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Many grand unified theories (GUT’s) predict non-Abelian monopoles which are sources of non-
Abelian (and Abelian) magnetic flux. In the preceding paper, we discussed in detail the topological
obstructions to the global implementation of the action of the “unbroken symmetry group” H on a
classical test particle in the field of such a monopole. In this paper, the existence of similar topolog-
ical obstructions to the definition of H action on the fields in such a monopole sector, as well as on
the states of a quantum-mechanical test particle in the presence of such fields, are shown in detail.
Some subgroups of H which can be globally realized as groups of automorphisms are identified.
We also discuss the application of our analysis to the SU(5) GUT and show in particular that the
non-Abelian monopoles of that theory break color and electroweak symmetries.

I. INTRODUCTION

In a typical grand unified theory (GUT),! a gauged
grand unifying group G is spontaneously broken by a suit-
able Higgs field to an “unbroken” subgroup H. The
group G is simply connected while H is not, which leads
to the existence of magnetic monopoles? in such models.
A remarkable feature of many of these monopoles, which
distinguishes them from the Dirac monopoles, is that they
are sources not only of Abelian magnetic fluxes but also
of non-Abelian magnetic fluxes. In this paper, we study
the classical field theory of these non-Abelian monopoles
as well as the quantum mechanics of a test particle in the
field of such monopoles. Our main conclusions can be
summarized as follows. (1) Although the subgroup H, de-
fined as the little group of the Higgs field at spatial infini-
ty, is perfectly well defined as an abstract group, still it is
impossible to realize all the transformations of H either
on the fields which describe the non-Abelian monopole or
on the states of the test particle. Any attempt to do so is
likely to map a finite-energy configuration into an

29

infinite-energy configuration. (2) The transformations
which can be implemented® consist of several different
subgroups K7, Kp,... of H with very different actions
on the fields or states. (3) In the GUT scenario
SUB)—SUB)c X U(l)ey,, one of these subgroups is
KT=SU(2)C><U(1)YC><U(1)ern while in the scenario
SU(5)—SU3)¢ X SUR)ws X U(1), one of these subgroups
is K7 =8U(2)c X U(1) X U(1) X U(1). [Here SU(2). acts on
the first two quarks (say), U(1)y . is generated by the color
hypercharge Y and the remaining U(1)’s are generated
by elements in the Cartan subalgebra of SU(5)]. In either
case color SU(3) cannot be implemented, while in the
second case the electroweak group also suffers the same
fate.

Preliminary accounts of our investigation have been re-
ported elsewhere.* We have also already treated the clas-
sical mechanics of a test particle in the field of GUT
monopoles (and the associated differential geometry) in
detail® and shown that similar difficulties are encountered
in that system as well. Analogous conclusions have been
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reached by other authors.® All these results show an impor-
tant structural result in any field theory which predicts
non-Abelian monopoles by means of a suitable Higgs
mechanism: In the presence of these monopoles, the sym-
metry group of the theory is not the little group of the Higgs
field at spatial infinity, rather it is a different set of
transformations.

From a physical point of view, it is important to know
if the effects we describe are associated with any energy
scale. Our discussion suggests that being consequences of
topology they are not correlated with any such scale.
They cannot, however, be perceived in any experiment
which explores only a small portion of the two-sphere sur-
rounding the monopole, that is to say when the solid angle
subtended by the experimental set-up at the monopole is
negligible in comparison with 4.

