1

Ao3x ;7)) = ;{Ea‘, U,(o;x,;7) .

One can check that the gauge condition (4.4) as well as all

of Egs. (4.5) are obeyed. We see that 4, is smaller than 4,
by 1 order of magnitude in the small quantity Ak /.#:

Ak

A, ~254,

~ (4.8)
M

which must be compared to the relationships (3.6) among
the field components. From a physical point of view, be-
cause of Eq. (3.7) we can say that up to and including
first-order terms in Ak /.# the vector potential coincides
with the electric field:

—i —i
Ay,~—E,, A,=~——E;.

=~ 4.9
=4 e 4.9)

Of course, it obeys the free propagation equation (3.8) just
like the field components.

In this formalism the lens transformation matrix is
three dimensional and its computation is algebraically
even simpler than in the formalism of the preceding sec-
tion working with field components. This is because the
matrix terms in G, of Eq. (4.6¢c) obey

~(spin) 2 ~(spin) ~(spin) ~(spin) ~(spin)
(G, =G, : =G, 1
~(spin)
=(G, )P=0. (4.10)

We therefore expect that in the paraxial approximation to
leading order the effect of a thin circular lens of focal
length f on the vector potential of an incident heno-
chromatic paraxial wave is given by the matrix

Mo g — -0
LA gny— —(—
2f

Q(x;)=exp

L ~(spin)
xl+M0(Gl )H

~(spin)

:eXP{i[¢’(x1)—(xa/f)Ga ]}

_ 1 00
=0 1 0 (4.11)
x/f y/f 1
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Therefore, the outgoing vector potential is related to the
incident one by

AL =e'%4,, A.=e'%(A, +x,4,/f) . (4.12)
It is easy to verify that the gauge condition (4.4) is main-
tained by this transformation, and when we take account
of (4.9) we see that we have recovered Egs. (3.18) for the
components of the electric field. To leading order one can
also confirm that the changes in B,,B; contained in (3.18)

are properly reproduced; making use of Egs. (3.7) and
(4.9), we have for B;:

B} =€0 9o 4 ~€a3,(e%4))
=e™%ey[3,dp _i(Mo/f)xzAp]

~e'?[B3+(x,/f)B,] . (4.13)

Thus, to leading order, the six-dimensional lens transfor-
mation matrix of Eq. (3.17) and the simpler three-
dimensional one of Eq. (4.11) give mutually consistent re-
sults.

V. PENCILS OF ELECTROMAGNETIC RAYS
IN PARAXIAL OPTICS

The second-order coherence properties of a general sta-
tistical state of the Maxwell field are described by suitable
correlation tensors'” that generalize the two-point correla-
tion function of the scalar treatment. These tensors could
be defined in terms of the components of the electric and
magnetic field vectors or, more simply, in terms of the
vector potential. We shall work with the latter and shall
briefly indicate how the concept of generalized pencils of
rays° is set up for vector waves in the paraxial limit.

Let the subscripts a,f, ..., run over the values 1,2,7.
Consider an ensemble of quasihenochromatic paraxial
waves with characteristic parameters .#,, A.#, Ak. In
the space-time region (3.3) where it is effectively heno-
chromatic, the representative vector potential in the front
form radiation gauge can be written as

—i#yo

Allox ;T =e A o(x;7) (5.1

and we remember that .7 is smaller than &, by a factor
Ak /# . For any two points on the same front we define
the correlation tensor I as

Toglo1,x1 500,%257) = [Aaloyx1 ;7] A gl02%2 7))
zei./(()(ﬂ']_(7211,5103)(x1l;x21;7_) ,
) * (5.2
Tap(x1 5% 57) = ([ o(x1 ;7)1 glx3 57))

The angular brackets denote an average over the ensemble.
The leading elements of this matrix are I''Y; the elements
'Y and I are smaller by a factor Ak/.#; while the last
element T''9, being smaller by (Ak /.#,)%, will be neglect-
ed. The Wolf matrix of generalized rays of light is row
defined as a Wigner-Moyal tranform of I'®:
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Waﬂ(xi;PliT)=(27T)_2fdzgle'pl‘glriz%(xi+%§1;X1—%§5T) .

This is a Hermitian, but not pointwise positive definite,
matrix. Since the paraxial condition is assumed to hold
over the entire ensemble, it is easy to see that
Wap(x1;p137) is nonzero only for p, in the range
|p1| <Ak <<.#,. Thus we can interpret W, (x ;p,;7) as
representing in matrix form the intensity of transversely
polarized generalized rays of light at the point x, in the
front 7, traveling in the transverse direction p,.!° As in
the scalar case this intensity is guaranteed to be real but
may not be positive. The elements W, (x;p,;7) describe
the correlation, at the point x,, between the transverse and
the longitudinal rays having a common direction p,.
W..(x,;p.;7) must be interpreted as the intensity of gen-
eralized longitudinal rays, but since it is of order
(Ak /#)* we neglect it. In interpreting the matrix W in
this way, we of course make use of Egs. (4.9).

The gauge condition (4.4) on the vector potential leads
to a condition on the matrix W which can be expressed as
a determination of W, in terms of W,;:

Wolx ;05T = ——

" Wap (x50 57)

13 4
2 ax,, Pe
(5.4

This equation lends itself to the following interpretation.
For a uniform beam for which we can neglect the varia-
tion with respect to x, except at the very edges, Eq. (5.4)
states that the polarization is perpendicular to the paraxial
I

Mo
Wip(x1;p130)=Wap |x15p1+—— %150 |,

f
: Mo ol L i3
Wa‘r(x.L;Pl;O):Waf xl;pl+—f._x1’0 +f Xxp+ 2 3ps

We see, as in the scalar case described in I, that the gen-
eralized rays are bent by the lens in a simple geometrical
way. The lens action given above preserves the connection
(5.4) found from the gauge condition on the vector poten-
tial. Since Eq. (5.4) guarantees that the polarization is
perpendicular to the paraxial direction, it follows that the
lens action given by Eqgs. (5.8) is such as to preserve this
condition.

