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Anisotropic Gaussian Schell-model (AGSM) fields and their transformation by first-order optical
systems (FOS’s) forming Sp(4,R) are studied using the generalized pencils of rays. The fact that
Sp(4,R), rather than the larger group SL(4,R), is the relevant group is emphasized. A convenient
geometrical picture wherein AGSM fields and FOS’s are represented, respectively, by antisymmetric
second-rank tensors and de Sitter transformations in a (3 + 2)-dimensional space is developed.
These fields are shown to separate into two qualitatively different families of orbits and the invari-
ants over each orbit, two in number, are worked out. We also develop another geometrical picture in
a (2 + 1)-dimensional Minkowski space suitable for the description of the action of axially sym-
metric FOS’s on AGSM fields, and the invariants, now seven in number, are derived. Interesting
limiting cases forming coherent and quasihomogeneous fields are analyzed.

I. INTRODUCTION

Ever since the classic paper of Walther! on the connec-
tion between coherence and radiometry, there has been an
enormous interest in the properties of radiation fields gen-
erated by partially coherent planar (scalar) sources.” In
these situations the source is adequately described by the
source-plane cross-spectral density. Several model sources
have been studied in detail, Gaussian quasihomogeneous
sources’ and Gaussian Schell-model sources* having re-
ceived particular attention. Many useful results have been
éstablished, and it has been shown® in particular that
sources which are highly incoherent in a global sense can
produce beams which are as directional as (fully coherent)
laser beams.

A recent development of considerable interest is the in-
troduction of the notion of generalized light rays® in sta-
tistical wave optics in an attempt to clarify the relation-
ship’ between radiative transfer theory® and electro-
dynamics. This notion leads to a ray picture of wave op-
tics which is exact at the level of the two-point correlation
function and is applicable equally well to coherent, par-
tially coherent, and incoherent fields. In paraxial situa-
tions these generalized rays behave in an extremely simple
way both under free propagation and on action by optical
systems.’

In a previous paper'® we employed the method of gen-
eralized rays to analyze the behavior of axially symmetric
or, as we shall say, isotropic Gaussian Schell-model
(IGSM) fields under the action of axially symmetric first-
order optical systems (FOS’).!! We demonstrated that
this method enables us to answer any question related to
this class of problems and circumvents the elaborate cal-
culations involving integrals that arise in using conven-
tional wave-optical methods. In particular we showed
that such FOS’s induce one-to-one maps on the family of
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IGSM fields, the degree of global coherence being invari-
ant under these maps; and that for each IGSM field there
is a corresponding one-parameter subgroup of FOS’s
which leave it invariant. [Axially symmetric FOS’s them-
selves are naturally identified with elements of the group
SL(2,R).] We also developed an elegant geometrical pic-
ture wherein each IGSM field is represented by a timelike
vector and each axially symmetric FOS by a proper
Lorentz transformation in a fictitious (2+ 1)-dimensional
Minkowski space, which makes all these results easily
visualizable and also leads to a generalization of the Ko-
gelnik “abed law”'? to partially coherent IGSM fields.

There have been attempts to generalize the notion of
Gaussian Schell-model sources to include anisotropies in
the source-plane intensity and coherence distributions. It
has been shown that these anisotropic Gaussian Schell-
model (AGSM) sources produce isotropic far-zone intensi-
ty distributions, provided that the source parameters meet
certain conditions,'® and “bladelike” shape-invariant fields
if they obey certain other conditions.'* Coherent anisotro-
pic Gaussian beams have also been analyzed!® and it has
been shown that for such beams there always exists a
transverse plane over which the intensity distribution is
isotropic. It should be noted, however, that the AGSM
fields discussed in these works are restricted in the sense
that the anisotropies in the intensity and coherence distri-
butions share the same principal axes.

The purpose of the present paper is to extend our treat-
ment of IGSM fields to the AGSM case, using again the
method of generalized rays and developing a suitable
geometrical interpretation. It turns out that the inclusion
of anisotropy leads to a considerable increase in structure
and complexity of the problem. In particular the three-
dimensional Minkowski-space representation of the IGSM
case needs to be extended to a five-dimensional de
Sitter—space representation'® for both fields and FOS’s.

2419 ©1985 The American Physical Society



2420

In Sec. II we define the family of AGSM fields we shall
be concerned with, both through the cross-spectral densi-
ties and through the generalized ray density distributions.
We stress that the ten-parameter family of fields we intro-
duce is minimal in the sense that it is carried into itself
under the most general physically permissible two-
dimensional FOS. Section III defines precisely the class
of FOS’s to be admitted, in particular explaining why the
group Sp(4,R) rather than the larger SL(4,R) is the
relevant one, and calculates the action of such FOS’s on
an AGSM field. It is stressed that all FOS’s considered
can be constructed using a finite number of (asymmetric)
lenses plus free propagations. Section IV develops in de-
tail the group-theoretical aspects of the family of AGSM
fields, classifies them into subfamilies invariant under the
action of all FOS’s, and calculates the invariants associat-
ed with each subfamily. The subfamilies consist of one
single-parameter continuous collection of AGSM fields,
and one two-parameter continuous collection. The
geometrical representation in the de Sitter space is also
developed. In Sec. V we take up the action of axially
symmetric FOS’s, corresponding to an SL(2,R) subgroup
in Sp(4,R), on AGSM fields; we give a parametrization of
the fields appropriate for this purpose, and calculate the
associated invariants. Section VI considers limiting fields
possessing complete coherence or quasihomogeneity. Sec-
tion VII contains concluding remarks, and there are three
appendixes.

~ II. AGSM FIELDS AND ASSOCIATED
GENERALIZED RAY DENSITY DISTRIBUTIONS

We restrict attention to time-stationary fields!” so that

different frequency components can be treated indepen- -

dently of one another. Thus we present our analysis for a
fixed frequency @ which is suppressed. Let us choose a
Cartesian coordinate system with the positive z axis along
the beam axis. The field in a transverse plane z =z, is
specified through its cross-spectral density in that plane.
Suppressing z, and denoting by p the transverse two-
vector part (x,y)T (a column matrix) of the three-vector
(x,9,20)T, we have an AGSM field if the cross-spectral
density assumes the form

D(pip2)=[I(p DI (p2)] g (p 1 —pole €1,

I(p)=(A/2m)(detg ;)" 'exp[ — 5pT(a )" 'p],
g(p)=exp[—7pT(g,M) " 'pl,
dlpip)=751—p2)Klpi+p,) .

The intensity distribution I(p) is characterized by a real
symmetric positive-definite matrix ¢;, and (g;?)~!
denotes the matrix inverse of g ;2. The modulus g(p) of
the normalized degree of coherence is likewise character-
ized by another real symmetric positive-definite matrix
g g. Itis on account of their physical significance that we
require these two 22 matrices to be positive definite.
The phase ¢ of the normalized degree of coherence is
determined by the real 2X2 matrix K. By integrating
I(p) over the transverse plane it is easily seen that A is
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the total irradiance.

Our interest is in the action of two-dimensional FOS’s
on such fields; since such systems are lossless, the parame-
ter A is invariant under such action, and so it is
suppressed in the following in counting the number of in-
dependent parameters in an AGSM field. It is then evi-
dent that the set of AGSM fields as we have defined them
is a ten-parameter family, three parameters each in ¢
and g4, and four in K. Throughout this paper it is under-
stood that, except where explicitly stated otherwise, g I»
04, K, and y to be defined presently are 22 real ma-
trices.

The intensity and transverse coherence in an AGSM
field are anisotropic Gaussian with different sets of prin-
cipal axes in general. Furthermore we allow the phase ¢
to involve an arbitrary real 2 X2 matrix K. The AGSM
fields of earlier authors!>!'* obtain when g1, Og, and K
are simultaneously diagonal. Thus our definition of the
AGSM family in (2.1) is a multiple generalization of ear-
lier definitions in that we allow ¢; and ¢ ¢ to have dif-
ferent sets of principal axes, and we do not require K to
be symmetric. As will be evident in the sequel, the defini-
tion (2.1) with the stated properties of ¢, o g»and K is
the minimal one necessary in order that the family of
AGSM fields be carried into itself under the action of ar-
bitrary two-dimensional FOS’s.