The plan of the paper is as follows. In Sec. II, we con-
sider the monopoles produced in the symmetry breakdown
G—H. An elementary and suggestive discussion is
presented which shows in a clear and simple manner the
origins of the topological obstructions to the realization of
the action of H when the monopole is non-Abelian. A
preliminary identification of the realizable subgroup of H
is also carried out. These calculations are done in the U
gauge which is particularly suited to display such obstruc-
tions. Section III studies the problem with greater gen-
erality with special attention to the characterization of the
subgroups of H which survive as symmetry transforma-
tions. Here we discover a surprising result: there are in
general several subgroups Ki, Ky, ... of the abstract
group H which enjoy this property. The action of these
subgroups is in general space dependent, meaning that
each element acts via a particular gauge transformation,
and differs from naive expectations. Thus, for example,
the same element of the abstract group H may belong to
Kr and K7, and because K, and Ky as transformation
groups act differently, this s may have different actions
depending on whether we focus attention on Ky or Ky
(We postpone to another work further discussion of these
distinct actions and the infinite-parameter group to which
they lead.) In Sec. IV, we consider a generic non-Abelian
monopole and show that a general (illegal) transformation
of H maps a monopole configuration of finite energy into
one of infinite energy. Section V examines the quantum
mechanics of a test particle in a background non-Abelian
monopole field. It shows that a generic H transformation
can map a state with finite mean energy into one with in-
finite mean energy, indicating that the full group of H
transformations is physically pathological. Section VI
concludes the paper with some miscellaneous remarks. It
is emphasized in particular that irreducible color (or in
general H) multiplets of quantum test particles consist of
both bosons and fermions in the presence of spherically
symmetric non-Abelian monopoles, therefore color
transformations on such a test particle do not commute
with angular momentum and appear inconsistent with su-
perselection rules. (This problem does not arise for multi-
plets with respect to any of Ky, Kp,....) We interpret
this fact as additional evidence that the concept of color
partially breaks down in the presence of non-Abelian
monopoles.
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II. LOSS OF H ACTION
AND THE REALIZABLE SUBGROUP:
ELEMENTARY DISCUSSION

In a conventional grand unified theory, a simply con-
nected unifying group G is spontaneously broken by a
Higgs field ® to a subgroup H. This subgroup is not as a
rule simply connected, and as a consequence the theory
predicts magnetic monopoles. In this section, we show
that there are topological obstructions to the implementa-
tion of the action of H (defined as the little group of ® at
spatial infinity) on the fields when the monopole is non-
Abelian. Now it is well known that the topology of the
monopole is coded in the asymptotic behavior of the
Higgs and gauge fields. It is thus adequate for us to ex-
amine the fields at large spatial distances where they can
be approximated by their asymptotic values. It is under-
stood hereafter that the radial variable r is confined to
such large values » >r;. The Higgs and gauge fields for
r > ry are denoted by ®(X) and W;(X) where X=X/r.

The discussion will be phrased in the U gauge. (For
other gauges, see Ref. 4.) The passage to the U gauge has
been recapitulated in detail in our previous work,> here we
shall only summarize the results. Let & denote the region
of space where the above-mentioned asymptotic approxi-
mation is valid:

O={XER | r=(X)2>r} . (2.1)

We divide & into two coordinate patches &y s where & y
(&) does not contain the negative (positive) z axis:

O=OyU0s ,

Ons=RyXZys
(2.2)
Ry={r|r>n},

Sys={%]££0,0,F1)} .

Then in the U gauge, we have the following. (i) All over
O, the field ® is a constant:

®(X)=®P=independent of X . (2.3

The little group of @ is a fixed subgroup H of G. (ii) The
gauge field is described by a pair of potentials Wy ¢
which are defined and smooth on Zys. On yNIs,
they are gauge transforms of each other by a transition
function h(¢), ¢ being the azimuthal angle

h(d), XEONNOs .

W) =h(@)™ | W (R) LV,

(2.4)

Here e is the coupling constant. If there is another H-
multiplet field present, it also has a pair of sections 1y s
defined on & y s such that

Yn(X)=D[h($) Ys(X), XEONNO;, (2.5)

where h-—D(h) defines the appropriate representation of
H. (iii) h(¢) describes a closed curve in H as ¢ increases
from O to 27. The homotopy class of this curve is charac-
teristic of the topology of the monopole sector. In the
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trivial (no monopole) sector, this curve can be deformed to
a point. Further, in any topological sector, by suitable
gauge transformations, /4(¢$) can be changed to hr(¢)
which lies on a one-parameter subgroup of H:

h(¢p)—hp(d)=e'®T, TELie algebra Hof H . (2.6)

(Note however that two different generators T and T’
with quite different spectra can lead to homotopically
equivalent A7 and Ay which therefore describe the same
monopole sector.) Hereafter, we assume that the transi-
tion function has the form Ar(¢).

