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Propagation characteristics of Gaussian Schell-model fields through first-order optical systems
and in free space are analyzed by the method of generalized rays. This allows the development of a
simple geometrical description of these processes. The invariance of the degree of global coherence
is established in full generality. Asymptotic behavior under free propagation and the emergence of
a far-zone universal structure are analyzed. New invariants associated with incoherent superposi-

tions of such fields are found.

I. INTRODUCTION

Recently, there has been much interest in the radiation
field generated by partially coherent planar (scalar)
sources and several useful results have been established,
particularly regarding the radiometric properties of such
sources. As rightly noted by Wolf,! Walther’s? classic pa-
per of 1968 has acted as the nucleus for most of these
developments.® In these situations the source is adequate-
ly described by the source-plane cross-spectral density.
Many model sources have been studied in detail; the
Gaussian quasihomogeneous sources* and the Gaussian
Schell-model sources® have received particular attention.

More recently, the notion of generalized light rays has
been introduced in statistical wave optics.® This notion
leads to a ray picture of wave optics which is exact at the
level of the two-point correlation function and is applic-
able equally well to coherent, partially coherent, and in-
coherent fields. In paraxial situations the generalized rays
behave in an extremely simple way both under free propa-
gation and action by optical systems.’

In the present paper we use the method of generalized
rays to analyze the behavior of Gaussian Schell-model
(GSM) fields under the action of first-order systems
(FOS). A first-order system is an optical system which
changes input ray parameters of location and direction
into output parameters by a simple matrix transformation
according to Eq. (3.2). It can also be defined via the gen-
eralized Huyghens representation.” We begin in Sec. II by
extending the notion of the GSM field to include a quad-
ratic phase front. When the generalized rays correspond-
ing to these fields are computed, the following fact
emerges in a natural and basic way: There exists a one-
to-one correspondence between the family of GSM fields
and the set of 2XX2 symmetric positive-definite matrices
whose determinant is bounded above by unity. These ma-
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trices are explicitly written in terms of the GSM field pa-
rameters.

In Sec. III we undertake the study of the behavior of
GSM fields under passage through FOS. The generalized
rays map this problem into that of studying the linear
transformations of the parameter matrix leading to a rep-
resentation of the group SL(2,R). This immediately shows
that the action of an FOS induces a one-to-one map on the
GSM family. The ratio of the transverse coherence length
to the intensity width is left invariant in this process; it
follows that the GSM family breaks into nonintersecting
subfamilies each of which is closed under action by FOS.
It is further shown that for every GSM field there exists a
one-parameter subgroup of FOS which leaves it invariant.
In Sec. IV we develop a graphical representation of GSM
fields and FOS based on a three-dimensional Minkowski
space and Lorentz transformations, which makes the main
results easy to visualize. It helps us answer the following
question: For a given FOS, are there any GSM fields left
invariant by it? It allows generalizing the Kogelnik “abcd
law” to partially coherent GSM fields. In Sec. V we spe-
cialize our analysis to free propagation and show that the
pencils associated with the GSM fields exhibit a universal
structure in the far zone. Section VI contains some con-
cluding remarks.

II. GAUSSIAN SCHELL-MODEL FIELDS
AND THE ASSOCIATED GENERALIZED RAY
DENSITY DISTRIBUTIONS

We will be interested in the action of axially symmetric
FOS on time-stationary wave fields. For such fields, dif-
ferent frequency components of the ensemble can be
analyzed completely independently.® Hence, we present
our analysis for a fixed frequency  which we suppress.
Let us choose a Cartesian coordinate system (x,y,z) such
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that the z axis is along the system axis. We will specify
the field through its cross-spectral density in a transverse
plane z=z,. If suppressing z, and denoting by p the
transverse two-vector part (x,y) of the three vector (x,y,z)
the cross spectral density factors in the form

Tp1,p2)=[Ip ) (p2)]"’glp1—p2) , 2.1)

we then have a Schell-model field.® Clearly, g is the nor-
malized degree of coherence and, from Eq. (2.1), we see
that it is translation invariant for Schell-model fields.
When both I, the intensity distribution, and g are Gauss-
ian

I(p)=(d /2wa})exp(—p?/207)
(2.2)

g(p1—p2)=exp(— |£1—22|2/2U§) ’

then the field is said to be a Gaussian Schell-model
(GSM). Here 4 is a constant independent of p. By in-
tegrating I(p) one finds that A4 is the total irradiance of
the field. It is useful to rewrite the cross-spectral density
of the GSM field in the following form:

A
Tp,py)=—"""—7¢€x
P1P2 me% p

When R >0 (R <0) we have a diverging (converging)
phase front.