To appreciate the nature of the phase term in (2.1) we
recall that the amplitude transmittance of a general (astig-
matic) thin lens is a quadratic phase function

e —i¢1(e)=exp'( _ _;_iBTMB) , 2.2)
where M is a real symmetric 2 X 2 matrix representing the
optical thickness curvature of the lens. Its action on the

cross-spectral density is as follows:

i[¢1(ei)“¢l(22)lr(pl-p2) . (2.3)

Now if KS and K4, are, respectively, the symmetric and
antisymmetric parts of K, we can rewrite the phase func-
tion ¢ of the AGSM field as

Llp;p2)—=T'(p;p2)=e

¢(21;32)=%F_’{ISSQI—%B;_SEﬁ-BlT_Al_’z . (249
It is now clear that the K5 terms in ¢ are exactly what
would be imparted to I' by an appropriately astigmatic
thin lens. It will be shown later (in Sec. V) that even
under free propagation an equiphase AGSM field can
pick up the K4-type term in ¢. These remarks justify
from a physical point of view the inclusion of the phase
term in (2.1) with an arbitrary real matrix K.

For any I', the generalized ray density distribution
function W is defined by the Wigner-Moyal transform!8

W(psp)=2m~2 [ d% T(p+1p'ip—+pe®€ .
2.5)

Here p is a transverse two-dimensional ray vector, and
W (p;p) represents the intensity of the generalized pencils
of rays going in the direction (p, p, =(k?—p2)'?)~(p,k)
through the space point (p,z;). For the AGSM field (2.1)
we have
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Tp+3p5—7p")
=(A /217')(det01)"exp[ —_ %pT(g 12)'1;_)]
p'—i(p)Kp],

where the real symmetric positive-definite 2 X2 matrix y
is defined by

Xexp[—-(p ) (2.6)

(PO =g ) '+ (g A)7! 2.7
Substitution of (2.6) in (2.5) gives
dety
Wp;p)=[A 2—L
(p;p)=[4/(2m) ]deth
xexp[ — 7T *) " 'p
—3(p—Kp)y2p—K p)] 2.8)

There are two different but equivalent ways of com-
pactly expressing the quadratic in the exponential, each
convenient for a particular purpose. Let us put p and p
together to form a four-component column vector g as
follows:

g = . (2.9)

9'Gg=5pTa ) p+3(p—Kp)TyXp—Kp). (2.10
Since it is easily shown that
1 dety
detG=— .
€ deto 21D
we see that the W function takes the form
W (p;p)=(A/m*)(detG)*exp(—qTG q) . (2.12)

The arrangement of the components of p and p as in (2.9)
and the ensuing definition of G is particularly convenient
for discussing the action of axially symmetric FOS’s; this
is taken up in Sec. V. However, for the purpose of revert-
ing from W to I' a more convenient arrangement is as fol-
lows:

X
y e
g = = 2.13
9= pe |7 |2 2.13)
Py

In that case we define a new symmetric matrix G to

represent the quadratic in the exponent in W:
9'Gg=g3"Gq- (2.14)

Since
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1=

(2.15)

=

T=N-'=N, detN=—1,

we have the relations

G=NGN,
— (2.16)
detG =detG ,
and W can be written as

W(p;p)=(4/7*)(detG) *exp(—7 TG 7) .

(2.17)

For a given AGSM field ' characterized by definite
g1, Tgs and K, unique 4 X4 matrices G, and G are deter-
mined [and incidentally G and G determine each other
uniquely by (2.16)]. From (2.10) it is evident that G and
G are real, symmetric positive-definite matrices. More-
over from (2.7) and (2.11) it follows that detG is bounded
above by unity. Thus the following three properties of G
(and equally well of G) are immediate and obvious:

GT=G, (2.18a)
G is positive definite, (2.18b)
O<detG<1. (2.18¢)

However, these do not exhaust all the properties of G or
G. If one starts with a G obeying all of (2.18), sets up W
by (2.17), and then recovers I' by inverting (2.5), one must
ensure that the I" so obtained is physically acceptable. Let
the 44 G be split into 2 X 2 blocks in this way:

4 C

G=lcr B

(2.19)

It is clear that both 4 and B are real, symmetric, 2X2
posmve-deflmte matrices. The g, g, and K that result
from a given choice of G are easily read off by comparing
g g’'G g with the expression on the right-hand side of
(2.10):

(e '=204—-CB-'CT), (2.20a)
(@) '=3(B"'—4+CB~'CT), (2.20b)
K=-B~-IcT (2.20c)

Now the positive definiteness of G is adequate to ensure
the same property for g; as determined by (2.20a) since
from (2.10) and (2.14) we have for arbitrary p

+07e A p=(p", pTK G |k (2.21)

However, the requirement that g, be positive definite is
an added condition on G; it is a matrix condition and
reads

pT(B~'—4+CB~'CTp>0 forallp. (2.22)
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It is easy in principle but awkward in practice to express
this condition in terms of G, so we shall be content to
leave it in this form. Thus the complete set of properties
characterizing G is (2.18) (with G—G) and (2.22), and we
_have established the following result: There is a one-to-
one correspondence between the members of the ten-
parameter family of AGSM fields, and 4X4 real sym-
metric positive-definite matrices G obeying (2.18¢c) and
(2.22).

An easy and geometrically appealing way of visualizing
the set of allowed matrices G, and hence of handling the
condition (2.22), will emerge from the work of Secs. III
and IV and Appendixes A and C.

To recover and make contact with the description of
IGSM fields in Ref. 10, let us first invert (2.20) to express
4, B, and C, in terms of g, g,, and K, or, rather, in
terms of o, ¥, and K:

4=5[e A '+KTyXK],
%Zz . : ' (2.23)

N
[

. % K T, 7_,2 X

The IGSM limit is obtained by making each of the ma-
trices g7, g, 7, and K multiples of the 2X2 unit matrix.
Let this be indicated by ¢;—0,;1l,x2 Fg—0g1l,x2,
Y—vLlsyxs and K—(k/R)1l,y, where only for the
present discussion o7, 0, and y are real positive numeri-
cal quantities. Then the cross-spectral density (2.1) be-
comes exactly the three-parameter IGSM field analyzed in
Ref. 10, and 4, B, and C also become multiples of the
2X?2 unit matrix. Equation (2.7) is read as defining the
number ¥ in terms of the numbers o; and o, exactly as in
Ref. 10, so ¥ <20y, and G is effectively a 2 X 2 matrix. In
this limit we have the correspondences

deto -—>U% ,

dety —y?, (2.24)

detG —(y /20)*,

and so the bound on det G becomes obvious. Moreover, if
we examine the condition (2.22) in the IGSM limit, we see
that it is automatically obeyed once the bound on detG is
obeyed. This explains why a condition like (2.22) addi-
tional to the conditions (2.18) did not appear in the work
of Ref. 10.

III. LENSLIKE SYSTEMS
AND THE SP(4,R) GROUP OF FOS’S

Given any cross-spectral density I" over a transverse
plane, the total irradiance can be obtained from the func-
tion W(p;p) written as W(q) by integration over all four
components of g. For the AGSM field with W(q) given
in (2.12), we recover

J wigraiq=4. (3.1)

A priori, it may appear that the most general linear system
which maps generalized rays onto themselves in a one-to-
one way and which preserves the total irradiance would be
described by a 44 real matrix S acting on g and Wi(q)
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as follows:
S: g—q'=Sgq,
W(g)—»W'(qg)=W(S™q), (3.2)
detS=

The determinant condition on S ensures that the total ir-
radiance is preserved, and means that S is an element of
the group SL(4,R). As in geometrical optics, S could be
called the ray-transfer matrix of the system.

However, it turns out that each S €SL(4,R) transforms
some physically acceptable field into an unphysical one:
Examples are given in Appendix A. On the other hand,
there is a subgroup Sp(4,R)CSL(4,R), the symplectic
group in four real dimensions, such that every
SE€Sp(4,R) maps each physically acceptable cross-
spectral density I' into another acceptable one. The action
of such S is again given by (3.2), and this statement is
proved in Appendix A. For these reasons we consider
hereafter only those ray transfer matrices S and corre-
sponding FOS’s which belong to the group Sp(4,R).