If the monopole is Abelian, the curve Ar(¢) can be as-
sumed to be entirely in a U(1) factor of H. For a non-
Abelian monopole, such a choice of A7 is not possible.

We can illustrate these considerations in a simple way
for the GUT breakdown

G =SU(5)—H =[SUB3)c X U(1)en]/Z;=U(3) .

(Elsewhere, we have omitted writing discrete factors like
Z3.) Here Z; is generated by the element

c= (e3¢ —127/3) (2.7

of SUB3)c X U(1)em, where 1 is the 3X3 unit matrix. In
the triplet representation of U(3) [which realizes U(3)
faithfully], a possible choice for the transition function to
describe the elementary monopole is

hT(¢)=ei¢T,
(2.8)
1 1 000
T:———}\’8+_= O 0 O >
3
V3 001

while for the elementary antimonopole, it is e ~'¢T. (By
definition of elementarity, all monopoles in this system
are composites of these elementary systems.) The com-
ponents of T in the Lie algebras SU(3)- and U(1),, are
—XAg/V’3 and 5. Thus T has a non-Abelian component.
Further, the projection of hp(¢) in U(l)y,, being
expli¢/3) (0< ¢ <27), is not closed so that h(¢) cannot
be deformed to lie entirely in U(l),,. It follows that this
monopole is non-Abelian.

Let us return to general considerations. The source of
the topological obstructions is in the transition rules (2.4)
and (2.5). Any transformation of the fields must respect
these rules. Now if s is a generic element of H and it acts
rigidly (with no X dependence) on the fields, the latter be-
come

Wﬁv,s(f)=s‘_i’1v,ss_l ’
(2.9)
Yn,s(X)=D[s]lpy s(X),

and fulfill

[shr(g)s '],
(2.10)

Wig(X)=[shr(¢)s~']~" |W§,~<i’>—ivj
e

Y (X)=D[shr(¢)~'s ™' I¢hs(X) .
This is compatible with (2.4) and (2.5) only if
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she(d)s ~'=hp(d) . (2.11)

If h;(¢) lies entirely in a U(1) factor of H, that is, for
Abelian or Dirac monopoles, (2.11) is fulfilled. But for
non-Abelian monopoles, 2r does not have this property
and (2.11) is fulfilled only by the subgroup K of H
which commutes with 7. In the GUT scenario
SU((5)—->SUQB)c X U(1)gy, if T is as in (2.8), K7 is seen to
be SUQ2)c XUy, XU(l)er, where SU(2)c acts on the
first two quarks and U(1)y,, is generated by the color hy-

percharge. In the scenario SU(5)—SU(3)c X SUQ)ws
X U(1), the T associated with the elementary monopole in

the 5 representation is

000 O O
000 O O
T=|001 0 O (2.12)
000 —10
000 O O

Consequently, K is SU(2) X U(1) X U(1) X U(1).

III. LOSS OF H ACTION
AND THE REALIZABLE SUBGROUP:
GENERAL DISCUSSION

In the preceding section, we assumed that the action of
H on the fields was rigid, with no X dependence. In a
gauge theory, however, such rigidity is not necessary so
that we can envisage a more general H action. Thus for
s E€H, we can try to construct the X-dependent automor-
phisms

s—k4(X,5)EH, XEC,, A=N,S ,

(3.1)
k (X,8)k 4(X,s' )=k 4(X,ss")
with the convention
ky(N,s)=s, N=(0,0,1). (3.2)

The action of s on the fields is the gauge transform of
their sections in & 5 and g by ky(X,s) and kg(X,s).

Consistency with the transition rules (2.4) and (2.5) puts
a condition on k :

ks(X,s)=hr()ky(X,s)hp(d)~!, XEOYNOs.  (3.3)

We can assume without loss of generality that =y [Eq.
(2.2)] is all of the two-sphere except the south pole S.
Then, given ky, Eq. (3.3) defines kg on all of £g except
the negative z axis. Since kg should have a well-defined
value as we approach the negative z axis, (3.3) requires
that

lim hy(d)ky(X,s)hr(d) ' =independent of ¢ ,
¥ —r(0,0,—1)
(3.4)

where the limit is taken along a fixed azimuth. Thus to
realize the action of H, we have to (a) construct the auto-
morphisms (3.1) and (b) verify (3.4).