From the defining equation (2.5) it is clear that the
GSM fields form a three-parameter family, o/, o,, and R
or, equivalently, oy, 7, and R, being the three parameters.
We suppress the parameter A4 for our interest is in the
behavior of GSM fields under the action of systems for
which the total irradiance 4 remains invariant.

Next we compute the generalized rays® generated by the
GSM field. They are related’ to the cross-spectral density
through the Wigner-Moyal transform:!!

Wip, $)=2m)~2 [ d%p'e™ €T (p+ 3¢, p— 70 -
2.6

The Wolf function W (p,S) represents the intensity of the
generalized pencil of rays going in the direction (S,
S, =(1—52)!72) through the point (p»zo). By virtue of T’
being Hermitian, W is real, but it is not pointwise positive
definite. Thus, the generalized pencils consist of both
shining and dark rays.!> Both types of rays travel along
straight lines in free space.

Since Eq. (2.6) is invertible it follows that the cross-
spectral density in any transverse plane can be recon-
structed, in an exact way, from knowledge of the general-
ized pencils. Thus, it becomes clear that the generalized
rays offer an exact ray picture of wave optic phenomena
involving only the two-point (and no higher-order) corre-
lation function.

The generalized rays corresponding to the GSM field
are easily computed owing to the elementary nature of

exp
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105 (p)
’ 1
Petaehe=3e=5, 79| =7 |77 ||
(2.3)
where
1 1 1
——— = . (2.4)
y: o} 402

v is an effective parameter which controls the diffraction
properties of this field.”

Some well-known families of Gaussian fields are special
cases of the GSM fields: When o, <<o; we have the
Gaussian quasihomogeneous field, and the coherent
Gaussian field obtains when o, — o. Thus, the results of
the analysis to follow contain, as special cases, the corre-
sponding results for these limiting families.

When a GSM field is acted on by a lens, it picks up a
quadratic phase front. For this and other reasons, it is
useful to generalize the GSM field to allow for a phase
curvature; by GSM field we will mean, henceforth, one
whose cross-spectral density is of the form!°

ik

r
Gaussian integrals. Substitution of Eq. (2.5) in Eq. (2.6)
yields

_r

277'01

? ~02/20}  _(S—p/RVK2y2 /2
Wp, S)=4 e LA 4 Ve (2.7

We find that the ray pattern at every point is Gaussian
with its peak in the direction of (p,R).

As in conventional ray optics, it is useful to treat p, S as
a column vector

4
S

Now Eq. (2.7) can be readily rewritten in a compact form

W(p,S)=Wi(q)= %det(g Jexp(—kg TQ(_]) , 2.9

where g7 is the transpose of g and the GSM field parame-
ter matrix G is given by
1 kY ky?
2t 2 —
k g1 R R

1
G=— (2.10)
p S 4 2 —k 2 k 2
——I—R Y
It has the following properties:
G'=G, (2.11a)
trG >0, (2.11b)
O<detG<1. (2.11¢)
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That is, G is symmetric and positive definite with its
determinant bounded from above by unity. The ratio
0 /0; is known as the degree of global coherence.! It is
related to G in a simple way:
op  4detG

=—, 2.12
a% 1—detG ( )

We have made use of Eq. (2.4) in obtaining Egs. (2.11c)
and (2.12).

By virtue of Eq. (2.6) for a given fixed k there is a one-
to-one correspondence between GSM fields and Wolf
functions of the form (2.9), which in turn are in one-to-
one correspondence with 2 X2 real matrices satisfying Eq.
(2.11). We have established the following result: There is
a one-to-one correspondence between the GSM family of a
fixed irradiance and the family of 2 X2 real symmetric
positive definite matrices whose determinant is bounded
Jfrom above by unity. Given the GSM field one can im-
mediately construct the parameter matrix G through Eq.
(2.10). Conversely, given G one can compute the field pa-
rameters through

v*=2Gy/k, 1/R=—G;/Gy ,
(2.13)
2Gyp

02 =(Gy/2k)detG, oi= k(1—detG) °

III. TRANSFORMATION OF GSM FIELDS
BY FIRST-ORDER SYSTEMS

An axially symmetric FOS can be specified through its
ray-transfer matrix S:

ab
S= c dl ad —bc =1 (3.1)

i.e., SESL(2,R). Its action on the Wolf function is to
produce the following map:’

Woulg)=Win(S~'g), (3.2)

where W, and W, are, respectively, the input and out-
put Wolf functions.

