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Corners of normal matrices
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Abstract. We study various conditions on matrices B and C under which they can be
the off-diagonal blocks of a partitioned normal matrix.
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The structure of general normal matrices is far more complicated than that of two special
kinds — hermitian and unitary. There are many interesting theorems for hermitian and
unitary matrices whose extensions to arbitrary normal matrices have proved to be extremely
recalcitrant (see e.g., [1]). The problem whose study we initiate in this note is another one
of this sort.

‘We consider normal matrices N of size 2n, partitioned into blocks of size n as

N—AB 1
_[CD] M

Normality imposes some restrictions on the blocks. One such restriction is the equality
1Bll2=1Cll2 2)

between the Hilbert—Schmidt (Frobenius) norms of the off-diagonal blocks B and C. If T
is any m X m matrix with entries #;;, then

m 1/2
T2 = (Zm,-ﬁ) :
j=1

The equality (2) is a consequence of the fact that the Euclidean norm of the jth column of
a normal matrix is equal to the Euclidean norm of its jth row.

Replacing the Hilbert—Schmidt norm by another unitarily invariant norm, we may ask
whether the equality (2) is replaced by interesting inequalities. Let s{(T) > --- > s, (T)
be the singular values of 7. Every unitarily invariant norm |||7'||| is a symmetric gauge
function of {s;(T)} (see chapter IV of [1] for properties of such norms). Much of our
concern in this note is with the special norms

m 1/2
1Ty = (@ T*T)!/* = (ZS.?”))
j=1
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and
ITN = s1(T) = supxecm, jxj=1 I T x|l 3)
The latter is the norm of T as a linear operator on the Euclidean space C”. Clearly

ITI<ITl2 < V/mIT], “4)

for every m x m matrix T'.

If the matrix N in (1) is hermitian, then C = B*, and hence, |||C||| = |||B]]|| for all
unitarily invariant norms. If N is unitary, then AA* + BB* = A*A 4+ C*C = I. Hence,
the eigenvalues A ; satisfy the relations

Lj(BB*) = A;j(I — AA*) =1—1;(AA¥)
=1—-A;(A%A) =A;(I — A"A) = 1;(C*C).
Thus B and C have the same singular values, and again ||| B||| = |||C||| for all unitarily
invariant norms.

This equality of norms does not persist when we go to arbitrary normal matrices, as we
will soon see. From (2) and (4) we get a simple inequality

1Bl < /n [IC]|. )

One may ask whether the two sides of (5) can be equal, and that is the first issue addressed
in this note.

When n = 2, it is not too difficult to construct a normal matrix N of the form (1) in
which ||B|| = +/2||C]. One example of such a matrix is

0020
10| 00

N=|—|—— 6
01| 01 ©
10l 00

When n = 3, examples seem harder to come by. One that preserves some of the features
of (6) is given by the matrix

B 3 0 0 7
0 2 0 V3
NG
2| 0 0 0
0 0 v
2
N H+1 0 ol o 0 0
0 0 2
0 0 \/ﬁ+1
2
0 1 07! 0 0
2
K 0 0|0 Z 0
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It can be seen that N is normal and plainly || B|| = V3 while |C|| = 1. When n = 4, it is
impossible to find such a matrix, and that is our first theorem.

The following elementary lemma (which can be verified by induction on the integer k)
is used repeatedly in our proof.

Lemma. Let V be an n-dimensional vector space and let V1, ... , Vi be subspaces of V
the sum of whose dimensions is larger than (k — 1)n; i.e.,

Xk:dim Vi > (k= Dn.

j=l1
Then the intersection of these k subspaces is nonzero.
Theorem 1. There exists a normal matrix N of the form (1) with

Bl =+/nCl| ®)
if and only if n < 3.

