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Abstract. We study various conditions on matrices B and C under which they can be
the off-diagonal blocks of a partitioned normal matrix.
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The structure of general normal matrices is far more complicated than that of two special
kinds — hermitian and unitary. There are many interesting theorems for hermitian and
unitary matrices whose extensions to arbitrary normal matrices have proved to be extremely
recalcitrant (see e.g., [1]). The problem whose study we initiate in this note is another one
of this sort.

We consider normal matrices N of size 2n, partitioned into blocks of size n as

N =
[
A B

C D

]
. (1)

Normality imposes some restrictions on the blocks. One such restriction is the equality

‖B‖2 = ‖C‖2 (2)

between the Hilbert–Schmidt (Frobenius) norms of the off-diagonal blocks B and C. If T

is any m × m matrix with entries tij , then

‖T ‖2 =
(

m∑
j=1

|tij |2
)1/2

.

The equality (2) is a consequence of the fact that the Euclidean norm of the j th column of
a normal matrix is equal to the Euclidean norm of its j th row.

Replacing the Hilbert–Schmidt norm by another unitarily invariant norm, we may ask
whether the equality (2) is replaced by interesting inequalities. Let s1(T ) ≥ · · · ≥ sm(T )

be the singular values of T . Every unitarily invariant norm |||T ||| is a symmetric gauge
function of {sj (T )} (see chapter IV of [1] for properties of such norms). Much of our
concern in this note is with the special norms

‖T ‖2 = (tr T ∗T )1/2 =
(

m∑
j=1

s2
j (T )

)1/2
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and

‖T ‖ = s1(T ) = supx∈Cm,‖x‖=1‖T x‖. (3)

The latter is the norm of T as a linear operator on the Euclidean space C
m. Clearly

‖T ‖ ≤ ‖T ‖2 ≤ √
m‖T ‖, (4)

for every m × m matrix T .

If the matrix N in (1) is hermitian, then C = B∗, and hence, |||C||| = |||B||| for all
unitarily invariant norms. If N is unitary, then AA∗ + BB∗ = A∗A + C∗C = I. Hence,
the eigenvalues λj satisfy the relations

λj (BB∗) = λj (I − AA∗) = 1 − λj (AA∗)

= 1 − λj (A
∗A) = λj (I − A∗A) = λj (C

∗C).

Thus B and C have the same singular values, and again |||B||| = |||C||| for all unitarily
invariant norms.

This equality of norms does not persist when we go to arbitrary normal matrices, as we
will soon see. From (2) and (4) we get a simple inequality

||B|| ≤ √
n ||C||. (5)

One may ask whether the two sides of (5) can be equal, and that is the first issue addressed
in this note.

When n = 2, it is not too difficult to construct a normal matrix N of the form (1) in
which ‖B‖ = √

2‖C‖. One example of such a matrix is

N =


0 0

1 0
0 1

1 0

√
2 0

0 0
0 1

0 0

 . (6)

When n = 3, examples seem harder to come by. One that preserves some of the features
of (6) is given by the matrix

N =



0
√

2√
3

− 1 0

0 0
√

2√
3√

2√
3

+ 1 0 0

0 0 1

0 1 0

1 0 0

√
3 0 0

0 0 0

0 0 0

0 0
√

2√
3

+ 1

√
2√
3

− 1 0 0

0
√

2√
3

0



.

(7)
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It can be seen that N is normal and plainly ‖B‖ = √
3 while ‖C‖ = 1. When n = 4, it is

impossible to find such a matrix, and that is our first theorem.
The following elementary lemma (which can be verified by induction on the integer k)

is used repeatedly in our proof.

Lemma. Let V be an n-dimensional vector space and let V1, . . . , Vk be subspaces of V

the sum of whose dimensions is larger than (k − 1)n; i.e.,

k∑
j=1

dim Vj > (k − 1)n.

Then the intersection of these k subspaces is nonzero.

Theorem 1. There exists a normal matrix N of the form (1) with

‖B‖ = √
n ‖C‖ (8)

if and only if n ≤ 3.

Proof. Note first that if equalities (2) and (8) hold simultaneously, then rank B must be

one and C must be unitary. So, after applying a unitary similarity by
[

C O

O I

]
, we may

assume that

N =
[
A B

I D

]
. (9)

The normality condition N∗N = NN∗ leads to two equations

A − D = A∗B − BD∗, (10)

2I = AA∗ − A∗A + BB∗ + B∗B + D∗D − DD∗. (11)

Since B is of rank one,

dim(ker B) = dim(ker B∗) = n − 1,

where dim X stands for the dimension of a space X. So, if n ≥ 3, then the dimensions of
ker B and ker B∗ add up to more than n. Hence their intersection is nonzero, and we may
choose a unit vector x in this intersection. For this vector, we obtain from (10)

(A − D)x = −BD∗x, (12)

and

(A − D)∗x = B∗Ax. (13)

Equation (11) leads to the condition

2 = ‖A∗x‖2 − ‖Ax‖2 + ‖Dx‖2 − ‖D∗x‖2. (14)

The rest of the proof shows that if n > 3, then we can choose a vector x ∈ (ker B) ∩
(ker B∗) for which these conditions cannot be satisfied.
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The two matrices BD∗ and B∗A have rank at most 1, so their kernels have dimension
at least n − 1. Hence

dim(ker B) + dim(ker B∗) + dim(ker BD∗) + dim(ker B∗A) ≥ 4n − 4.

