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The subject Functional Analysis started
around the beginning of this century, inspired
by a desire to have a unified framework in
which the two notions of continuity and
linearity that arise in diverse contexts could
be discussed abstractly. The basic objects of
study in this subject are Banach spaces and
the spaces of bounded (continuous) linear
operators on them; the space Cla, b] of
continuous functions on an interval [a, b]
with the supremum norm, the L? spaces
arising in the theory of integration, the
sequence spaces/ > the Sobolev spaces arising
in differential equations, are some of the
well-known examples of Banach spaces. Thus
there are many concrete examples of these
spaces, enabling application of the theory to
a variety of problems.

It is generally agreed that finite-
dimensional spaces are well understood and
thus the main interest lies in infinite-
dimensional spaces. A Banach space is
separable if it has a countable dense subset in
it. From now on we will talk only of separable
Banach spaces; the nonseparable Banach
spaces are very unwieldy.
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The simplest examples of infinite-
dimensional Banach spaces are the sequence
spaces lp, 1< p< o consisting of Sequences
x = (x5 X, ...) for which Z].___llxj | is
finite; the pth root of the latter is taken as the
norm of x. These spaces are separable. The
space of all bounded sequences, equipped
with the supremum norm, is called [ . It is
not separable, but contains in it the space ¢,
consisting of all convergent sequences, Which
is separable. The following was an open
question for a long time: does every Banach
space contain in it a subspace that is isomor-
phic to either ¢, or some lp’ 1 <p < 0?lt
was answered in the negative by B Tsirelson
in 1974.

It may be recalled that in the theory of
finite-dimensional vector spaces bases play
an important role. A Schauder basis (or a
topological basis) for a Banach space X is a
sequence {e_} in X such that every vector in
X has a unique expansion *= Z:{da"en R
where the infinite series is understood to
converge innorm. Unlike in the finite-dimen-
sional case, in general this notion depends on
the order in which {e } is enumerated. We
say a Schauder basis {e_} is an unconditional
basis if {e (n)} is a Schauder basis for every
permutation 7 of natural numbers.

It is easy to see that if a Banach space
has a Schauder basis, then it is separable.
There was a famous problem as to whether
every separable Banach space has a Schauder
basis. P Enflo showed in 1973 that the
answer is no. It had been shown quite early
by S Mazur that every (infinite-dimensional)
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Banach space has an (infinite-dimensional)
subspace with a Schauder basis. (The spaces
I 51 <p < oandc,dohaveSchauder bases.)

One of the major results proved by
W T Gowers, and independently by B Maurey,
in 1991 is that there exist Banach spaces that
do not have any infinite-dimensional
subspace with an unconditional basis.

In many contexts the interest lies more
in operators on a Banach space than the
space itself. Many of the everyday examples
of Banach spaces do have lots of interesting
operators defined on them. But it is not clear
whether every Banach space has nontrivial
operators acting on it. If the Banach space
has a Schauder basis one can construct
examples of operators by defining their action
on the basis vectors. Shift operators that act
by shifting the basis vectors to the left or the
right have a very rich structure. Another
interesting family of operators is the projec-
tions. In a Hilbert space every subspace has
an orthogonal complement. So, there are lots
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of orthogonal decompositions and lots of
projections that have infinite rank and
corank. In an arbitrary Banach space it is not
necessary that any infinite-dimensional
subspace must have a complementary
subspace. Thus one is not able to construct
nontrivial projections in an obvious way.
The construction of Gowers and
Maurey was later modified to show that there
exists a Banach space X in which every
continuous projection has finite rank or
corank, and further every subspace of X has
the same property. This is equivalent to
saying thatno subspace Y of X can be written
as a direct sum W @ Z of two infinite-
dimensional subspaces. A space with this
property is called hereditarily indecomposable.
In 1993 Gowers and Maurey showed that
such a space cannot be isomorphic to any of
its proper subspaces. This is in striking
contrast to the fact that an infinite-
dimensional Hilbert space is isomorphic to
each of its infinite-dimensional subspaces (all
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of them are isomorphic to [)). A Banach
space with this latter property is called homo-
geneous.

In 1996 Gowers proved a dichotomy
theorem showing that every Banach space X
contains either a subspace with an
unconditional basis or a hereditarily
indecomposable subspace. A corollary of this
is that every homogeneous space must have
an unconditional basis. Combined with
another recent result of R Komorowsky and
N Tomczak-Jaegermann this leads to another
remarkable result: every homogeneous space
is isomorphic to [,

Another natural question to which
Gowers has found a surprising answer is the
Schroeder-Bernstein problem for Banach
spaces. If X and Y are two Banach spaces,
and each is isomorphic to a subspace of the
other, then must they be isomorphic? The
answer to this question has long been known
to be no. A stronger condition on X and Y
would be that each is a complemented subspace
of the other. (A subspace is complemented if
there is a continuous projection onto it; we
noted earlier that not every subspace has this
property.) Gowers has shown that even under
this condition, X and Y need not be
isomorphic. Furthermore, he showed this by
constructing a space Z that is isomorphic to
Z® Z® ZbutnottoZ @ Z.

All these arcane constructions are not
easy to describe. In fact, the norms for these
Banach spaces are not given by any explicit
formula, they are defined by indirect
inductive procedures. All this suggests a
potential new development in Functional
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Analysis. The concept of a Banach space has
encompassed many interesting concrete
spaces mentioned at the beginning. However,
it might be oo general since it also admits
such strange objects. It is being wondered
now whether there is a new theory of spaces
whose norms are easy to describe. These
spaces may have aricher operator theory that
general Banach spaces are unable to carry.

In his work Gowers has used tech-
niques from many areas, specially from
combinatorics whose methods and concerns
are generally far away from those of
Functional Analysis. For example, one of
his proofs uses the idea of two-person games
involving sequences of vectors and Ramsey
Theory. Not just that, he has also made
several important contributions to combin-
atorial analysis. We end this summary with
an example of such a contribution.

A famous theorem of E Szemeredi
(which solved an old problem of P Erdos)
states that for every natural number £ and
positive real number o there exists N such
that every subset of {1, 2, ... , N} of size
ON contains an arithmetic progression of
length k. Gowers has found a new proof of
this theorem based on Fourier analysis. This
proofgives additional important information
that the original proof, and some others that
followed, could not. It leads to interesting
bounds for N in terms of k and §.
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