Proof. Note first that if equalities (2) and (8) hold simultaneously, then rank B must be

one and C must be unitary. So, after applying a unitary similarity by [g (1)] , We may
assume that
N A B ©)
- LI D’
The normality condition N*N = N N* leads to two equations
A—D=A*B - BD", (10)
2] = AA* — A*A + BB* + B*B + D*D — DD*. (11

Since B is of rank one,
dim(ker B) =dim(ker B*) =n — 1,

where dim X stands for the dimension of a space X. So, if n > 3, then the dimensions of
ker B and ker B* add up to more than n. Hence their intersection is nonzero, and we may
choose a unit vector x in this intersection. For this vector, we obtain from (10)

(A — D)x = —BD*x, (12)
and

(A — D)*x = B*Ax. (13)
Equation (11) leads to the condition

2 = || A%x||* — || Ax|* + | Dx|I* — | D*x]|*. (14)

The rest of the proof shows that if n > 3, then we can choose a vector x € (ker B) N
(ker B*) for which these conditions cannot be satisfied.
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The two matrices BD* and B* A have rank at most 1, so their kernels have dimension
at least n — 1. Hence

dim(ker B) + dim(ker B*) + dim(ker BD™*) + dim(ker B*A) > 4n — 4.
(15)

This is larger than 3n whenever n > 4. So, in this case the four kernel spaces involved
in (15) have a nonzero intersection. Let x be a unit vector in this intersection. Then from
(12) and (13) we find that

(A—D)x=0 and (A— D)*x =0.

Hence, ||Ax|| = ||Dx] and ||A*x|| = || D*x]||. This contradicts the condition (14).

Now consider the case n = 4. The spaces ker B and ker B* have dimension 3 each,
while the space ker B(A + D)™ has dimension at least 3. The three dimensions add up to
more than 8. Hence, we can find a unit vector x in the intersection of these three spaces.
For this vector we have

|A*x||* = | D*x|* = Re (A + D)*x, (A — D)*x)
=Re{((A + D)*x, B*Ax)
=Re(B(A + D)*x, Ax)
=0. (16)

Here the second equality is a consequence of (13), and at the last step we have used the
fact that B(A 4+ D)*x = 0.
Using (12) instead of (13) we get

I Dx||> — [|Ax||*> = Re (A + D)x, (D — A)x)
= Re ((A + D)x, BD*x)
=Re (B*(A + D)x, D*x). (17)

Since B is a matrix with rank equal to 1 and norm equal to 2, we have B* BB* = 4B*. (Use
the polar decomposition B = UP. In some orthonormal basis P is diagonal with only one
nonzero entry 2 on the diagonal. So B* BB* = P3U* = 4PU* = 4B*.) Hence we have

4B*Ax = B*BB*Ax
= B*B(A — D)*x (using(13))
= B*B(A+ D)*x —2B*BD*x
= —2B*BD"x
=2B*(A — D)x (using(12))
=4B*Ax —2B*(A + D)x.
This shows that B*(A + D)x = 0, and we get from (17)

I Dx|*> — | Ax||* = 0. (18)
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Clearly the relations (14), (16) and (18) cannot be simultaneously true.
We have shown that when n > 4, there cannot exist a 2n X 2n normal matrix of the
form (9) in which B is an n x n matrix of rank one. This proves the theorem. ]

Our discussion leads to some natural questions.

Problem 1. For n > 4, evaluate the quantity
. A B |.
o, =sup 1 ||Bll/IIC|: 3A, D for which cpl® normal ¢ .

We have seen o, < +/n forn > 4. It would be of interest to know whether o, is a bounded
sequence.

Problem 2. What matrix pairs B, C can be the off-diagonal entries of a normal matrix N
?B

as in (1)? In other words, when does [ c 9

] have a normal completion?

Example 1. Consider the 2 x 2 matrices

i) el

Then, ||B|l2 = ||C|l>. However, there do not exist any 2 x 2 matrices A and D for which
A B
cD

(2) is only a necessary condition for normality of the matrix (1).

We consider some special cases of the question raised in Problem 2. We assume either

B=C,orB=C*

2

For every B, the matrix [ B lj ] has a normal completion, and this completion may be

is normal. We leave the verification of this statement to the reader. Thus the equality

chosen to be of the special type [ 2 ﬁ ] .Indeed, if U is the unitary matrix U = % [ I ] ,

—11
then
A B A+ B 0
U U* = .
B A 0 A—B

ABT. . c[A+B 0
So[BA]lsnormallfandonlylf[ 0 A_B

if A+ B and A — B both are normal. The most obvious choice of A that assures this is
A = B*. Thus

~ B* B
[0 2

] is normal, and this is the case if and only

B B*

is a normal completion of [ ; f ] . We have the norm inequality

IBIl < IBIl <2|BI. (20)
When B = [g (‘)] we have || B|| = ||B]l. On the other hand, if B is any hermitian matrix,

0B

then ||§|| = 2||B||. In this case, and more generally when B is normal, [B o

] is normal

and has norm equal to || B||. This raises the question of finding completions of [; l,_f ] that

are ‘optimal’ in various senses.
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Problem 3. Given a matrix B find a matrix A such that
A B
N =
s 4]
is normal and has the least possible norm. This is equivalent to asking for a matrix A such
that A + B and A — B are normal and the quantity max(||A + B]|, ||A — B||) is minimised.
It might be difficult to find all solutions to this problem. The following considerations lead

to one solution.