VI. CONCLUDING REMARKS

In the two papers of this series we have developed a
general formalism which, we believe, is ideally suited for
analysis of all paraxial-wave optical problems. The use of
relativistic ideas has led us in a natural way to a classifi-
cation of the space-time coordinates as well as of field
components of the Maxwell field according to their im-
portance in terms of the basic parameters Ak /.#, of a
paraxial beam.

A ]Wab
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(5.3

ray direction given by p"~.#,p,. Near the edges of the
beam the polarization is no longer strictly transverse, a re-
sult already known from previous work.” The free propa-
gation law for W is as simple as in the scalar case, because
Eq. (3.8) applies to the vector potential also:

Wag(%150157) = Wop(x | —Tp, /M ;p1;0) (5.5)

This means that in free space generalized rays travel in
straight lines with unchanging polarization properties, in
the paraxial approximation.

Finally we see how the matrix W is changed by a thin
circular lens placed centrally and normally on the axis at
x3=0. The effect on the “reduced” vector potential .7, is
given by Egs. (4.11) and (4.12) and is

A (x1;0)me P Toplx) )t glx,50)

Top(x,)=8,p+8:Bppxp /f .

It follows that the change produced in the correlation ten-
sor I'? is, in matrix form,

(5.6)

i[zp(le)—:p(x,l)]

I“O"(xll;le;O):e T(x;)T*

XTOx; 535 ;0)[T(x2)] (5.7)

where the asterisk and the tilde denote complex conjuga-
tion and the transpose, respectively. From here we can
easily calculate the change in W and find

(5.8a)

M
xpL4 x50 (5.8b)

f

—

The relevance of the metaplectic group—the group of
linear transformations on canonical variables preserving
their commutation relations—for paraxial scalar wave
propagation through optical system was discerned by
Bacry and Cadilhac.® We have used the following princi-
ple in establishing this connection for electromagnetic
waves: In place of the transverse coordinate x, which
occurs in the transformation function representing a given
optical system, we must substitute an operator G,(0)/M,
where G,(0) taken at =0 and M are particular generators
of the Poincaré group:

1 (spin)
X+ -G,
x Gal0) B (6.1)
a > = ~(spin) :
M xa_’_ﬁG:p ’

for fields E,B and for vector potential 4, respectively.
Then each ideal optical system gets represented by a
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transformation matrix. In both cases above, G,(0)/M and
the transverse momenta P, form two canonically conju-
gate pairs but they are reducible in the operator sense.
This rule has led to correct and consistent results, and it is
natural to search for a simple explanation of this fact.
This is actually not hard to find. The essential physical
point is that—whether we speak in terms of the field
strengths E,ﬁ or the vector potential A—each transverse
component propagates through every ideal optical system
as though it were a scalar wave, while the axial com-
ponents propagate almost as if they were also a scalar
wave.!” The departure from such behavior for these latter
components is just enough to ensure that the constraint
equations (2.1c) and (2.1d) on E,B or the gauge condition
(4.4) on A are maintained both before and after the en-
counter with the lens. Now for paraxial situations, if we
make use of Egs. (4.9) and neglect terms of second order
in Ak /.#,, we find
V-E=3,E, + (13,

—8,)E3~3,E, —3,E;

~IiM(0,4;,—3,4,) , (6.2)
while V-B vanishes identically when B is expressed in
terms of A. So in the front formalism both the > gauge con-
dition (4.4) on A and the Maxwell equation V-E=0 are
constraint conditions since they do not involve derivatives
of any field quantities with respect to 7. Now we pointed
out in I that for the scalar wave equation a solution
remains a solution if we apply any function F(M,,,,P,) of
the Poincaré generators to it, provided F has no explict
dependence on space-time variables. An analogous state-
ment is true for vector waves. Any function of the six-
dimensional matrix generators (2.15) can be applied to a
column vector made up of an E and a B obeying
Maxwell’s equations, and the result will be another solu-
tion; or we can apply a function of the three-dimensoinal
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matrix generators (4.6) to a vector potential (4,,4,) obey-
ing the gauge condition (4.4) and the wave equation, and
the result will also obey both. This is a consequence of the
linearity and the Poincaré invariance of the respective
equations. While the function F of the generators must
not carry any explicit 7 dependence, the generators them-
selves, or at least some of them like G,(7), may carry ex-
plicit dependences on 7. But if one seeks only to maintain
the constraint relation 6'?3:0, then one can relax the
conditions mentioned above and apply a function of
G,(0)/M, rather than G,(7)/M, to fields obeying this con-
straint, and the constraint will be maintained.

The formal similarity of paraxial problems to a nonrela-
tivistic quantum-mechanical “particle” in two dimensions
persists in going from the scalar theory to Maxwell’s equa-
tions.'® If we use the approach based on the vector poten-
tial, we can say that the particle can have “helicity” +1 or
0. But while in the scalar theory every thin lens imparted
a harmonic impulse which is just a phase change and so a
unitary transformation, with the vector potential the
transformation matrix, for example in Eq. (4.11), is not
unitary. Nevertheless is would be worthwhile computing
the transformation matrices for various configurations of
interest. It would also be interesting to examine the de-
tailed behavior of generalized pencils of light endowed
with polarization, in situations where the optical system
has a nontrivial effect on the state of polarization. We
hope to come back to these questions and to other applica-
tions of our formalism elsewhere.
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