(15)

This is larger than 3n whenever n > 4. So, in this case the four kernel spaces involved
in (15) have a nonzero intersection. Let x be a unit vector in this intersection. Then from
(12) and (13) we find that

(A − D)x = 0 and (A − D)∗x = 0.

Hence, ‖Ax‖ = ‖Dx‖ and ‖A∗x‖ = ‖D∗x‖. This contradicts the condition (14).
Now consider the case n = 4. The spaces ker B and ker B∗ have dimension 3 each,

while the space ker B(A + D)∗ has dimension at least 3. The three dimensions add up to
more than 8. Hence, we can find a unit vector x in the intersection of these three spaces.
For this vector we have

‖A∗x‖2 − ‖D∗x‖2 = Re 〈(A + D)∗x, (A − D)∗x〉
= Re 〈(A + D)∗x, B∗Ax〉
= Re 〈B(A + D)∗x, Ax〉
= 0. (16)

Here the second equality is a consequence of (13), and at the last step we have used the
fact that B(A + D)∗x = 0.

Using (12) instead of (13) we get

‖Dx‖2 − ‖Ax‖2 = Re 〈(A + D)x, (D − A)x〉
= Re 〈(A + D)x, BD∗x〉
= Re 〈B∗(A + D)x, D∗x〉. (17)

Since B is a matrix with rank equal to 1 and norm equal to 2, we have B∗BB∗ = 4B∗. (Use
the polar decomposition B = UP. In some orthonormal basis P is diagonal with only one
nonzero entry 2 on the diagonal. So B∗BB∗ = P 3U∗ = 4PU∗ = 4B∗.) Hence we have

4B∗Ax = B∗BB∗Ax

= B∗B(A − D)∗x (using (13))

= B∗B(A + D)∗x − 2B∗BD∗x

= −2B∗BD∗x

= 2B∗(A − D)x (using (12))

= 4B∗Ax − 2B∗(A + D)x.

This shows that B∗(A + D)x = 0, and we get from (17)

‖Dx‖2 − ‖Ax‖2 = 0. (18)
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Clearly the relations (14), (16) and (18) cannot be simultaneously true.
We have shown that when n ≥ 4, there cannot exist a 2n × 2n normal matrix of the

form (9) in which B is an n × n matrix of rank one. This proves the theorem.

Our discussion leads to some natural questions.

Problem 1. For n ≥ 4, evaluate the quantity

αn = sup

{
‖B‖/‖C‖: ∃A, D for which

[
A B

C D

]
is normal

}
.

We have seen αn <
√

n for n ≥ 4. It would be of interest to know whether αn is a bounded
sequence.

Problem 2. What matrix pairs B, C can be the off-diagonal entries of a normal matrix N

as in (1)? In other words, when does
[

? B

C ?

]
have a normal completion?

Example 1. Consider the 2 × 2 matrices

B =
[

1 ε

0 0

]
, C =

[
1 0

0 ε

]
.

Then, ‖B‖2 = ‖C‖2. However, there do not exist any 2 × 2 matrices A and D for which[
A B

C D

]
is normal. We leave the verification of this statement to the reader. Thus the equality

(2) is only a necessary condition for normality of the matrix (1).
We consider some special cases of the question raised in Problem 2. We assume either

B = C, or B = C∗.
For every B, the matrix

[
? B

B ?

]
has a normal completion, and this completion may be

chosen to be of the special type
[

A B

B A

]
. Indeed, if U is the unitary matrix U = 1√

2

[
I I

−I I

]
,

then

U

[
A B

B A

]
U∗ =

[
A + B 0

0 A − B

]
.

So
[

A B

B A

]
is normal if and only if

[
A+B 0

0 A−B

]
is normal, and this is the case if and only

if A + B and A − B both are normal. The most obvious choice of A that assures this is
A = B∗. Thus

B̃ =
[
B∗ B

B B∗

]
(19)

is a normal completion of
[

? B

B ?