In physical applications, the group H is (locally) a
product of semisimple and U(1) factors. For such groups,
all automorphisms continuously connected to the identity
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are inner. Since the automorphisms ky must be inner be-
cause of (3.2), we can write

ky(X,s)=hy(X)shy(X)"Lhy(X)EH , (3.5)

hy[r(0,0,1)]=identity e of H . (3.6)
Thus in view of (3.4) and since A1(0)=e,
[ar($Van($)Is[hr($)hy($)] ™' =hy(0)shy(0)~1,  (3.7)

where £, ~(¢) is the limit of hy(X) as we approach the
negative z axis along the fixed azimuth ¢. (There is no
loss of generality in assuming that this limit is indepen-
dent of r.) If we rewrite (3.7) in the form

s le(p)s=c(g) ,
c(¢)=hn(0)"'hr($)hy(d) ,

the following important result is immediately seen: All the
transformations of H are globally realizable if the mono-
pole is Abelian so that the transition function is homotopic
to a closed curve in the center of H. For (3.8) shows that
the closed curve c(¢) is in the center of H. Further the
curve h, ~(#) can be shrunk to a point through the config-
urations hy(X) by varying the polar angle [see (3.5) and
(3.6)]. Therefore c(¢) is homotopic to hr(¢) and can
equally well be used to describe the monopole in question.
The result follows.

We can also study (3.7) to determine the subgroups of
H which can be realized as symmetry transformations.
For the choice Ay(X)= identity, such a subgroup is just
the commutant Ky of 7. But there are other solutions as
well obtained by choosing nontrivial Ay and they lead to
symmetry transformations with X dependence even in the
U gauge. We postpone the general study of (3.7) to later
work. Here we shall only show that there are in fact these
other solutions.

There is no unique association of the monopole to the
transition function. Two transition functions hy=e'¢7
and hp=e'#T will describe the same monopole sector if
e'T ¢—¥T" is a homotopically trivial closed curve. In
such a case there is a function 4(0,¢)E H defined on & y
(and independent of #) such that

h(0,¢)=e ’
h(m,@)=hr(d)hr(d)~ ",

0 being the polar angle. If ¥}y s are the sections of a field
in the gauge with transition function Ay,

YN (X)=D[hp(¢)"JWs(X), XEONNDs,

(3.8)

(3.9)

(3.10)

then the following are its sections in the gauge with tran-
sition function Ar(¢):
]

6 . 20 . 6 .
2 2Y _; =
cos™ +cos¢ sin 5 —ising sing

h(6,¢)= —(1—cos¢)i sing cosi

2
0

h(0,¢)=e, h(m,p)=e¥T-T)
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¥n(X)=D[hr($)"'h(6,4)"'hr($)Yn(X), XEOY,
(3.11)

¥s(X)=D[h(0,) " hp($p)h(d) Ws(X), xEOs .

In the gauge with transition function A, the group Ko

which commutes with A7, can be globally realized with

an X independent action. In view of (3.11), this action be-

comes the following in the A7 gauge:

Yn(X)—>D[hr(d) "1 (6,8) ' hr(d)shr(d)~!
Xh(8,0)hr($) ]y (%),

Ys(X)—>D[h(0,8) " hr()hp(d) " Ishp(d)
Xhr(¢)"'h(60,4)1¢s(X), sEK .

The action of Ky in the hy gauge is thus X dependent.
[Note that K acts on the potentials VVN, s by gauge
transforming them with the respective elements of H ap-
pearing in (3.12).]

In our previous paper,” we gave an example for K7 and
K7+ in the model SU(5)—[SUQB3)¢c X U(1)e]1/Z5. Here we
shall therefore give another illustration. Consider the
breakdown SU3)—[SUQ2) X U(1)]/Z,=U(Q). In the de-
fining 3 representation of SU(3), this U(2) has generators

(3.12)

V73 A
5 N8 T .=1, »D . .13
> Ag oo 1 2,3 (3.13)
Consider the following T and T":
10 0
T=+(A+V3Ag)=1[00 0 |,
00 —1
(3.14)
2 0 O
T'=T+A3;={0 —1 O
0 0 -1

(In this particular example, T and 7' happen to commute.
It need not generally be so.) The closed curve
hr(¢)=e™T in U(2) has projections exp[i(A;/2)¢] and
exp[i(V3/2)Ag¢] in SUQ) and U(1), neither of which is
closed showing that h; describes a non-Abelian mono-
pole. The closed curve e’¢7 ¢ =T =¢!#T—T") pas the fol-
lowing projections in SU(2) and U(1):

e Mesu),

identity €U(1) .