To derive the transformation of GSM fields by FOS we
substitute Eq. (2.9) in Eq. (3.2) and obtain

A — ko T
—det(G jp)e "2 G oud ,

Woulg)= 2 (3.3)
where
Goun=(8"1G;,S~". (3.4)

This is a useful result. The use of generalized rays has
mapped the problem of transformation of GSM fields by
FOS to one of studying the transformation of symmetric
positive-definite 2 X2 matrices under SL(2,R) by the rule
(3.4), thus circumventing elaborate calculations involving
integrals.

Let us examine G ;.. Since G ;, is symmetric, so also is
G ou- By virtue of S being unimodular,
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detG o =detG i, ,
(3.5)
0<detG o<1 .

Further, since S ~1(S~1)7 and G, are both positive defi-
nite

trG o =tr[G ;xS ~ S~ HT]>0. (3.6)

Thus, from Eq. (2.11) we see that G ,; is a bona fide GSM
field parameter matrix and, hence, from Eq. (3.3) and Eq.
(2.9), Wou(g) corresponds to a GSM field with irradiance
Ao =A4;,. Also, since detG is an invariant of this map we
see from Eq. (2.12) that the degree of global coherence is
preserved by this map.

We have the following result: The action of an FOS in-
duces a one-to-one map on the family of GSM fields; the
degree of global coherence is an invariant of this map.

A special case of this result is already known in the
work of Collett and Wolf.* They studied the behavior of a
Gaussian quasihomogeneous field (a special case of GSM
field) under free propagation (a special case of FOS) and
found that the degree of global coherence was an invari-
ant. Our analysis using generalized rays has led to a two-
fold generalization of this result.

In the light of our last result it is easily seen that the ac-
tion of FOS divides the three-parameter GSM family into
nonintersecting two-parameter subfamilies, each subfami-
ly being characterized by a fixed value of o,/0; or,
equivalently, of detG. Each subfamily is closed under ac-
tion by FOS in the strong sense that an FOS transforms it
onto itself in a one-to-one fashion. Consequently, a GSM
field belonging to one subfamily cannot be transformed
into one belonging to a different subfamily by any FOS.
In particular, a GSM field which is not quasihomogene-
ous cannot be transformed into a quasihomogeneous field
using FOS alone.

First-order systems form a three-parameter group
SL(2,R) [which is the same as Sp(2,R)]. But our last re-
sult shows that they effect only a two-parameter transfor-
mation on the GSM family. The reason for this can be
traced to the following fact: For every GSM field there
exists a one-parameter subgroup of FOS which leaves it
invariant.

Proof: Again, let G be the parameter matrix of the
given GSM field. Write detG =y2/407=«". By virtue of
our last result there exists an FOS S, which transforms G
into the following special form:

k0

0 « (3.7)

So: G—Go=(57")7GS; ' =

We shall call G, the standard form of G. In fact, S, can
be explicitly constructed in the following way. Let us
denote by S;(f) and S,,(B), respectively, a thin lens of fo-
cal length f and a magnifier of linear magnification B.
Their ray-transfer matrices are

B
S](f)= ""1/f 1 ’ Sm(B)= 0 B_[ . (3.8)
Choosing f =R and m =(ko;y)~!/? we have
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1
0
I . 2k0§
SiR): G—G'=(S7)'GS "= | ky?2 |’
(3.9)

—12 Tt |K O

Sm((ka'j‘}’) ): G’—>Go=(Sm )'G'S,, = 0 x

We have thus found an FOS S, which casts G into its
standard form:
So=S8n((kary)~'2)S)(R) ,
(3.10)
(Se)76 85" =Go -
Now we note that the one-parameter subgroup of FOS
SO(2) leaves G  invariant:

cos@ sinf

—sinf cosf |’ 0<6<2m,

SQESO(Z) Sg

Se,S0,=S.Se,=S0, 16, - (3.11)

Sg: Go—(S5')7G oS5 =Gy -
From Egs. (3.10) and (3.11) it follows that the one-
parameter subgroup of FOS

Sp=S5"15080, 0<6<2rm (3.12)

leaves G invariant. This completes the proof.
For the special case of a coherent Gaussian field with
no phase curvature, 0y = o0, R = 0, and the GSM matrix

becomes

1

2ko? 0
G= 0 2ko? (3.13)
Our last result specialized to this case shows that
cos®  (2ko?)"'sind
Se= —2ka}sin6 cosf » 0<0<2m (3.14)

is the one-parameter subgroup which leaves an equiphase
Gaussian field invariant. Of special interest is a particular
element of this subgroup corresponding to 6=/2. This
is a scaled Fourier transform operation and we recover the
familar result: an equiphase Gaussian function is invari-
ant under an appropriately scaled Fourier transformation.