In accordance with the way the column vector g has
been defined in (2.9), we introduce a real, 4 X4 antisym-
metric matrix 8 as

01 0 O
—10 0 O
0 0-10

The ‘group Sp(4,R) consists of all real 4 x4 matrices S
with unit determinant which obey!®

STBS=B. (3.4)

In other words, they preserve an antisymmetric real bilin-
ear form in four dimensions. Free propagation through a
positive distance D is represented by the ray-transfer ma-
trix?°

1D/k0O0 O

0O 1 0 O
F(D)= 0 0 1D/k|> k=w/c (3.5)

0O 0 0 1

and it can be verified that
[E(D)'BED)=B, - (3.6)

ie., F(D)ESp(4,R). A thin astigmatic lens with the
phazsg, function (2.2) is represented by the ray-transfer ma-
trix

Iox2 Oax2

L= |_M 1,

(3.7

EAAN ]

with N given in (2.15). It can-be verified that L (M) also
belongs to the group Sp(4,R), for any symmetric 2X2
real matrix M. With the help of a Lie-group-theoretic ar-
gument, it has been shown in Ref. 20 that every element
S E€Sp(4,R) can be represented as the product of a finite
number of matrices of the forms F(D) and L(M), for suit-
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able choices of D’s and M’s.2! [This too is a proof that
every SESp(4,R) maps physically acceptable I'’s into
other acceptable ones.] For this reason, it is natural to
refer to the group Sp(4, R) of FOS’s as the family of lens-
like systems.

We have seen in Sec. II that each AGSM field I corre-
sponds to some 4X4 real matrix G obeying (2.18) and
(2.22) (the latter stated in terms of G), and conversely.
Combining (2.12) with (3.2) we now see that if
SESp(4,R) is some FOS, it produces the following
change in G:

SESp(4,R): G—~G'=(S~1HIGS—!. (3.8)

While it is obvious that G’ also obeys (2.18), the fact that
(2.22) is also maintained is somewhat harder to see; a
direct attempt to check this fact is rather awkward. The
proof that (2.22) is preserved is given in Appendix A.
Thus the change GG’ given in (3.8) maps the set of al-
lowed G’s onto themselves in a one-to-one manner.
Under these mappings induced by the group Sp(4, R), the
set of allowed G’s (and so the set of all AGSM fields)
naturally splits into disjoint equivalence classes, G and G’
being equivalent if and only if there is some S ESp(4,R)
relating them in the manner of (3.8). The determination
of these equivalence classes, or “orbits” in the space of
matrices G, and of the associated invariants, is taken up
in Sec. IV. ‘

A general SE€Sp(4,R) describes an anisotropic, i.e., a
nonaxially-symmetric, FOS, since in the transformation
rule g—gq'=Sq of (3.2) the pair (x,p,)7 is not
transformed in the same way as the pair (y,p,)”. The
subset of axially symmetric FOS’s is an SL(2, R) subgroup
within the larger Sp(4,R) group. In our description ele-
ments S E€SL(2,R)CSp(4,R) describing such FOS’s have
the form

s 0Oox2
=7 Qax2 s ’
ab
s=1. 4 €SL(2,R), (3.9)
ad—bc=1.

The ray-transfer matrix F(D) in (3.5) describing free
propagation is an example of (3.9), and so
F(D)eSL(2,R). For an axially symmetric lens with opti-
cal power g, the matrix M in (2.2) and (3.7) becomes
kgl >, so that the corresponding ray-transfer matrix
L(M) in (3.7) becomes

1 0 0 O
—kg1 0 O
0 0 —kg 1

This again is an element of the SL(2,R) subgroup of
Sp(4,R). Naturally there are more invariants associated
with the action of axially symmetric FOS’s on AGSM
fields than with the action of general FOS’s. This is
analyzed in Sec. V.
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IV. SO(3,2) REPRESENTATION, ORBITS,
AND INVARIANTS

As we have recalled in the Introduction, IGSM fields
and axially symmetric FOS’s acting on them can be
elegantly represented by (timelike) vectors and Lorentz
transformations in a fictitious (24 1)-dimensional Min-
kowski space.! When we allow anisotropies in both, the
geometrical representation gets enlarged to one in a ficti-
tious (34 2)-dimensional de Sitter space. This is because
the groups Sp(4,R) and SO(3,2) share the same Lie
algebra—the former is the twofold spinor covering group
of the latter.'®

The infinitesimal generators of the group Sp(4,R) are
real 4 X 4 matrices J which obey

JTB+BI=04x4 »
ie.,
(BHT=BJ .

This arises by expressing S in (3.4) as the exponential of J,
and using the antisymmetry of B. It follows that with the
G matrix of an AGSM field we can associate in a unique

4.1)

~ manner some Sp(4, R) generator matrix by

ng‘l ’
J=-BG.

(Not all generator matrices J will lead to acceptable G’s,
however, since G has to obey other conditions besides
symmetry.) The transformation G— G’ of (3.8) for some
FOS S €Sp(4,R) appears as the adjoint action of Sp(4,R)
on its Lie algebra:

SESp(4,R): J>J'=SJS~!.

(4.2)

(4.3)

As mentioned earlier, any Sp(4,R) transform of a G ma-
trix representing a physical AGSM field describes another
physical AGSM field. It follows that the set of all al-
lowed G’s corresponds via (4.2) to a certain collection of
entire orbits in the Lie algebra of Sp(4,R) under the ad-
joint action.

In order to set up a basis for the Lie algebra of Sp(4, R),
and make explicit the connection to SO(3,2), we begin
with a special real representation of the Dirac algebra in
four dimensions:

B=Y0=il3x280,, Y1=C3®8C,
(4.4)

Y2=a 190, Y3=—1,x:9a03.

Here we use Kronecker products of two Pauli matrices.
Thus we have explicitly

i 0
B=Yo=il2x280:= |g ; |®22
01 0 O
ig, Og, —10 0 O
=l0g, ig,|=]0 0 0 1| (4.52)
0 0—-10
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1 0 01
Y1=¢3®21= |5 _1(® |1 o
01 0 O
10 0 0
00 0 —1]- (4.5b)
00 —1 O
0001
02x2 @1 0010
Z2=g1®gl o QZXZ 0o100]|° (4.5¢)
1000
—23 0,,,
Y3=—1x2®03= 055 _23
—-10 0 O
01 0 O
=!l0 0 =10 (4.5d)
0 0 0 1
The four y , (i, v, . . . run over 0,1,2,3) obey
{7_/;177_/ v} =277pv ’ (4.6a)
(v )'=—=By.B~"', (4.6b)

where the diagonal metric 7, is “spacelike:” 7g=—1,
N1="Npn="n33=-+1. We next introduce indices 4,B,...
going over the values 0,1,2,3,5 and labeling components of
vectors and tensors in a five-dimensional space, and define
ten independent real 4 X4 matrices £ 43=—2 g4 by

va= —'%[Zy’/}:p] s

. 4.7
Zus=7Yu
They obey
(24p)"=—BZ 4B~ ", (4.8)

i.e., these matrices are a basis for the Lie algebra of the
group Sp(4,R). Another way of saying the same thing is
this: BZ 4p are ten independent real symmetric 4 X 4 ma-
trices. Thus each J can be expanded as a linear combina-
tion of the X 43, and each G as a linear combination of
BZ 43.

The commutation relations among the X 45 are

[Z 482 cp]l="MacZBp—MBcZ ap+M4apZ cB—MBDZCA >
4.9)

where the only additional nonvanishing component of
N 48 18 55= — 1. (Therefore the dimensions 01235 have
the signatures — + + + —.) This system of commuta-
tion relations shows that the groups SP(4,R) and SO(3,2)
are locally isomorphic.

Any generator matrix J of Sp(4,R) can be expressed as

‘l= %gABZ AB >

EAB= B4, 4.10)
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involving ten real independent expansion coefficients £45.
Correspondingly we write the matrix G of an AGSM field
as

G=75E"B3 45 . (4.11)

The action (3.8) of a FOS S €Sp(4,R) on G results in the
following change in §:

G'=(S~11G S~ = £V =[ASIc[ASpE?,
(4.12)

where A(S) is a 5X5 real SO(3,2) pseudorotation matrix.
Thus we see the following: each AGSM field corresponding
to a definite G can be pictured as some real second-rank
antisymmetric tensor in a five-dimensional de Sitter space;
and each FOS S €Sp(4,R) acts as a de Sitter transforma-
tion on this space.