The U(1) projection is thus a point while the SU(2) projec-

tion, being closed, is also deformable to a point [since

SU(2) is simply connected]. Hence e¢’#”~7" is homotopi-

cally trivial and A7 and Ay describe the same monopole.
The map h(0,¢) of (3.9) is easily constructed:

(3.15)

—(1—cos¢)i sing cosg 0

2

coszg ~+cos¢ sinzg +i sin% sing 0 [€SU(2),

0] 1
(3.16)
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The groups Kr and Kp are the same, and are
U(1) X U(1) locally. A basis for their Lie algebras is A3/2,
Ag/2. We have now two actions of this subgroup of H in
the hr gauge: viewed as Kr, it acts rigidly while viewed
as Ky, its action is given by (3.12). This means that the
same element of the group U(2) is being given different
actions on the fields when it lies in U(1) X U(1).

IV. COLOR TRANSFORMATIONS
CREATE INFINITE ENERGY

Consider a generic element s €EH. Let us realize its ac-
tion on the fields as a gauge transformation using the X-
dependent automorphisms (3.1). It was claimed that such
an action is illegal if kg acquires a ¢ dependence along the
negative z axis. One would like to know the sense in
which the transformed fields are pathological. We show
in this section that the transformed gauge field strength
has a &-function singularity along the negative z axis so
that the transformed energy is infinite.

The proof of this result is very simple. The potential
WS after gauge transformation by kg becomes \_i’:g where

W (X)dx; =kg(X,s )W (X)dx;ks(X,s) 7!
—%ks(i’,s kg (%,s)! . @.1)

If kg(X,s) has a ¢ dependence as the negative z axis is ap-
proached, then in this limit the second term in (4.1) in-
duces the singular term

[ Wé,(i’)dx, ]sing=td¢ 5 (4.2)

in Wg(X)dx;, t being a Lie-algebra-valued constant. The
integral of Wg; dx; along an infinitesimal closed loop &
around the negative z axis is thus

$, Wa(Xdx; =2t . 4.3)

By Stokes’s theorem, the transformed field strength
F;j(Ws) must have a 8-function term [Fj;(Ws)]sn, With
support on the negative z axis:

[Fij(Ws) lsing=1€13m0( —2)8(x)8(y) . 4.4)

Thus the transformed energy density TrF;;( Wy )2/4 is in-
finite along the negative z axis and the transformed ener-
gy is infinite.

In connection with the above calculation, one may raise
the following objection. Since the new field strengths
F(Wy) and F(Wg) are obtained from the old field
strengths F(Wy) and F(Wjg) by gauge transformations,
and since energy density is gauge invariant, the new ener-
gy density as well as the new total energy must be exactly
equal to the corresponding old quantities, hence the result
must be incorrect. However, this argument is invalid for
the following reason. While at every point off the nega-
tive z axis, F(Wg) is related to F(Wg) by a gauge
transformation, along the negative z axis where the gauge
transformation is ill defined, they are not so related. It is
indeed true that off the negative z axis the old and new
energy densities are exactly equal. But the only valid way
of computing the new total energy is to find expressions
for F(Wy) and F(Wyg) valid over all of €y and Oy,
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respectively, such that all the properties of the fields are
faithfully reflected, and then to use them in the standard
expression for energy density and total energy. This
necessarily leads to §-function terms in F(Wg) and hence
to divergences in final energy. Thus our result expresses a
real physical effect and not just a consequence of a partic-
ular mode of calculation.

Abouelsaood® has pointed out that a physical conse-
quence of the preceding result is that there are no dyonic
excitations associated with such transformations. In par-
ticular, there are no color multiplets of dyonic excitations
of the monopole in the symmetry breakdown
SU(5)—>SUB)¢c XSUR)wsXx U(1).