IV. GEOMETRICAL REPRESENTATION
AND ANALYSIS

In the preceding sections it has been shown that there is
a one-to-one correspondence between GSM fields and

two-dimensional real matrices G with the properties
|

G'=(S"NGS x'=AS)x ,
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(2.11), such that the effect of an FOS on the former can be
expressed by the change (3.4) in G. (Here and in the fol-
lowing the value of the wave number k is to be held fixed.)
In the present section we develop a transparent geometri-
cal representation of the transformation law (3.4), which
makes it very easy to understand the origin of the various
results already obtained. In particular, it shows us how to
define a complex parameter 8 for any GSM field, which
changes according to the well-known Kogelnik abcd law
under the action of any FOS.

The basic fact to be used is that SL(2,R) is the spinor
group corresponding to the group SO(2,1) of proper
Lorentz transformations in a three-dimensional “space
time.”!> Since G transforms linearly in S according to
(3.4), one expects to be able to construct a three-
component real column vector out of the elements of G,
such that they undergo a three-dimensional Lorentz
transformation determined by S. To realize this, we ex-
press G in (2.10) as a real linear combination of the unit
matrix and the Pauli matrices 0,073:

Xo—X1 X2
4.1)

G=x9—X103+X,0;=
G=Xxp 103+X20, Xy Xo4x;

(Because of the symmetry of G the Pauli matrix o, does
not appear.) This parametrization of G is related to the

earlier one by

1 a1

x0_4 k‘}’ 1+R2 + ka} J ’

et e fio ]t “2
74 R? kot |’
__k

X2 2R .

Evaluating the determinant of (4.1), we see that the degree
of global coherence is related to the Minkowski squared
length of x:

2

2 xgzL

detG =k*=x3—x%— . 4.3)
G 0—X1 402

The conditions (2.11a) and (2.11b), characterizing G, ap-

pear as

O<k<l, x0>0. 4.4)

This leads to the following statement: For a fixed k, there
is a one-to-one correspondence between the family of all
GSM fields and the set of positive timelike vectors in a
fictitious three-dimensional space-time, with Lorentz-
invariant length  lying in (0,1]. The appropriateness of
this description is seen when (3.4) is stated in terms of x:
The effect of an FOS corresponding to the matrix S in
SL(2,R), Eq. (3.1), is to take x into x’ according to'®

4.5)

Ha +b%+c*+d?) +(a?—b*+c?—d?) —ab—cd

AS)= [+(a®+b2—c?—d?) s(a*—b —c*+d?) cd—ab

—ac —bd bd —ac

ad +bc



29 GENERALIZED RAYS IN FIRST-ORDER OPTICS: ...

Here x is a three-component column vector

X0
X1 ]

X2

and similarly for x’. It is straightforward to derive (4.5)
and also to check that A(S) is a proper Lorentz transfor-
mation belonging to the group SO(2,1). Further, for any
two FOS S,S’'€SL(2,R) acting in succession, it can be
seen that

A(S)A(S)=A(S'S) . (4.6)