On account of the fact that SO(3,2) is a rank-two
group, there are two independent invariants that can be
formed from the “components” £48 of G. One of them is

2= P 4p (4.13)

(The metric 145 is used to raise and lower de Sitter in-
dices A4,B,....) To get the other one, it is useful to de-
fine the “Pauli-Lubanski” vector’* {7 such that

&4 =v€spcopEPEPE (4.14)
where € 4pcpg is the five-dimensional Levi-Civita symbol
with €g1235=1. The transformation (4.12) of £42 induces

(€ a=[AS)]45%5 , (4.15)

i.e., £T is a five-component vector. The second invariant
we can form from G is then

&=, .
The determinant of G, which is obviously invariant under

(3.8), is expressible in terms of the two independent invari-
ants (4.13) and (4.16):

detG =1 (76645 — 46764
=16(&P 58 .
One can obtain this relation by considering, for example,
the special case?’ of diagonal G, when the only nonvanish-
ing elements of £ are £, £%°, £13, and £1°.

Under the adjoint action of Sp(4,R) on the generator
matrices J, as given in (4.3), the space of generator ma-
trices (in the Lie algebra) splits into disjoint (i.e., noninter-
secting) orbits. If the antisymmetric tensor £42 is used as
a system of ten independent coordinates for the Lie alge-
bra, £48 varies over an orbit as A(S) in (4.12) varies over
the group SO(3,2), while £ and £? stay constant over each
orbit. Each “point” on an orbit arises from an arbitrarily
chosen “representative point” on that orbit by means of a
suitable de Sitter transformation- A(S). As stated previ-
ously, either all the matrices G associated with all the
points on an orbit represent physical AGSM fields and
obey conditions (2.18) and (2.22), or none do. That is,
each orbit is either allowed or disallowed in its entirety.

(4.16)

(4.17)
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To discover the allowed orbits, the following must be
done: First, all the distinct orbits in the Lie algebra of
Sp(4, R) must be classified; second, a convenient represen-
tative element J© must be chosen on each orbit; third,
one must examine the matrices G‘?) associated with these
representative elements, and see which ones obey condi-
tions (2.18) and (2.22). The results of such an analysis are
briefly described in Appendix C; we draw upon those re-
sults here, and pick out just the physically allowed orbits
and discuss their properties.

There are in all 17 distinct families or types of orbits in
the Sp(4, R) Lie algebra. Of these only two families lead
to matrices G obeying (2.18) and (2.22). We shall call
them family I and family II; the former is a one-
parameter collection of distinct orbits, the latter a two-
parameter collection. We first describe these two families
of orbits, and then the AGSM fields corresponding to
them.

Family I. For each value of a continuous parameter k
in the range O<k <1, we have an allowed orbit. The
representative matrices, J'© and G'?, and the nonvanish-
ing components of (£/*)48 are

JO=2%Zs5, GV=2%BZ5,
‘ (4.18)
(g(o))50= _(§(0))°5=2K .

On each of these orbits the Pauli-Lubanski vector {7 van-
ishes identically (not just at the representative points):

£T=Q5X1 . (4.19)
The invariants over these orbits take the values
§2 — 4K'2 ,
(4.20)

detG =«* .

The representative element G'*) in (4.18) is a multiple of
the 4 X4 unit matrix:

Q(0)=;G_(0)=Kl4x4 . (4.21)

Positivity of G(® leads to k> 0, while the condition (2.22)
gives k < 1.

Family II. For each pair of values of two parameters
K1, k obeying O <k, <k; <1, we have an allowed orbit.
The representative matrices, J© and G©, and the non-
vanishing components of (£@)#® are

JO=(k1 412 so+ (k1 —K2)Z 13

GO=(k;+K)BZ so+ (k1 —K2)BZ 13 ,
(4.22)
(£0) 0= —(£9)5 =k +k,) ,

(ENB= —(£0)P =k —k, .

On the orbit (ky,k;), at the representative point, the
Pauli-Lubanski vector has only one nonvanishing com-

ponent, namely,
£©=(0,0,k5—x1, 0,0) . 4.23)

Therefore on each of these orbits, £7 is a “spacelike vec-
tor.” The invariants over the orbit («y,«;) have values
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E2=2(k}+K3) ,
§2:(K%'—K%)2 ’

detG = K%K% .

(4.24)

The representative element G(® in (4.22) is a diagonal ma-
trix:
k; 0 0O
kt 0 0
G=10 04, 0|

0 0 0 Ky

o

(4.25)
Ki 0 0O

OK200
00K10
00 0 x

Go_

Positivity of G'® and choice of orbit representatives lead
to the restrictions k;> k,>0; the added condition (2.22)
then gives k| < 1, k, < 1, so we have the final set of condi-
tions on «k,k, given above.

We may now elaborate on the physical significance and
interpretations of the AGSM fields described by these two
families of orbits. The G matrix describing a given
AGSM field always has a  vector that vanishes identical-
ly or else is spacelike in nature. In case £=0, and only
then, the given AGSM field arises from some IGSM field
via a suitable FOS S €Sp(4,R). Thus the AGSM fields of
Samily I are all possible 1IGSM fields together with
transforms of such fields by all possible FOS’s. In particu-
lar, if a given AGSM field has a £ vector which does not
vanish identically, it is impossibl_é to convert it into an
IGSM field by any choice of S €Sp(4,R).

The invariants £ and &2 obey

0<&%<4,
<&< (4.26)

over family I, and

0<&<4,

0<&%<«1, (4.27)

§2 > 2(§2)1/2 ,
over family II. In both cases, the bounds [Eq. (2.18¢c)] on
detG hold. .

Given any AGSM field with matrix G, we can
transform it by a suitable FOS in Sp(4,R) to a form G‘?
which is diagonal, and which then has either the appear-
ance (4.21) (if £=0;4s to begin with) or (4.25) (if
§#01xs). Thus every AGSM field G can be transformed
to an equiphase field G'©). In family I, this is an IGSM
field with k being the degree of global coherence common
to x and y directions. In family II, the diagonal elements
of G'9 can be ordered as in (4.25); then «; and k, are the
degrees of global coherence in the x and y directions,

- respectively, and they are definitely unequal. In that case,

G'® represents an equiphase AGSM field for which both



2426

o1 and g, have common principal axes. Such a field can
be called a separable equiphase AGSM field, and so fields
of family II are separable equiphase AGSM fields with un-
equal degrees of global coherence in the x and y directions
and their transforms by all possible FOS’s. From(4.20)
and (4.24) the degree(s) of global coherence can be ex-

pressed in terms of the geometrical invariants & and &2, -

and so they are themselves invariants.
Family I:

K=(%§2)1/2 .
(4.28)
Family II:

=3+ 11,
Kz:[%gZ_%(éaZ)l/Z]l/Z .

Next we turn to an interesting application of the results
of this section. We have seen that any AGSM matrix G
can be brought to the diagonal form G'° by a suitable
FOS S (€Sp(4,R):

So: G—GO=(S," TGS, 7! (4.29)

Now if G belonged to family I to start with, then G© is
of the form (4.21) and there exists a four-parameter sub-
group of FOS’s which leaves G'© invariant. This sub-
group, which we denote & ;, is clearly the intersection of
Sp(4,R) and SO(4,R), and is generated by = 15, = 13, =23,
and ZX,s. It follows that the four-parameter group
S0 ' 18S,CSp(4,R) leaves G invariant. On the other
hand, if G belonged to family II, then G‘©’ is of the type
(4.25) and the FOS’s which leave G© invariant form a
two-parameter subgroup & |y generated by X ;3 and X s,
and S o' & S, leaves G invariant. Thus we have estab-
lished the following result: For every AGSM field belong-
ing to family I (family II) there is a corresponding four-
parameter (two-parameter) subgroup of FOS’s which leaves
it invariant.

To conclude this section and to avoid any possible
misunderstanding, let us state again the principal con-
clusions: each AGSM field belongs either to family I or
to family II, and stays in that family under action by any
FOS S€Sp(4,R). In the case of family I, we have the
further invariant k which cannot be altered by action of
any FOS; in the case of family II we have two further in-
variants «,k, which again cannot be altered by action of
any FOS. This is the situation for AGSM fields with fi-
nite matrix parameters g, o, and K leading to positive-
definite matrices G.

