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There is a famous essay titled The Unreasonable E®ec-
tiveness of Mathematics in the Natural Sciences by the
renowned physicist Eugene P Wigner. The essay opens
with the paragraph:

Thereisa story about two friends, who were classmates
in high schooal, talking about their jobs. One of them
became a statistician and was working on population
trends. He showed a reprint to his former classmate.
The reprint started, as usual, with the Gaussian dis-
tribution and the statistician explained to his former
classmate the meaning of the symbols for the actual
population, for the average population, and so on. His
classmate was a bit incredulous and was not quite sure
whether the statistician was pulling his leg. \How can
you know that?' was his query. \And what is this
symbol here?" \Oh," said the statistician, \this is %"
\What isthat?' \The ratio of the circumference of the
circletoitsdiameter.” \ Well, now you are pushing your
joke too far," said the classmate\ surdly the population
has nothing to do with the circumference of the circle.”

Wigner then goes on to discussthe surprisingly powerful
role mathematics plays in the study of nature. | have
quoted this para for making a small point. The num-
ber ¥; the ratio of the circumference of the circle to its
diameter, appears in many contexts that seem to have
no connection with diameters, areas, or volumes. One
such problem that | discuss here concerns properties of
natural numbers.

Every student of calculus learns the Wallis product for-
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mula

>~ 13355779 ¢ (1)

On the right hand side there is an in nite product and
thisisto be interpreted as

. 2244 2n 2n

Mne 2 3333%%0 12n+ 1 (2
This formula attributed to John Wallis (1616-1703) is
remarkable for several reasons. It is, perhaps, the rst
occurence of an in nite product in mathematics. And
it connects Yawith natural numbers. The formula has a
simple proof. Let

YA YF2
In = (sinx)" dx:
0
Integrate by partsto get the recurrence formula

nj 1 .
|n: |ni2.
n

The sequence |, is a monotonically decreasing sequence
of positive numbers. This and the recurrence formula
show that
1< I_n <1+ l:
n+1 n
SO Ih,=l+1tendstolasn! 1 : Notethat g = V&2

and 11 = 1. The recurrence formula can be used to get
onva _ 2244, 20 20 2
[ 2n 1335 2nj 12n+ 1%
Taking thelimit asn! 1 weget (1).

Many in nite sumsinvolving natural numberslead to ¥
Onethat we need for our discussion is a famous formula
due to Leonhard Euler (1707-1783)

Y2 1 1 1 1
— =+ -+ -+ —+ ¢
6 12 22 P (3)
I
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Perhaps, Wallis's
formula is the first
occurrence of an
infinite product in
mathematics; it
also connects p
with natural
numbers.
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It is reasonable to
expect that a
randomly picked
number is a
multiple of k with
probability 1/k.

A (natural) number is said to be square-free if in its
prime factoring no factor occurs more than once. Thus
70 = 2£ 5£ 7isasquare-free number while12 = 2£ 2£ 3
IS not.

Many problems in number theory are questions about
thedistribution of various special kinds of numbersamong
all numbers. Thus we may ask:

What is the proportion of square-free numbers among all
numbers?
Or

If a number is picked at random what is the probability
that it is square-free?

Now, randomness is a tricky notion and this question
needs more careful formulation. However, let us ignore
that for the time being. It is reasonable to believe that
if we pick a number at random it is as likely to be odd
asit iseven. Thisis because in the list

1:2:3:4:5:6;7:8:9;10; 11; 12; : ::

every alternate number is even. In the same way every
third numer is a multiple of 3; every fourth number is
a multiple of 4; and so on. Thus the probability that a
randomly picked number is a multiple of k is 1=k; and
the probability that it is not a multipleof k is1j 1=k:

Let p1;p2; ps3;::: bethesequence of prime numbers. Let
n be a randomly chosen number. For each prime p the
probability that pf is not afactor of nis1j 1=p’: Given
two primes p; and px; what is the probability that nei-
ther p? nor p; is a factor of n? Again from probabilistic
reasoning we know that the probability of the ssimultane-
ous occurence of two independent events is the product
of their individual probabilities. (Thus the probability
of getting two consecutive heads when a coin is tossed
twice is 1=4:) Whether n has a factor pjz has no bearing
on its having p¢ as a factor. Thus the probability that
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neither p? nor pf isafactor of n is' 1 1:pj2¢(1i 1=p?)
Extending this reasoning one sees that the probability
of n being square free isthe in nite product
v H 111
i (4
=1 ¥
Thereis a connection between this product and the se-
riesin (3). It is convenient to introduce here a famous
object called the Riemann zeta function. Thisisde ned
by the series

|
9= (5)
n=1
This series surely converges for all real numbers s > 1:
Let us restrict ourselves to these values of s; though
the zeta function can be de ned meaningfully for other
complex numbers. The formula (3) can be written as
V&
3(2) = —: 6
=7 (6)
The zeta function and prime numbers come together in
the following theorem of Euler.

Theorem. Foralls> 1
¥ o
nzl:l'i phs

() = (7)

Proof. Fixan N; and usethe geometric seriesexpansion
of 71 to get

Yoo W%

i ms.
n:11i phs n:1m:Opn . (8)
The last expression is equal to
|
vVyv

Finding the sum of

the series
1 + 1 + 1 +
[EPTE

was one of the
major triumphs of
Euler.
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The probability that
a number picked at
random in square
free is 6/p2.

The probability that
two numbers
picked at random
are coprime is 6/p2.

where ni;ny;::: is an enumeration of those numbers
that have pi1;p2;:::;pn astheir only prime factors. As
N ! 1 ;the sequence fn;g expands to include all nat-
ural numbers. This proves the theorem.

As a consequence the product (4) has the value 6=%%:
Thisisthe probability that a number picked at random
is square-free.

Thisisone moresituation wherethe number ¥shas made
an appearance quite unexpectedly. Our main point has
been made; several interesting side-lines remain.

First note that our argument shows that if we pick a
number n at random, then the probability that it has
no prime factor with multiplicity k is 1= (k):

With a little thinking one can see that the probability
that two numbers picked at random are coprime is 6=%%:
(This problem is equivalent to the one we have been
discussing.)

Thereisanother interesting way of looking at this prob-
lem. Let Z? be the collection of all pointsin the plane
whose coordinates are integers. This is called the inte-
ger lattice. If the line segment joining the origin (0; 0)
to a point (m;n) does not pass through any other lat-
tice point we say that the point (m;n) can be seen from
the origin. For example, the point (1;j 1) can be seen
from the origin but the point (2;i 2) can not be seen.
Among all lattice pointswhat is the proportion of those
that can be seen from the origin? T he answer, again, is
6=Y%: The proof of thisis left to the reader.

The argument used in proving the Theorem above can
be modi ed to give a proof of the fact that there are
in nitely many prime numbers. The probability that
a randomly picked number from the set f1;2;::: ;Ng
IS 1 goes to zero as N becomes large. So the product

p(1i 1=p) where p varies over all primes is smaller
than any positive number. Thiswould not be possible if
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there were only a nitely many factors in the product.

The number Ysentered the picture via the formula (3).
How does one prove it? Several proofs are known. The
daring “proof' rst given by Euler goes as follows.

Let ®;®;::: betheroots of the polynomial equation
ap + aix + axx2+ ¢¢¢+ an,x™ = 0: Then

X 1 _ia
® a
We can write
p— X X2
cos X=1j —+ —+ ¢¢¢:
V27 24

This i|§§ ‘polynomial of in nite degree’, and the roots
of cos x = Oare

(2n + 1)27

) ,n=012::::

Hence
X 1 %
NCrETa ©

The formula (3) follows from this eadily.

Surely this argument has °aws. They can all be re-

moved! With the notions of uniform convergence and

2j xarguments, we can prove formulas like
snx Y H x2 L

X n2yz '
n=1

(10)

from which the formulas (1) and (3) can be derived by
smple manipulations. Finding the sum of the series
(3) was one of the early major triumphs of Euler. He
was aware that the argument we have described above
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Neither Euler, nor
anyone else in
three centuries

after him, has
found much about

the values of z (k)

when Kk is an odd

integer. In 1978 R

Apéry showed that

z (3)is anirratio-

nal number. Even

this much is not
known about z (5).

Very recently,
Rivoal has shown
that infinitely many
Zeta values at odd
natural numbers
are irrational.