V. QUANTUM MECHANICS OF A TEST PARTICLE
IN A NON-ABELIAN MONOPOLE FIELD

We shall now discuss the quantum mechanics of a test
particle in a non-Abelian monopole field. For specificity,
we consider the monopole produced in the GUT scenario
G=SU(5)— H=SU(3)c X SUQ2)ws X U(1). For simplicity,
we shall also assume the following. (1) The monopole is
elementary with the standard spherically symmetrical
form. (2) The particle is spinless and nonrelativistic. Nei-
ther of these assumptions is essential to the conclusions,
nor is it difficult to consider other G’s and H’s.

The Schrédinger equation for the test particle is

i%'é:%i(z,
where
72
=
mj=—iD; ,

(5.1)
D;=9;+ieD[W;(X)],

i eD[W(X)]= — - f(NegRiDln]

and where {D(l)} denotes the representation of the Lie
algebra SU(S5)={l/} of SU(5) according to which
transforms, and 7; is defined in the 5 representation as

00000
00000
=100 0|,

o

00 0
000O0O
(5.2)
o;=Pauli matrices .

The infinities we shall later find reside in the angular
features of & and i and are in no way dependent on the
distance of the test particle from the monopole center.
We shall therefore as usual simplify the discussion by re-
placing f(r) by its asymptotic value:

fir=1. (5.3)

Thus we are confining our attention to the region &.
Note that since we are using a single globally defined
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potential, we are not working in the U gauge. As is well
known,>> the transition to the U gauge is achieved by
separate (r independent) gauge transformations gy s(X) in
O n,s which rotate 7-£ to 7. Further, the transition func-
tion in the U gauge is just e"m. Thus we have

1=,
T'ng,S(£)=T3 >
i¢‘r3

gNys()/C\)_

gN(J/C\):gs(f)e N rJ’c\EﬁNﬂﬁs ’ (5.4)

T=T3 .

For purposes of simplicity, we shall only examine the
consequences of rigid (X independent) transformations
s €H in this U gauge, we shall also of course assume that
they do not commute with 73. They correspond in the
present gauge to the following transformations:
SN(.f):gN(J/C\)SgN(jC\)—I, Xe On

(5.5

55(X)=gs(X)sgs(£)~!, XEOs .

They do not commute with 7-X. Further, there is a diffi-
culty in implementing the transformations sy in the
present gauge: they do not agree on NI since
[s,73]40 and there is no room now to transform the
fields (which are all globally defined) with a pair of func-
tions sy s. In order to define these transformations, we
therefore take =y in &y to be all of the two-sphere except
(0,0,— 1), this defines sy(x) on all of &'y except the nega-
tive z axis. The limit of sy(x) on this axis is not well de-
fined. Still we shall transform the fields by sy(X) ignor-
ing this singularity and examine the consequences. (Of
course, such conceptual difficulties arise because these
transformations are not smoothly defined for all X in any
gauge.)

The Hamiltonian J# admits the following constants of
motion.

(a) The angular momentum T, where

Ji=—i(EXV);++D(1) . (5.6)
(b) The helicity
J£. (5.7)
Note that
T-£=1D(1)%; . (5.8)

Thus we can diagonalize 5 along with J 2, J;, and
D(7;)%;. Let |u,k) denote the eigenstates of D(7;)X; in
the SU(5) representation space:

+D(1)K; |k Y =p |,k ) . (5.9)
Here k is a degeneracy index.
Now J can be written as
T=—i(EXD)++D(r)EK, (5.10)
where D is given in (5.1) and fulfills
. xk 1 >
[D,',Dj]=16ijk7[7D(Ta)xa] . (5.11)
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Let 7 P(u) and mV(,u) be the restrictions of J and —iD

on states of the form F(X)|u,k). (Note that
[D, J-x£]1=0.) That is, let
TFE) |,k ) =T Pu)FE) | p.k) ,
(5.12)
—iDF(X) | p,k)=mV(u)F(X) |,k ) .
Then in view of (5.10) and (5.11),
T Pu)=m((X X V() +uk , (5.13a)
x
[m(m,V,.(m]:—i—"%e,.jkr—’; (5.13b)