V. AXTALLY SYMMETRIC FOS’S
AND THE SUBGROUP SL(2,R)

The SL(2,R) subgroup of Sp(4,R) representing axially
symmetric FOS’s was identified in (3.9). Evidently its
generators are those X 4p that do not involve the Pauli
matrices in the first factor of the Kronecker products at
all; these are Z 35, 2 50, and 2 3. We expect this SL(2,R)
to determine some SO(2,1) subgroup of SO(3,2). Now
SO(3,2) contains two qualitatively different types of
SO(2,1) subgroups, typical examples being the ones acting
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on the subset of directions 012 with metric — + +, and
on the directions 3 50 with metric + — —. It is seen that
axially symmetric FOS’s correspond to the SO(2,1) sub-
group of SO(3,2) acting on components 350. It follows
that under their action, an AGSM field possesses new in-
variants such as £'2, £!, £2, etc. We analyze the situation
systematically.

Let the matrix G of an AGSM field be split into 2X2
blocks in the following way:

(5.1)

U and W are positive-definite, 2 X 2 matrices and another
condition representing (2.22) also holds. An axially sym-
metric FOS with the ray-transfer matrix (3.9) alters
U,V,W in this way:

SESL2,R): #'=(s—"YTgs—!, (5.2)

where '=U",V', W' and Z =U,V,W, respectively. We
can now carry over to this situation the geometrical
analysis given in Ref. 10. U and W being real symmetric
and positive definite, they can be represented by positive
“timelike” vectors in the 350 subspace; and the transfor-
mation (5.2) amounts to a proper SO(2,1) pseudorotation
on these vectors. As for YV, its antisymmetric part is in-
variant under SL(2, R), while its symmetric part yields an
SO(2,1) vector. To do this in detail, the correspondence
with the treatment of Ref. 10 is that the dimensions 012
there correspond, respectively, to the present dimensions
350, and there is an overall change of sign in the metric.
We thus write the matrices U, V, W as

Uz—us Uop

b= ug  uz+tus
V3 —Us vo—%X
r= vo+3X v3+s 6.3
W3 —Ws Wo
F= wy witws |
If we use indices a,b, ... to run over the values 350, we

can say that matrix G consists of the three vectors

. Ug,V5,w, and one scalar X with respect to the SO(2,1) ac-

tion of axially symmetric FOS’s. As stated earlier posi-
tivity of G tells us that ¥ and w are positive timelike,

u%u,>0, u>0,
(5.4)
ww, >0, w3>0,

while no such simple characterization of v seems possible.
In Appendix B, we give expressions connecting £45, £, to
u,v,w,X. Isotropic Gaussian Schell-model fields corre-
spond to ¥ —w=p=0;y; and X=0.

We stress that when an AGSM field matrix G is con-
veniently represented by the three vectors u,v,w and one
scalar X, then under action by an axially symmetric FOS
sESL(2,R)CSp(4,R), all three vectors u,v,w experience
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the same three-dimensional Lorentz transformation, while
X is invariant. It follows that we can form seven invari-
ants with respect to such action, namely,

=SL(2,R) invariants.  (5.5)

This is consistent with G having ten parameters and
SL(2,R) being a three-parameter group.

To conclude this section, we give the proof promised in
Sec. II that even free propagation can generate an antisym-
metric part K4 in the matrix K determining the phase
Sunction ¢(p 1;p,) of the AGSM field (2.1). For this pur-
pose let us start with an equiphase AGSM field, i.e.,
K =0,y,; assume also that ¢ ; is diagonal while g ¢ and
o1 do not commute. This means that the principal axes
of o; coincide with the transverse x and y coordinate
axes, while the principal axes for g, and for y are defin-
itely different from the coordlnate axes. With these as-

sumptions we see from (2.10) that the quantities u,v,w,X
and the various matrices have the values
1_4T=(u3’u5a0) ’ QT=(U31US7O) ’ v3;é0 ’
sz(wEwa’O) ’ X=0 ’
. . Us—Us 0
1 2y—1__
2 (QI ) - 0 Wiy —ws ) (5.6)
Us —|~U5 2U3
1.2
5 2wy widws |
Uz—us 0. 0 0
0 Us+us 0 20,
G=| o 0 wy—ws 0
0 21)3 ) 0 w3+LU5

The free-propagation ray-transfer matrix F(D) of (3.5)
corresponds to the SL(2, R) element

1D

01 (5.7

S(D)=

where for the present discussion only the numerical unit
of D is assumed to equal k. The corresponding three-
dimensional Lorentz transformation can be read off from
Eq. (4.5) of Ref. 10:

1++D?* —+D? —D
AD)=| +D?> 1-1D?> —D (5.8)
-D D 1

This matrix is to be applied to the components of u ar-
ranged as a column (u 3,u s5,u0)7, and similarly for v and
w. Thus after free propagation we find that u,v,w,X of
(5.6) change to
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102
li'=li+(u3-'—u5) %Dz ’
—D
U3
v'=p=|v; |,
0
(5.9

Now, in general, i.e., not merely for the specific AGSM
field parameters chosen in (5.6), the matrices —}';_/2 and
— —;—7_/25 are given by (2.10) as

" U3+us v3+4vs
T |vstos wytws |
(5.10)
1 ug  vo+3X
_71_/2[_(=

1
vo—3X W

Substituting here the primed quantities of (5.9), we see
that after free propagation through a distance D the par-
ticular equiphase AGSM field (5.6) has

. Us+us+DHuz—us) 20,
_2_(,)_/:)2:

203 w3 +ws+DAwy—ws) |’

. ) —D(u3—u5) 0
_7(Z,) K'= 0

—D(w3—w5)

(5.11)

By assumption, v3;£0, since gg and g do not share the
same principal axes. Therefore the two symmetric ma-
trices appearing in (5.11) do not commute by the same to-
ken the two symmetric matrices (7/ )~% and (y' 2K’ do not
commute. This means that K’ has a nonzero antisym-
metric part.

VI. COHERENT AND QUASIHOMOGENEOUS LIMITS

According to the basic definition (2.1), every AGSM
field must necessarily involve finite matrices (g ;2)~},
(og 1, and K. In addition, we have so far assumed that
(g;5)~" and (g 2)~! are positive definite. The field ma-
trices G that then arise have been studied in previous sec-
tions.

There are interesting llmltmg cases where we permit
one or the other of (g ;2)~! and (¢ ,> ¢>) ! to become posi-
tive semidefinite, while both of course remain finite.
Thus, for example, among IGSM fields, when
u—w=p=03y, X=0, and k*=u?, the limit k=1 is the
fully coherent case with g ;- 1—>02><2 while G remains pos-
itive definite. On the other hand, x—O0 is the quasihomo-
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geneous limit when ¢ 1—1—>sz2 and G becomes positive
semidefinite. We consider similar limiting cases of the
AGSM fields classified in Secs. IT and IV.

A. Coherent limits with G positive definite

Let us take the limit k—1 in the family I of AGSM
fields defined in (4.18)—(4.21). The representative ma-
trices G'?, G ' assume the forms

GO=G =1,y .

From (2.19) we read off A=B=1,y5, C=0,>; thus in

this limit (2.20) shows that (¢ %), (gz*) ™!, and K do
remain finite, and have values

(6.1

@) =1y, (@) '=K=0,y,. (6.2)

We thus obtain the set of fully coherent IGSM fields and
their transforms by all possible FOS S €Sp(4,R).

On the other hand, in the family II of AGSM fields de-
fined in (4.22)—(4.25), we can only consider the limit
k1— 1, while k, must remain less than unity. Thus we ar-
rive at the limiting cases (k;=1, k; < 1) of family II. The
representative matrices, in this limit, are, from (4.25),

1000

. 0100
¢"=1o0k 0"

000 Ky

(6.3)
1000

OK'20'0
0010
00 0«

GO~

These are not IGSM fields. The submatrices 4 and B of
G 9 are (C vanishes)

10
A=B= 0 K| (6.4)
and so, by (2.20),
10
%(QIZ)—X= 0 K )
0 .
(@) '= , (6.5)
0+ —I——K
2 |, "
K=0,%;.

In contrast to (6.2), (ggz)‘1 is singular but does not van-
ish identically. The field we have obtained is ‘“‘coherent
along lines parallel to the y axis.”