]
. We have the norm inequality

‖B‖ ≤ ‖B̃‖ ≤ 2‖B‖. (20)

When B =
[

0 1
0 0

]
we have ‖B̃‖ = ‖B‖. On the other hand, if B is any hermitian matrix,

then ‖B̃‖ = 2‖B‖. In this case, and more generally when B is normal,
[

0 B

B 0

]
is normal

and has norm equal to ‖B‖. This raises the question of finding completions of
[

? B

B ?

]
that

are ‘optimal’ in various senses.
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Problem 3. Given a matrix B find a matrix A such that

N =
[
A B

B A

]
is normal and has the least possible norm. This is equivalent to asking for a matrix A such
that A+B and A−B are normal and the quantity max(‖A+B‖, ‖A−B‖) is minimised.
It might be difficult to find all solutions to this problem. The following considerations lead
to one solution.

We assume that B is a contraction, i.e. ‖B‖ ≤ 1 and ask for an A so that
[

A B

B A

]
is

unitary. This is a unitary completion of the matrix
[

? B

B ?

]
. Let B = USV be the singular

value decomposition of B. Then[
U∗ 0

0 U∗

] [
A B

B A

] [
V ∗ 0

0 V ∗

]
=
[
U∗AV ∗ S

S U∗AV ∗

]
.

So, the problem reduces to finding an A′ such that
[

A′ S

S A′

]
is unitary. A familiar idea from

the theory of unitary dilations (p. 232 of [2]) suggests the choice A′ = i(I − S2)1/2.

This tells us how to find for any matrix B one of the least-norm normal completions of[
? B

B ?

]
. Assume ‖B‖ = 1 and find a unitary completion as proposed above.

Next we consider the case B = C∗, and ask for matrices A and D such that

N =
[

A B

B∗ D

]
(21)

is normal. A calculation shows that the matrices A and D must be normal and satisfy the
equation

(A − A∗)B = B(D − D∗). (22)

Let A = H1 + iK1 and D = H2 + iK2 be the Cartesian decompositions of A and D. Here
(H1, K1) and (H2, K2) are two pairs of commuting hermitian matrices. Equation (22) is
equivalent to K1B = BK2. This shows that

B∗BK2 = B∗K1B = (K1B)∗B = (BK2)
∗B = K2B

∗B.

So K2 commutes with B∗B, and hence with the factor P in the polar decomposition
B = UP.

Thus the general solution to (22) is obtained as follows: Choose K0 and K2, both
hermitian, satisfying the conditions

K0P = PK0, K2P = PK2, (K0 − K2)P = 0.

Let K1 = UK0U
∗. This condition ensures

K1B = UK0U
∗B = UK0P = UK2P = UPK2 = BK2.

Choose hermitian matrices H1 and H2 that commute with K1 and K2, respectively. Let
A = H1 + iK1 and D = H2 + iK2. This leads to N in (21) being normal.
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As before, we also consider the special case ‖B‖ ≤ 1 and ask for A and D such that
the matrix (21) is unitary. This can be solved as follows: Let B = UP be any polar
decomposition. Choose hermitian matrices K0 and K2 that commute with P and satisfy
the inequalities

K2
0 ≤ I − P 2, K2

2 ≤ I − P 2.

Then choose hermitian matrices H0 and H2 that commute with K0 and K2, respectively,
and satisfy the conditions

H 2
0 + K2

0 = H 2
2 + K2

2 = I − P 2.

Let A = U(H0 + iK0)U
∗ and D = H2 + iK2. Then the matrix (21) is unitary.

Example 1 shows that the equality ‖B‖2 = ‖C‖2 is not a sufficient condition for the

existence of a normal completion of
[

? B

C ?

]
.

Our next proposition shows that equality between all unitarily invariant norms is a
sufficient condition.

PROPOSITION

Let B, C be n × n matrices with |||B||| = |||C||| for every unitarily invariant norm. Then

the matrix
[

? B

C ?

]
has a completion that is a scalar multiple of a unitary matrix.

Proof. If |||B||| = |||C||| for every unitarily invariant norm, then sj (B) = sj (C) for all
j = 1, 2, . . . , n. Hence, there exist unitary matrices U1, U2, V1, V2 such that B = U1SU2,

and C = V1SV2. Divide B and C by ||S||, and thus assume ||S|| = 1. Then I − S2 is
positive, and has a positive square root. It is easy to see that the matrix[

(I − S2)
1
2 S

S −(I − S2)
1
2

]

is unitary. Multiply this matrix on the left by the unitary matrix U1 ⊕ V1, and on the right
by the unitary matrix V2 ⊕ U2. This gives a unitary matrix whose off-diagonal blocks are
B and C.

While the condition in the Proposition is not necessary, it is sensitive to small per-
turbations. The matrices B and C in Example 1 satisfy the conditions ‖B‖2 = ‖C‖2,

|||B||| = |||C||| + O(ε), but for ε 
= 0, there is no possible normal completion of
[

? B

C ?

]
.
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