This description of the family of all GSM fields can be
depicted diagramatically as in the figure. The region of
interest is enclosed by the (positive) branch of the timelike
hyperboloid k=1 and the (positive) light cone k=0; it in-
cludes the former but not the latter. Completely coherent
GSM fields, corresponding to o, = o0, are represented by
vectors x lying on the hyperboloid k=1. As one ap-
proaches the quasihomogeneous limit (o;/0,)— «, one
comes closer and closer to the cone k=0. A general GSM
field corresponds to an x lying on a general hyperboloid
with 0 <k <1; this is shown as an intermediate hyper-
boloid in the figure. The action of an FOS S is to move
an x on a hyperboloid with a certain value of « to another
point x’ on the same hyperboloid. The basic results of Sec.
IIT become obvious in this representation: (a) Each
Lorentz transformation belonging to SO(2,1), and
representing some FOS, maps the region of x space
relevant to us onto itself in a one-to-one invertible way; (b)
each point of this region represents, in a one-to-one way,
some GSM field; (c) the mappings x—x'=A(S)x
preserve the hyperboloid corresponding to each allowed
value of k; (d) thus the GSM fields corresponding to
points on each hyperboloid form a two-parameter subfam-
ily with a common degree of global coherence, transform-
ing into each other and not taken into a GSM field “be-
longing” to a distinct hyperboloid, under the action of any
FOS. To these may now be added the remark that the
matrices S and —S in SL(2,R) must be identified as
representing one and the same FOS.

The process of taking a GSM field G to its standard
form G, corresponds to Lorentz transforming a general
vector x to the “rest frame” value («,0,0). The FOS
denoted by Sy, 0 <6 <27 in (3.11) are represented by pure-
ly “spatial rotations” in the x;-x, plane leaving x, unaf-
fected. For a general GSM field x the FOS S leaving it
invariant are the Lorentz transformations in SO(2,1) “with
x as axis.” The converse question can now be answered:
If an FOS S is given, are there any GSM fields which are
invariant under action by S? Since the points x which we
use are all positive timelike, the answer is as follows: If §
is equivalent, by conjugation with a suitable element of
SL(2,R), to Sy for some 6, then there exist GSM fields in-
variant under S, otherwise not. In the former case, if S is
given we can calculate these GSM fields by the converse
to the calculations in Sec. III. Examples of FOS which
definitely alter every GSM field are the SL(2,R) matrices
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K =1.FULL
Coherence

K =0:QUASIHOMOGENEOUS
LimMiT

-
-

x1’ FIG. 1. x-space representation of GSM fields.

1l a
01

cosha sinha
sinha cosha

e 0

0 e . (4.7)

b 2

for any real a. These are, respectively, the magnifier,
“boost,” and free propagation one-parameter subgroups.
The physical realizations of the boosts using lenses and
free propagations, which are quite different for @ >0 and
a <0, are described in Sec. VI.

As a final application, we show how to generalize the
Kogelnik abed law!” from the fully coherent case to a gen-
eral partially coherent GSM field. If we define a complex
parameter 3 in terms of x by

x0+x1

— (4.8)
x2+lK

B=—

then when x is changed to x’ by Eq. (4.5), we find that 8
changes to 8’ via

aB+b
T 4.9
B cB+d “9
A more transparent way to express 3 is to use (4.2):
1 1 i
st 4.10
B R kyo; 410

This generalizes the well-known expression!” in the
coherent case. The point, of course, is that the three-
dimensional representation of this section makes it clear
that such a generalization must necessarily exist.

V. FREE PROPAGATION: ASYMPTOTIC BEHAVIOR
OF THE GENERALIZED PENCILS

Now we specialize our analysis to a special class of
first-order systems, namely, free propagation through a
distance D whose ray-transfer matrix is

1D

01l 5.1

Sp=
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Let us denote by G, G’ the input and output GSM field
parameter matrices and by A the invariant detG. Then
substitution of Eq. (5.1) in (3.4) yields

o G G,—DGy,
= 7 |Gu—DGy; Gy —2G,D +G D?

We find that under free propagation G,; is invariant in
addition to A. To see the significance of this new invari-
ant, we first note that the transverse plane

D=G,/Gy;

is an equiphase plane, i.e., R’'— o0. We further note from
(2.13) and (5.2) that this is the plane where o7 (and also
cr;) as a function of D assumes its minimum value. Thus,
we find that the GSM beam has a “waist” at a distance D
from the input plane; the waist is to the right (left) of the
input plane accordingly as (G,) and, hence, R <0 (>0).
Denoting by o,, the intensity width at the waist we im-
mediately obtain the significance of the invariant G;:

(5.2)

(5.3)

1
Gy=—-75. (5.4)
t 2ka?,

To examine the asymptotic behavior of the ray density
function W;(p,S) after propagation through a large dis-
tance Z from the waist, it is useful to renormalize the ob-
servation plane transverse coordinates in the following
way:

p=p/Z . (5.5)
Evidently, p represents the angular position of the obser-
vation point with respect to the beam waist. Using (5.5)
and (5.2) in (2.9) we have