In both limiting cases so far considered, G remains pos-
itive definite. We prefer not to think of (6.1) and (6.2) as
a limit of (6.3)—(6.5) as k,—1 because the £ vector is
quite different in character in the two cases. In the limit-
ing field of (6.1) and (6.2) [and its transforms by all
Sp(4, R) systems] we have
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£2=4, detG=1, £=0,y3. (6.6)

On the other hand, in the limiting fields (6.3)—(6.5) (and
their transforms),

E2=2(1+4x3), detG=x3, &¥=(1—x3)?, (6.7)
and so § does not vanish identically.
B. Quasihomogeneous limits: G semidefinite (Ref. 24)

According to the results described in Appendix C, or-
bits in the Lie algebra of SO(3,2) with G positive semi-

- definite can be classified as follows; there are two isolated

orbits with representative elements given in (C5) and (C6),
and in (C7), and (C8), respectively; and there are two one-
parameter families of orbits, (m) and (m)’, with represen-
tative elements given in (Cl13a) and (Cl4a), and (C13b)
and (C14b), respectively. Let us see in which cases we get
physically allowed AGSM fields with finite matrices
(@)™ (@)™, and K.

__(l-(“‘)?r the representative element (C7) (C8), the matrix
G"Vis

1 0 —-1 0
Go_1 _01 (1) (1) -01 (6.8)
0 -1 0 1
Consequently,
Ad=B=—-C=71sa,, 6.9)
leading via (2.20) to
(212)__1=sz2 s (@) =K=1,x,. (6.10)

This is just the quasihomogeneous limit of the IGSM field
(see Ref. 10), so we have obtained in this way this field
and all its Sp(4, R) transforms. The associated invariants
are

E2=detG=0, {=03y4, . (6.11)

To analyze the orbit described by (C13b) and (C14b), let
us take in place of (G'?) in (Cl14b) another element
(G'?)" which lies in the same orbit:

m/2 0 00
(GO)'= om0 (6.12)
2710 0 00 :
0 0 01

(G©)" is related to (G'?))’ through the following FOS:

10 O 0
01 O 0

SESp(4,R): S= 00bs1 —b|’ b real . (6.13)
00 —1 1

We note that S represents a cylindrical lens when b =0.
From (6.12) one obtains
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m/2 0 m/2 0
a4 = 0 ol BZ 0 1 ’ Q:Q2><2, (614)
which leads via (2.20) to
0
(@7 =19 o|-
_2__121 0
1 |m
2y—1__ 1
(e ™'=5| o 1] (6.15)
K=05y>-

Evidently, this field is GSM in its x dependence (with
m /2 playing the role of k), and quasihomogeneous in its
y dependence. It follows that the orbit represented by
(C13b) and (C14b) consists of this field and all its Sp(4, R)
transforms. The invariants over this orbit are given in
(C12), and m must obey 0 <m < 2.

The nature of the fields represented by the orbits (C5)
and (C6), and (C13a) and (Cl4a) is quite different. The
G ©) matrices are, respectively,

1 —-100
-1 1 00
0O 0 00}y
0 0 00

G9= (6.162)

1000

0000
~ (0)__ It
G7=71o010

0000

(6.16b)

Since the submatrix B is singular in both cases we see
from (2.20) that the condition of finiteness of (o gz)_1 is
violated. Further computing W (p,p) through (2.17) and
inverse Fourier transforming it with respect to p to obtain
' one finds that (6.16a) represents a field which is
quasihomogeneous in x and incoherent homogeneous in y
whereas (6.16b) represents a field which is GSM in x and
incoherent homogeneous in y. The incoherence agrees in
both cases with our conclusion that (g_g2 )~! ceases to be
finite. Incoherent fields are not beams and we discard
these two orbits.

VII. CONCLUDING REMARKS

We have analyzed AGSM fields and their transforma-
tion under action of FOS’s using the method of general-
ized rays. This method together with the geometrical pic-
ture developed in the de Sitter space helps one find com-
plete answers to questions related to this class of prob-
lems. Thus we found that the ten-parameter AGSM fam-
ily is closed under action of all FOS’s forming Sp(4,R).
Further, this action divides the AGSM field into two
qualitatively distinct families of orbits. The invariants
over each one of these orbits have been worked out.

As a fallout of our analysis we have proved that every
real 4 X4 matrix obeying (2.18) and (2.22) can be diago-

nalized using a Sp(4,R) transformation (3.8). Clearly, the
diagonal matrix G corresponds to an AGSM field with
vanishing phase curvature. If such a field is left to propa-
gate freely its intensity width will necessarily increase.
Thus, borrowing the terminology from coherent Gaussian
beams, diagonal G’s can be associated with the “waist” of
AGSM beams. Now we can restate our conclusion in Sec.
IV as follows: Every AGSM beam can be brought to its
waist by a suitable FOS S &Sp(4,R). While coherent
Gaussian beams, and also IGSM beams, can be brought to
the waist by free propagation, to do the same thing with
AGSM beams one needs more complicated FOS’s.

Our analysis in Sec. V shows that one can also represent
an AGSM field as three vectors and one scalar in a
(2 4+ 1)-dimensional Minkowski space. Then the effects of
a given FOS SE€SL(2,R)CSp(4,R) is to “rotate” all the
three vectors in the same way (leaving, of course, the sca-
lar invariant). In Ref. 10 we have shown that such a rep-
resentation naturally leads to the Kogelnik ‘“abed law.”
Thus our result of Sec. V can be viewed as a generaliza-
tion of the Kogelnik “abcd law” to the AGSM fields.
Given an AGSM field, in general there exists no FOS in
SL(2,R) which will leave it invariant. However, if the
three vectors representing the field are parallel, then there
exists a one-parameter subgroup of FOS in SL(2,R)
which will leave it invariant. This subgroup is the group
of Lorentz transformations about these parallel vectors.
Clearly, such fields form a six-parameter family: two pa-
rameters to specify the orientation of the vectors, three to
specify their norms, and the invariant scalar.

It is desirable at this point to recognize that the curious
condition (2.22) expresses, in the context of AGSM fields,
a general physical requirement on pencils of light rays in
wave optics. In classical radiative transfer theory any
positive-definite ray density function W(p;p) is permit-
ted. However, in wave optics the fact that W (p;p) is the
Wolf function formed from the two-point correlation
function automatically leads to new restrictions. Namely,
the spreads in x and p, must obey an uncertainty princi-
ple reflecting their “noncommutability” in wave optics,
and similarly for y and p,. For the AGSM field with

W (p;p)=(A/m*)(detG)*exp(—q7Gy) ,

the ray density is obviously positive definite, and the total
irradiance is finite because G is positive definite. But the
identification of W as a Wolf function demands not only
that detG < 1, but also that if we obtain a marginal distri-
bution for x and p, by integrating W with respect to y
and p,, we should get a distribution of the form

A’exp | —(x py)g ;
X

with the 2 X2 matrix g obeying detg < 1. This should also
be true for the y-p, marginal distribution and indeed for
any marginal distribution for any direction in the x-y
plane. It is these requirements that are expressed by
(2.22). By integrating W (p;p) in turn with respect to y,p,
and x,p, and imposing the above conditions we see that
in the description (5.1) of the AGSM field, the condition
(2.22) appears in the explicitly SL(2,R) invariant form
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det(U—Yw-¥")<1,
det(W—VTU-'V) <1 .

For IGSM fields these conditions are automatically satis-
fied once we are given detG < 1, because this inequality
implies detg < 1 for any marginal distribution.

Our analysis also shows the way to realize physically
the ten-parameter AGSM fields from much simpler fields.
All the fields belonging to family I can be generated from
equiphase IGSM fields through transformation by ap-
propriate FOS’s in Sp(4,R). Several procedures for gen-
erating IGSM fields (also called Collett-Wolf sources) are
already known.”> On the other hand, fields belonging to
family II can be generated from the Li Wolf type of fields
again through transformation by FOS’s in Sp(4, R).

Finally, our analysis can be simply extended to fields
which are incoherent superpositions (convex combina-
tions) of AGSM fields.?® For such fields it is clear from

the geometrical picture presented in Sec. IV that in addi-’

tion to the invariants associated with the individual fields
there will be new invariants corresponding to the inner
products of £’s and {’s. '
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APPENDIX A: Sp(4,R)—INVARIANCE
OF CONDITION (2.22)

Let ¢(p) denote the complex field amplitude over a
transverse plane. The cross-spectral density is the ensem-
ble average

F(B 1;32)= <1//*(f_)1)¢(22)) .