IS open to several criticisms. So he gave another proof
that goes as follows.

z

% (arcsin 1)? ! arcsinx

2o = o =/

8 Z 2 w0 1| X2 #
! X+>4 1¢30¢¢(2n§ 1) x2*?
T o T X7 T 2eaeen i+t

X 1¢3¢0¢(2ni 1)  2n(2ni 2)c¢ee2
- 2¢4¢ee2n(2n + 1) (2n + 1)(2nj 1) ¢¢e3
X1

o (@n+1*

= 1+

Following the ideas of his rst proof Euler showed that
3(2m) is ¥#™ multiplied by a rational number. T hus for
example,
s B s A
(4= 5 2O = g
Neither Euler, nor anyone else in three centuries after
him, has found much about the values of 3 (k) when k is
an odd integer. In 1978 R Ap#iry showed that 3(3) is an
irrational number. Even this much is not known about
3(5):

(11)

Another general method for nding sums like (3) and
(11) goes via Fourier series. I:t 1; is a continuous func-
tionon [ 4%} and f(x) = .-, an€"™ its Fourier
expansion, then
» Zy,
janj? = jf (0)j%dx:

i Ya

(12)

n=j 1
The method depends on recognising the summands of a
particular series as coet cient of the Fourier series of a

particular function f and then computing the integral
in (12).

Having seen expression like (10) and (12) oneisno longer
surprised that 2(2m) involves %in some way.
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Finally, let usbrie®y discuss someissuesrelated to “pick-
ing a natural number at random'.

Two standard examples of completdy random phenom-
ena are tossing of a coin and throwing of a dice. In the
~rst case we havetwo, and in the second case six, equally
likely outcomes. The ‘sample space' in the rst caseis
the set f1;2g (representing the two outcomes head and
tail) and in the second case it isthe set f1;2;::: ;60:
One can imagine an experiment with N equally likely
outcomesf1;2;:::;Ng:

The uniform probability distribution on the set X =
f1,2;:::;Ngisthefunction that assignsto each subset
E of X values according to the following rules

t(fig) = ;((fkg) for all j;k; (13)

t(E) = L(fjo); (14)
i2E

1(X) = 1 (15)

Note that these three conditions imply that  (fjg) =
1=N for all j: Thisisamode for a random phenomenon
(like in some games of chance) with N equally likely
outcomes.

It isclear that if X isreplaced by theset N of all natural
numbers, then no function satisfying the three condi-
tions (13)-(15) exists. So, if “picking an element of N at
random' means assigning each of its elementsj an equal
‘probability’ we run into a problem. However, thereisa
way to get around this.

Let X = f1;2:::;Ng and let E be the s&t of even
numbers in X: If N is even, then 1 (E) = 1=2: But if
N = 2m+ 1lisodd, then*(E) = m=2m + 1): Thisis
less than 1=2; but gets very close to 1=2 for large N: In
this sense a number picked at random is as likely to be
even as odd.

In the same spirit we can prove the following.

VUV
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For every " > O; there exists a number N; such that if
1 is the uniform probability distribution on the set X =
f1,2;::: ;Ngand E isthe set of square-free numbersin
X; then

£< 1(E) < E+ "

3 Y&

The reader may prove this using the following observa-
tions. We know that

T b8
| 5) = T ,.

- B

The factors in this product are smaller than 1. So, the

sequence
¥ 1
1i 5 M=12::

j=1 ¥

decreases to its limit. Choose an M such that

e Y 1. 6 .
%<j:1(1| Ej)< wth
Q

and let N = jlej:

A (non-uniform) probability distribution on X isafunc-
tion 1 that satis es the conditions (14)-(15) but not
(necessarily) the condition (13). There is nothing that
prevents the existence of such a distribution on N: Any
serieswith non negativetermsand with sum 1 givessuch
a distribution. In particular if we set

. 61 .
1(f19=%.—2; =120 (16)

then 1 is a probability distribution on N: This assigns
di®erent probabilities to di®erent dements of N: The
reader may like to interpret and prove the following
Statement.
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The probability that two natural numbers picked at ran-
dom have | astheir greatest common divisor is *(fjQ)
as de ned by (16).
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