=
4 A _ (Ap?)
~ —8%(p5—S)exp |—k .
7kZ* Gy £malep Gu
(5.6)
Here we made use of the well-known result
2
lim A% A% _50)p) , (5.7)

A—>ow T

8(2)(3) being the two-dimensional Dirac delta function.
The far-zone pencils are radial and have a universal struc-
ture controlled by a single parameter A/G;;. We deduce
that all GSM fields having the same value of A/G; will
result in the same far-zone pencil structure. This
equivalence statement is about the far-zone pencils and,
hence, it is more general than the paraxial version of the
Wolf-Collett'® equivalence theorem which is for the far-
zone intensity distribution. The latter obtains when one
integrates (5.6) over S,

I(p)= [ dXkS)W(p,S)
_4a kA [ xafe]
P\ =G, |z ,

_— 5.8
wZ?* Gy 68
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and makes use of the fact that
A/G“ =k’)/i/2 ’

where 7, is the value of ¥ at the waist. Even Eq. (5.8) is
a generalization of the Wolf-Collett theorem for the fol-
lowing reason: Whereas their formulation assumes the
“source plane” to be an equiphase surface, our treatment
does not place any such requirement and, in fact, explicit-
ly allows for a phase curvature in the “source plane.”

Finally, we note that the approximation leading to Eq.
(5.7) conserves the total irradiance as can be seen by in-
tegrating (5.8) over p.

(5.9

VI. CONCLUDING REMARKS

We have analyzed the passage of GSM fields through
FOS using the method of generalized rays. This method,
while staying exact within wave optics, reduces the prob-
lem of otherwise dealing with complicated integrals into
one of multiplying 2 X2 matrices. This aspect, combined
with the geometrical picture of viewing this process as
Lorentz transformation in 2 + 1 Minkowski space, helps
one find a complete answer to any question related to this
class of problems, much more easily than will be possible
using the conventional wave optic methods. Thus, we
found that the GSM family is closed under action by
FOS. We have further shown that, given any GSM field,
there always exists a one-parameter subgroup of FOS
which leaves it invariant.

In Eq. (4.7) we identified three subgroups of FOS which
definitely modified every GSM field. While the magnifier
and free propagation subgroups are well known, the boost
subgroup is not as commonly known in the context of
first-order optics. It turns out that they, and in fact any
FOS, can be synthesized using thin lenses separated by
free propagation sections. Let us denote by Sp and Sy,
respectively, the ray-transfer matrices for free propagation
through a distance D and action by a thin lens of focal
length f. Then the “antiboosts” (a > 0) can be synthesized
even in the simple configuration Sp,SSp, involving one

concave lens with
D, =D,=(cosha—1)(sinha)~!,
f=—(sinha)~".

But the boosts (@ <0) as FOS are qualitatively different
and cannot be synthesized even in any configuration in-
volving two lenses. They can, however, be realized in the
three-lens configuration. '

S¢,5p,5rSpSr,Sp,
with
D=D,=2x>0, fi=x,
f =x sinha(sinha —x cosha—x)~!, D,= —sinha,
fo= —silnha(cosha—l- -,

Our analysis can be simply extended to fields which are
incoherent superpositions (convex combinations) of GSM
fields.?® For such fields, it is clear from the geometrical
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picture presented in Sec. IV that there will exist, in addi-
tion to the invariant norm of each three-vector represent-
ing the individual GSM fields, new invariants correspond-
ing to the Lorentz inner products of these vectors. For in-
stance, if the input field is an incoherent superposition of
two GSM fields with parameters o,y and o7, 07,7’ the
input plane being the equiphase plane (the waist plane) for
either field, then the additional invariant corresponding to
the inner product is, from Eq. (4.2),

v w?
(ep)?  oF

Thus, if we are dealing with convex combination of n
GSM fields then there will be n(n +1)/2 invariants. It
should be emphasized that the derivation of such invari-
ants will at best be quite tedious if one uses the traditional
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methods.

There already exists rich literature on the behavior of
coherent Gaussian beams under action by FOS and the as-
sociated abcd law. Our geometrical picture in Sec. IV and
the abed law brings both coherent and partially coherent
Gaussian fields under the same fold, rendering this litera-
ture applicable to all GSM fields.

For simplicity, the analysis in this paper was restricted
to axially symmetric GSM fields and axially symmetric
FOS. We hope to analyze the behavior of anisotropic
GSM fields in arbitrary FOS elsewhere.
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