We assume that B is a contraction, i.e. |B|| < 1 and ask for an A so that [2 ﬁ] is

unitary. This is a unitary completion of the matrix [; If ] .Let B = USV be the singular
value decomposition of B. Then

u* 071A B][V* 0] [U*AV* S
0 U*J[B AJLO v*] | § UrAV*]’
So, the problem reduces to finding an A’ such that [ f;/ j, ] is unitary. A familiar idea from

the theory of unitary dilations (p. 232 of [2]) suggests the choice A’ = i (I — SHl/2,
This tells us how to find for any matrix B one of the least-norm normal completions of

[; f ] . Assume ||B|| = 1 and find a unitary completion as proposed above.
Next we consider the case B = C*, and ask for matrices A and D such that
N — A B 1)
~|B* D

is normal. A calculation shows that the matrices A and D must be normal and satisfy the
equation

(A — A*)B = B(D — D¥). (22)

Let A = Hy+iK; and D = H, +i K5 be the Cartesian decompositions of A and D. Here
(H1, K1) and (H3, K3) are two pairs of commuting hermitian matrices. Equation (22) is
equivalent to K1 B = BK». This shows that

B*BK, = B*K\B = (K\B)*B = (BK2)*B = K,B*B.

So K, commutes with B*B, and hence with the factor P in the polar decomposition
B = UP.

Thus the general solution to (22) is obtained as follows: Choose Ky and K5, both
hermitian, satisfying the conditions

KoP = PKy, K)P =PK,, (Ko—Ky)P=0.
Let K1 = UKoU*. This condition ensures
K1B = UKoU*B = UKyP = UK, P = UPK, = BK>.

Choose hermitian matrices H; and Hj that commute with K and K>, respectively. Let
A=H|; +iKjand D = H, +iK>. This leads to N in (21) being normal.
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As before, we also consider the special case ||B|| < 1 and ask for A and D such that
the matrix (21) is unitary. This can be solved as follows: Let B = UP be any polar
decomposition. Choose hermitian matrices Ky and K> that commute with P and satisfy
the inequalities

Ki<I-P) K;<I-P~.

Then choose hermitian matrices Hy and H» that commute with K¢ and K>, respectively,
and satisfy the conditions

H}+K3=H}+K3=1- P

Let A=U(Hy+iKo)U* and D = Hp + i K>. Then the matrix (21) is unitary.

Example 1 shows that the equality || Bl = ||C||2 is not a sufficient condition for the
B
?

Our next proposition shows that equality between all unitarily invariant norms is a
sufficient condition.

. ; 0
existence of a normal completion of [ c

PROPOSITION

Let B, C be n x n matrices with |||B||| = |||C||| for every unitarily invariant norm. Then
7B

the matrix [ C 7

] has a completion that is a scalar multiple of a unitary matrix.

Proof. 1t ||| B]|| = [||C]]| for every unitarily invariant norm, then s;(B) = s;(C) for all
j =1,2,...,n.Hence, there exist unitary matrices Uy, U;, Vi, V suchthat B = U1 SU»,
and C = V1 SV;. Divide B and C by ||S]|, and thus assume ||S|| = 1. Then I — $2 is
positive, and has a positive square root. It is easy to see that the matrix

(I — §2)2 S
S —(—s$H)?

is unitary. Multiply this matrix on the left by the unitary matrix U; & V7, and on the right
by the unitary matrix V, @ U;. This gives a unitary matrix whose off-diagonal blocks are
B and C. |

While the condition in the Proposition is not necessary, it is sensitive to small per-
turbations. The matrices B and C in Example 1 satisfy the conditions ||B|2 = [|C|l2,

[ BIll = |l|C||| + O(¢), but for ¢ # 0, there is no possible normal completion Of[c?‘ f]
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