That is, on such states 7 becomes the angular momentum
T P(y) and —iD/m becomes the velocity operator V(u)
of the Dirac charge-monopole system for the value of
eg=p. (Here e is the electric and g the magnetic charge
of the charge-monopole system.) Further

T Pu)£=p (5.14)

by virtue of (5.13a).
The eigenfunctions of [JP )(u)]Z and JP (1) are known
to be the monopole harmonics Dj, _
[J‘D’<u>]2D,f,.,_,,(6,¢>=j<j+1>D,J,,,_,,<e,¢> :
. _ (5.15)
JP (D}, _,(6,¢)=mDj}, _,(6,¢) .

The discussion shows that the eigenfunction ¢y of #
for energy E can be taken to have the form

Y =Fh (D _u(0,6) |,k ) . (5.16)
Since
P’ 1
H= —5 {(J*=[3 D)%}, (5.17)
2m 2mr?
f3. D, _, fulfills
P2 1
£r_ — (D) 2 2 ; .
am F o5 (WP =2} | f7 (1D, _u(6,6)
=Ef}, ,(r\D}, _,(6,4). (5.18)
Here [J'P(u)]? is given by
1 8 |. .2 1 32
D) )P o 9 | 3
WY == 5630 |30 |~ sin’e 247
2ip <) 2u?
- e ) 1
1+4cos6 d¢ + 1+4cosf (5.19)

It is remarkable that in the wave function g, the
space-time and internal symmetry properties are tied to-
gether as shown by the correlation between the second in-
dex of the D function and the index u in the state |u,k ).
Any transformation sy(x) which does not commute with
7-X will spoil this correlation and transform ¥ into a
state for which the mean value of energy is infinite. (This
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infinity is not due to the fact that the wave function is not
normalizable, as we shall see below.) For let
Y =fhu(PD} _u(6,8) | p,k), ptp (5.20)

I ]

P’ 1
= | 2 — (TP p)2_ 2
¥ 2m  2mr? [ Py —p]

=EY +—— {[J PP —p"1 - [T P(u) —p?])
2m
where we used (5.18). In the expectation value (¢, 7%’)

the contribution of the second term is, in view of (5.19),

5u(PDL . (0,0) [ p,k)
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be a state where the index correlation mentioned above is
absent. (Such states are necessarily created from vy by
transformations of H which do not commute with 7-X.)
Then

5ou (DL _,(8,0) | p,k)

(5.21)

, the first term contributes finitely to the angular integral while

J | i le=p) 3 2p’=p®) o oyl J
2mr2f dcosef AL (DD, O BT | =28 o+ e — P —H) (D _u(0,8)] .

This is infinite unless D}, _,(0,¢)=0 for 6=m. But
D,’,, _, does #ot vanish at the south pole if m=£u. (Fur-
ther all values of m in the range —j <m < -+j must cer-
tainly be allowed in order to maintain rotational invari-
ance.) We can thus conclude that a transformation in H
which does not commute with 73 in the U gauge
transforms finite-energy states into states with infinite
mean values for energy.

It should be evident that the conclusion is not affected
if ¥ is replaced by a normalizable wave packet

J dE a(EYyy

The background Yang-Mills potential W; is not invari-
ant under sy(X) in the present gauge, so that we would
not of course expect sy (%) (or all rigid H transformations
in the U gauge) to be a symmetry of the test particle
Hamiltonian. But we would also not expect a rigid H
transformation to produce states with infinite mean ener-
gies. Our result can be loosely interpreted in terms of an
infinite potential barrier which inhibits such transforma-
tions.

In quantum mechanics with its emphasis on the
Hilbert-space structure, continuity requirements are not so
strict as in a classical field theory. It is therefore not ob-
vious that a transformation sy(X) cannot be implemented
on the states without bad consequences even if it is not
well defined along the negative z axis. Since these sy(X)
map states of finite energy into states with infinite mean
energies, this possibility, and hence the possibility of im-
plementing rigid H transformations in the U gauge which
do not commute with T, are now ruled out.