It is convenient to introduce a Hilbert space & of com-
plex functions that are square integrable over the trans-
verse plane:

F={Pp): [d%|¢p)|*< o]} .

Let |p) and (p| denote, in the usual quantum-
mechanical sense, a basis of idealized ket and bra vectors
for 27, obeying

(A1)

(A2)

(o' |p)=8%(p'—p) . (A3)

Then any given cross-spectral density I'(p;p,) can be
formally associated with an operator I on 7 by writing

F(Bl;22)5<31|r|82> . (A4)

The most important physical properties of I'(p 1;02) can
then be expressed by saying that I' is a Hermitian,
positive-definite operator on 57
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r'=r,
I's0.

(A5a)
(A5b)

In fact this is a complete physical characterization of all
possible cross-spectral densities, and given the Hermiticity
property, the positive definiteness of I' is precisely
equivalent to the statement that the (modulus of the) nor-
malized degree of coherence is bounded above by unity.

The group Sp(4,R) of FOS’s acts via (3.2) on the gen-
eralized ray density distribution function Wi(q). As is
well known, this action results from or is induced by, a
unitary operator. action on the field amplitude 1. Let us
introduce the four Hermitian operators on 5,

Xas Paz_i 9 ’ a=1,2

A6
ax, (A6)
obeying the canonical commutation relations
[xa’xb]z[Pa,Pb]zo >
(A7)
[xa’Pb]=i8ab .
If we form the ten Hermitian quadratic expressions
XaXp 5
5(XaPy+Pyx,) (A8)

Pan’

we find that they are closed under commutation, and in
fact give us a Hermitian representation of the Lie algebra
of Sp(4,R). By exponentiation, we then find a unitary
representation of Sp(4,R) acting on &#°. Thus to each
S ESp(4,R), we have a corresponding unitary operator

U,,(S) on 57, such that
Upp(SVU(S)=Uy,(S'S) . (A9)

Moreover, if we arrange the four operators (A6) into a
column

X1
P,
2= x, |’ (A10)
P,
[the operator form of (2.9)], we have
Uop(S)Q[Uqp(8)]7'=S"'Q . (A11)

The action of a FOS S€&Sp(4,R) on an incoming field
whose cross-spectral density defines an operator I’ via
(A4) is to map this operator onto a new I'" according to
the rule

SESp(4,R):I'->T'=U,,(S)I[ Uop(.S)]‘1 . (A12)

We now see that because Sp(4,R) is unitarily represented
on 2, I'" obeys the conditions (A5) whenever T does.

Let us now suppose I' corresponds to some AGSM field
with associated matrix G obeying (2.18) and (2.22). When
this field passes through a FOS S &Sp(4,R), on the one
hand we know that G changes according to (3.8), while on
the other hand this same change can be described by
(A12) above. Thus the emergent AGSM field is surely
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one for which the normalized degree of coherence remains
bounded by unity from above. This means that the outgo-
ing matrix g, is positive definite, or that G’ also obeys
the condition (2.22). This proves that the somewhat diffi-
cult to handle matrix condition (2.22) is an Sp(4,R) in-
variant condition.

Now from an analysis of the orbits in the Lie algebra of
Sp(4,R) and choice of representative elements, we have
seen in Sec. IV that every AGSM matrix G can be diago-
nalized with a suitable S €Sp(4,R). It therefore suffices
to impose (2.22) on diagonal representative elements G(®,
which is what we have done in determining the two al-
lowed families of AGSM fields and the ranges of their pa-
rameters.

While the Sp(4,R) group is unitarily represented on 57,
it is important to recognize that the group SL(4,R) can-
not be so represented. If we define an SL(4,R) action on
a general cross-spectral density by (3.2), it may happen
that a physical I" is mapped into a unphysical one. In
fact this is always so for elements of SL(4,R) outside
Sp(4,R). 1t is interesting that simple instances of this can
be constructed using suitable AGSM fields.

Analogous to the Sp(4,R)—SO(3,2) relationship,
SL(4,R) is the twofold covering group of SO(3,3). The
extra SL(4,R) generators are those real traceless 4 X4 ma-
trices that are outside the set of Sp(4,R) generators = 45
given in (4.7). Introduce indices R,S... to run over
0,1,2,3,5,6 and extend the diagonal SO(3,2) metric 1745 to
a diagonal SO(3,3) metric nzs with ngg=—1. Then the
extra SL(4,R) generators 3 44=—Z ¢4 are "

(A13)

The 15 real independent traceless Z gs generating SL(4,R)
obey the extension of the commutation rules (4.9) to six
dimensions which is the SO(3,3) algebra. The extension
Sp(4,R)—SL(4,R) so defined is appropriate for action on
matrices G representing AGSM fields.

It is evident that the extra generators of SL(4,R) fall
into three distinct categories: elliptic ones of the type
2 06> parabolic ones of the type 2 55+ 2 56, and hyperbolic
ones of the type 2,5 Thus any linear combination of
2 46 can be transformed, via a suitable SO(3,2) transfor-
mation, into a multiple of either = g Or =6+ 2 56 OF = 26
These cases are, of course, mutually exclusive. For each
of these three characteristically different one-parameter
subgroups in SL(4,R), respectively, generated by 2 ¢,
226+2Zs¢ and Xy we can give examples of AGSM
fields that are mapped into unphysical fields under their
action. Since the crucial condition (2.22) is .stated in
terms of submatrices of G, we shall use SP(4,R) and
SL(4,R) in the form appropriate to action on G rather
than on G: this only means that the Pauli matrices in the
Kronecker product must be interchanged. We shall thus
write 2 gg for the SL(4,R) generators appropriate for ac-
tion directly on G.

The most general diagonal matrices G obeying all the
conditions (2.18) and (2.22) are of the form
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a000
— 0bO0O
g= 00coO]” a,b,c,d >0, ac<l, bd<1.
000d
(A14)

The explicit examples we give are taken from the limiting
case ac =bd =1. In the case of I y;, the SL(4,R) elements
are

S(6)=exp(20Z o6)

=(cosO)1 454+ (i sinf)g ;@0 . (A15)
Now take G to be
A O 0 0
_ oa"t 0o o
G= 0 0 rA-'ol’ A>0. (A16)
0O 0 0 A

Transforming this by S(0) we get G'=[S(0)]7GS(0)
whose submatrices 4, B, and C are

Acos?0+A~'sin%0 (A—A~!)cosOsind
(A—A"1Y) cosOsind Asin?0+A~!cos?0

’

Asin?0+A"1cos?0 (A—A~!)cosOsind
(A—A" 1 cosOsind A cos20-+A~!sin%0

C=0,x%> -

For any nonzero 6, it is easily seen that (2.22) is violated.
In the case of X 55+ Z 56, the SL(4,R) matrices are

S(u)=exp[2u (Z 3+ 56)]

s (A17)

B:

=Lyxs—u(lry®a3—ig®a,) . (A18)
and in the case of I 5, we have
S(v)=exp(2vZ 56)
=(coshv)l 44— (sinhv)1,,,®0 ; . (A19)

For both these cases, if we start with G =1, we immedi-
ately find that [S(x)]7S(u) and [S(v)]7S(v) both violate
(2.22) for nonzero u and v.

APPENDIX B: RELATION
BETWEEN PARAMETRIZATIONS of G

Two different parametrizations of the AGSM field ma-
trix G have been used, one in terms of £4% in (4.11) and
another in terms of u,v,w,X in (5.1) and (5.3). Here we
give the connection between them. The former expressed
in terms of the latter are

M= (u—w)y, E£%=2v,,
El=(utw)s, %=—(u+w;

E2=x, ¥=(u—w), E=w—u)s; (B1)
EP=20;, £¥=—2vs;
E¥=(u+w) .
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The reverse relationships are best expressed using the
SO(2,1) notation of Sec. V. Indices a,b,... run over
350, the symbol €., is normalized to €350= -1, and
these indices are raised and lowered with the diagonal
metric 133=1, 755=mng= —1. Then,

1 1 b
Ug = 7§1a + T€apc§ <,

V=720 » (B2)
Wo=—7&10+ T€abcE™
X=Ep .