(5.23)

VI. CONCLUDING REMARKS

In this paper, we have considered gauge theories based
on a gauged symmetry group G which is spontaneously
broken by a Higgs field to a subgroup H. The precise def-
inition of H is that it is the little group of the Higgs field
at spatial infinity. This fact naturally leads one to expect
that H is also the unbroken symmetry group of transfor-

(5.22)

r
mations of these theories. However, in the presence of

non-Abelian monopoles, we have seen that this is not the
case: the group of automorphisms is instead a local (x-
dependent) group which is not isomorphic to H. The
group H is thus topologically broken, and in its stead we
have a novel group of automorphisms. [We may remark
here that even in electrodynamics the group of automor-
phisms on the algebra of observables is a local group: it is
G /G, where G is the set of all gauge transformations and
G, is the set of gauge transformations which reduce to
identity at spatial infinity. However, G /G, is “spontane-
ously broken” to U(1) in the sense that only this U(1) is
unitarily implementable. Similarly, in the monopole sec-
tors of GUT’s as well, only a subgroup of the group of au-
tomorphisms is expected to be unitarily implementable.
We Iglan to study this question in a paper under prepara-
tion.®]

While the demonstration of these results has been car-
ried out using topological reasoning, there is an alternative
and intuitively compelling argument to see that H cannot
be the symmetry group in non-Abelian monopole sectors.
Locally, in any region of space far from the monopole
which does not also enclose the monopole, it is possible to
realize all the transformations in H. (For such a region
can always be enclosed in one coordinate patch & or
Os.) Thus locally test particles in a monopole field can
be classified into irreducible H multiplets and we can in-
quire about the angular momentum properties of such
multiplets. The remarkable fact then emerges that in the
presence of spherically symmetric non-Abelian mono-
poles, irreducible H multiplets may contain both integer-
and half-integer-spin particles. For instance, in the model
G= SU(5)—+H SUB)e XUy, the 5  multiplet
d$ 8 ,d$,dS,e",v,)r splits under H into a triplet
(dl,dz,d3c)L and two singlets e; ,v,;. As we saw in Sec.
V, the potential of the spherically symmetric monopole
couples only to d$; and e/, their angular momenta are
thereby changed by the addition of an extra - unit, while
the angular momenta of the remaining partlcles are not
affected. Thus in the color 3 multiplet, dl »1. act like fer-
mions while d$; acts as a boson and H does not commute



29 NON-ABELIAN MONOPOLES BREAK COLOR. 1II ... 2943

with angular momentum in the presence of a non-Abelian
monopole, suggesting that the concept of H as a symme-
try group may be invalid.

It is easy to see that an H singlet composed of H non-
singlet test particles will not emerge as an H singlet on
scattering by a classical non-Abelian monopole field.
Thus in the model of the preceding paragraph, if we
scatter an H singlet formed of three of the 3 multiplets
from the sgherically symmetric monopole field, the con-
stituents d¥; and d$; are not scattered at all while d$; is
scattered. This scrambles the phase relations between the
constituents of the singlet so that the outgoing wave func-
tion is not going to be a singlet. Since color-confining
forces are color singlets, they cannot bind the emerging
constituents into a singlet. Thus the free existence of a
colored monopole implies the existence of other colored
objects.

The effect we have just now discussed will not of course
constitute a problem for color confinement if color were a
well-defined symmetry for monopoles. For, the fields
which describe the classical non-Abelian monopole (in
particular, the gauge potential) are not color invariant
even locally, so neither is the corresponding quantum
state. If color were a well-defined symmetry, we could
then project out the color-singlet component of this quan-
tum state and call that the physically correct quantum

monopole state. The effect described in the preceding
paragraph would then disappear. However color is not a
well-defined symmetry for monopoles so that there seems
to be no way to construct a color-singlet monopole state
globally by such a method.

If non-Abelian monopoles do not exist as free particles
in the standard GUT’s, if they are confined and only
Abelian monopoles are observable, then the conclusion
that color and electroweak symmetries are broken in these
GUT’s by non-Abelian monopoles can be avoided. The
dynamical reasons for such confinement however remain
to be explored.

In this paper, we have examined the topological prob-
lems arising in the identification of the group of automor-
phisms in the presence of monopoles. The deeper ques-
tion of the unitary implementation of this group of auto-
morphisms will be treated elsewhere.?
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