Finally, the Pauli-Lubanski vector § is given by
Co=Xu+w)y —2€m(u—w)?°,
Si=2(u+w), , (B3)
Er=ww, —uu, .

These expressions make it easy to see why for an IGSM

field, when ¥ =03y, and X =0, and w=u, {=05, iden-
tically.

APPENDIX C: ORBITS IN THE SO(3,2)
LIE ALGEBRA

Let us denote by e 4, 4=0,1,2,3,5 the five mutually
orthogonal unit vectors along the coordinate axes in the
five-dimensional de Sitter space. e, and e 5 are timelike
with negative squared norm, while e, e,, and e are
spacelike with positive squared norm. Let J 5 be a basis
for the abstract Lie algebra of SO(3,2); in the 4-
dimensional [Sp(4,R)] representation, the J 45 are real-
ized as the 4 X4 matrices I 45 of Sec. IV.

For some £42, let the generator

J=5E"T 4p

of SO(3,2) be given. With it is associated an infinitesimal
pseudorotation in 342 space, under which the (contra-
variant) components Z“ of a vector change by the
amounts

8Z A= 6§ 4 BZ B 5
If one associates with J the vector & defined by (4.14), this
vector is invariant under the rotation generated by J:
854 =e£455=0 .

This fact expresses the special relationship between £ and

&

(e3))

le| «<1. (C2)

(C3)

More generally one can ask how many independent vec-
tors are left invariant under the rotation (C2) correspond-
ing to a given J. Because we are dealing with a five-
dimensional space, this number is restricted to be either 3
or 1: the rank of a 5X5 antisymmetric matrix has to be
either 2 or 4, leaving out the case J =0 4y4.

We shall say that J belongs to class I if it leaves three
independent vectors invariant, and to class II if it leaves
just one nonzero vector invariant. Detailed analysis shows
that for J of class I, {=0 5y, identically; while for J of
class II, £ does not vanish identically, and is in fact the
nonzero invariant vector.
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1. Class I generators

Without loss of generality, we can assume that the three
independent invariant vectors are mutually orthogonal.
Let the symbols ¢, I, and s stand for “timelike,” “light-
like,” and “spacelike,” vectors in de Sitter space: Z4Z,
is less than, equal to, and greater than zero, respectively.
Then one can imagine the following ten configurations for
the three mutually orthogonal invariant vectors: sz, I,
sss; ul, tes, tll, ls, tss, Iss; tls. However, the 3+2 space
with signature — + + + — cannot accommodate the
configurations #t, lll, ttl, and tll. Therefore, in class I we
have to consider the six distinct possibilities sss; tts, Ils,
1ss, Iss; tls.

Consider the situation sss. If J leaves each of three mu-
tually orthogonal spacelike vectors invariant, so does
every J' on the same orbit as J. However, the invariant
triad varies as J varies over the orbit. Starting with J, one
can move to another point J© on the orbit of J at which
the invariant vectors are e ;, e 5, and e 5. This J© can be
taken as the orbit representative; it is necessarily a multi-
ple of J sy

JO=mJ s, m=0. (C4)
We thus arrive at a one-parameter family of orbits, actual-
ly consisting of two disconnected subfamilies for m >0
and m <O, respectively. Out of these, only for 0 <m <2
do the matrices G‘®=BJ© obey all conditions (2.18) and
(2.22), so we are led to the family I of AGSM fields
described in Sec. IV.

In all the other five possibilities arising in class I, G is
never positive definite. It is in some cases at best positive
semidefinite. For the situations tts, tss, and tls, we find
that G always has both positive and negative eigenvalues.
In the situation /s, we find that there are two distinct or-
bits (not families of orbits) and only over one of them is G
positive semidefinite. A representative J(® for this orbit

‘is

JO=J 304+ 3+ so+d 55 - (C5)
The corresponding matrix G© is
Q(O)=%(lzx2—g1)®(l2x2+<13)
1 0 -10
0O 0 0 O
=l-10 1 0 (Co)
0 0 0O

and has eigenvalues (2,0,0,0). In the situation Iss, we
again find just two distinct orbits, and only over one of
them is G positive semidefinite. A representative J‘® for
this orbit is

JO=J 5o+ 53 . ((o7)]

The corresponding matrix G@ is
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GO=7517x2®(Lox2—0 1)

1 -1 0 O
1l-11 0 o

=510 o 1 -1 (C8)
o o0 -1 1

and has eigenvalues (1,0,1,0).

In all the situations encountered under class I, the gen-
erator J© is determined up to a multiplicative factor, or
even uniquely, because it leaves three independent vectors
invariant. The results for class II are quite different.

2. Class II generators

Here we have just one invariant vector, and that is .
We may immediately divide the discussion into three dis-
tinct subclasses: II(a) when § is #: II(b) when § is L and
II(c) when § is s.

II(a): Timelike £. Given J, one can pass to those gen-
erators on the orbit of J for which the invariant vector is,
say, ¢s. In other words, without loss of generality we
may assume to begin with that §, =0, {s0. Then J be-
longs to the Lie algebra of the subgroup SO(3,1) CSO(3,2)
acting on the dimensions 012 3; moreover, J must not
leave invariant any linear combination of ¢, e |, € 5, and
3. Analyzing the situation one finds that in this subclass
there is a two-parameter continuous family of distinct or-
bits, but over every one of them G has both positive and
negative eigenvalues.

II(b): Lightlike {. Here we may assume without loss
of generality that §y=§;=E§3=0, §{,=—s=1 to begin
with. Then J belongs to the Lie algebra of an E(2,1) sub-
group of SO(3,2), and must not leave invariant any vector
independent of e ,+¢ 5. One then finds that in this sub-
class there are four separate one-parameter continuous
families of orbits, plus two distinct ones. But again G has
both positive and negative eigenvalues throughout this
subclass.

II(c): Spacelike &. We now assume that £, is the only
nonzero component of {. Then J belongs to the Lie alge-
bra of the subgroup SO(2,2)CSO(3,2) acting on the di-
mensions 013 5; and it does not leave invariant any linear
combination of ey, e;, €3 and es Since locally
SO(2,2)~S0(2,1) XSO(2,1), one can analyze the situation
completely and list all possible essentially distinct forms
of J. In this way one finds three two-parameter families
of orbits and four one-parameter families, some made up
of several disconnected components. Over most orbits G
is neither positive definite nor semidefinite. We now list
those orbits with positive definite or semidefinite G.

G positive definite. There is a two-parameter family of
such orbits, labeled by m,n obeying m >n >0. Over the
orbit (m,n) we have

§2=_;_(m2+n2) , §2=l_16(n2_m2)2 . (C9)
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A representative for this orbit is
JO=3(m+nmd so+5(m—nd 3, (C10)
for which
6 =60 == =0
(C11)

1
E0=L(n2_m?).

The eigenvalues of G©=pBJ® are (ym,5m,5n,5n).
However, only for 0<n <m <2 are all conditions (2.18)
and (2.22) obeyed by G'?, and so we are led to the family
II of AGSM fields described in Sec. IV.

G positive semidefinite. There are two one-parameter
families of such orbits, each labeled by m >0. We denote
the orbits (m),(m)’. Over each, the invariants depend on
m in the same way:

2

4
2__mMm”~ 2__m_
§—z,§—16- (C12)

Orbit representatives for (m) and for (m)’ can be chosen

so that the only nonzero component of &© s
£ =—m?/4. The representatives then are
J(O):_';i(l so+J 13) » (C13a)
(JOY=2(m + 1 so+5(m —1) 13
+ 3 30— 15) - (C13b)

The corresponding matrices G and (G‘?')" are

1000
m 0100
Q(o>:§1(o>=-2— 0000l (Cl4a)
0000
m
> 0 0 o0
0 —’;i 0 o0
(GOY=BJ )= | , (C14b)
0 0 — —=
2 2
o o —+ 1
2 2

Summarizing the essential results, orbits with positive de-
finite G are those with representative elements (C4) for
m >0; and (C10) for m >n>0. Orbits with positive
semidefinite G are those with representative elements
(C5), (C7), (C13a), and (C13b) for m > 0. On all other or-
bits in the SO(3,2) Lie algebra, G always has both positive
and negative eigenvalues.
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