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Abstract
A generalized Newcomb equation that incorporates inertial contributions from equilibrium shear flows as well as
finite β contributions is derived in a cylindrical geometry. It is shown from numerical solutions of this equation that
the stability parameter �′ can be significantly influenced by flow as it becomes a sensitive function of the global
profiles of the magnetic field and flow velocity. These results can have important implications for the nonlinear
evolution of magnetic islands in the presence of flows.

PACS numbers: 52.55Fa, 52.55Tn, 52.35Py, 52.65kj

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The nonlinear evolution of magnetic islands due to unstable
classical or neoclassical tearing modes is a topic of much
current interest particularly in the context of confinement limits
for long pulse experiments in superconducting tokamaks [1].
The size and lifetimes of these magnetic islands set a limit on
the plasma β and are an important concern for future reactor
configurations. Much attention is therefore being directed
towards the experimental and theoretical elucidation of factors
that affect the onset and saturation of such islands. The
Rutherford theory of neoclassical tearing modes has provided
a particularly useful analytical paradigm for understanding
the nonlinear behaviour of the islands and has also been the
basis for the formulation of various stabilization schemes [2].
Large scale numerical simulation initiatives, such as NIMROD
[3], involving a direct solution of model MHD equations
constitute an alternative and complementary approach to
this problem. An important issue that has not yet been
satisfactorily resolved and needs detailed exploration relates
to the dynamical interaction of the magnetic islands with
equilibrium shear flows. Flows are ubiquitous in most tokamak
plasmas and can arise from a variety of causes such as
unbalanced neutral beam injection, radio frequency heating
or as a by-product of micro-turbulence. Some of the basic
issues related to the influence of sheared flows on resistive
instabilities have been known for a long time and have been
investigated in simplified geometries and model flow profiles in
several past studies [4–7]. In other related works the combined
influence of a resistive wall and a rigid plasma rotation on the
stability of kink modes, tearing modes and resistive wall modes
has been examined [8, 9]. However the detailed assessment

of sheared flow effects on magnetic island dynamics for
realistic geometries either through an analytic approach or by
means of numerical simulations poses serious mathematical
as well as computational challenges. Some recent attempts
in this direction, e.g. numerical investigations employing a
fully toroidal code [10] based on generalized reduced MHD
equations [11] have revealed a number of interesting results.
It has been found, for example, that differential flow provides
a strong stabilizing influence leading to lower saturated island
widths for the classical tearing mode and reduced growth rates
for the neoclassical tearing mode. The effect of velocity shear
is found to depend on the sign of the shear at the mode resonant
surface with the negative shear providing a destabilizing effect
and the positive shear acting in a stabilizing fashion [10, 12].
These results have been found for toroidal sheared flows that
are restricted in magnitude to be a fraction of the Alfven
velocity and for equilibrium plasmas that have a small inverse
aspect ratio (R/a ∼ 10, where a and R are the minor and
the major radii, respectively). While some general qualitative
features of these numerical results can be identified from
selective switching on and off of various terms of the model
equations a detailed analytic understanding of the dynamical
origin of many of the flow induced physical effects is still
lacking.

In this paper we discuss an important flow induced
effect that can significantly alter the general Rutherford model
results. In the present applications of the Rutherford model for
neoclassical tearing modes one generally adopts the standard
value of the stability parameter �′ that is given by the linear
stability theory of tearing modes in a slab geometry. The
value of �′ can significantly change due to finite β effects [13]
and curvature induced effects in the perturbed parallel current
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density [14]. Apart from these static equilibrium effects, some
past studies [5,7] have also pointed out that equilibrium sheared
flows can influence the value of�′. However, such studies have
been restricted to some simple cases such as poloidal flows
and zero β plasmas. Here we derive a generalized version
of the outer layer equations in a cylindrical geometry that
incorporates both inertial contributions of flow and finite β

terms and show through numerical solutions that the value
of �′ can be significantly influenced by the combination of
the velocity and magnetic field profiles. Our findings should
prove useful in extending the applicability of the Rutherford
model and also in the interpretation of numerical investigations
carried out on more complex codes such as NIMROD. Based
on our understanding of these flow induced effects one can
hope to develop experimental strategies that can exploit flows
for mitigation or a better control of island growths in long
pulsed tokamak experiments.

2. Newcomb equation in the presence of flow

We consider a uniform density incompressible plasma in a
cylindrical geometry (r, θ, z) that has a uniform equilibrium
flow along the z axis and a sheared poloidal flow along the θ

direction. To describe the outer layer dynamics we consider
the ideal MHD model equations given by

ρ

[
∂V
∂t

+ (V · ∇) V
]

= −∇P + J × B, (1)

E + V × B = 0, (2)

∇ × B = µ0J; ∇ × E = −∂B
∂t

, (3)

∇ · B = 0; ∇ · V = 0. (4)
We assume the equilibrium quantities to be of the form
B0 = B0θ (r)êθ + B0z(r)êz; V0 = V0θ (r)êθ + V0z(r)êz.

(5)
The ideal equilibrium, obtained from the momentum
equation (1), is then given by the relation

β

2

dP0

dr
= V 2

0θ

r
− B2

0θ

r
− B0θ

dB0θ

dr
− B0z

dB0z

dr
, (6)

where we have normalized the magnetic field by B00z, the
velocity field by VA

(= B00z/(µ0ρ0)
1/2

)
and pressure by P00 =

βB2
00z/2µ0. Here P00 and B00z are the peak values of the

pressure and the axial magnetic field respectively (with the
peaks assumed to occur at the magnetic axis) and β =
2µ0P00/B

2
0z.

We next linearize equations (1) and (2) about these
equilibrium quantities and assume the perturbed quantities
to have a time dependence of the form f1(r, θ, z, t) =
f1(r, θ, z) exp(iωt). The frequency ω is complex for an
unstable tearing mode with the real part denoting the rotation
of the island and the imaginary part denoting the growth rate
of the mode. We neglect the imaginary part and assume ω to
be real. This is appropriate for the ideal external region where
resistivity can be neglected and the mode growth term, which
scales as some power of the resistivity, is also very small. The
perturbed quantities then obey the following set of equations:
(iω + V0 · ∇)V1 + (V1 · ∇)V0 = −∇p∗

1 + (B0 · ∇)B1

+ (B1 · ∇)B0, (7)

(B1 · ∇)V0 − (iω+V0 · ∇)B1 + (B0 · ∇)V1

−(V1 · ∇)B0 = 0, (8)

where p∗
1 = β

2 P1 +B0 ·B1. We assume the perturbed quantities
to have a spatial dependence of the form f1(r, θ, z) =
f1(r) exp(imθ + ikzz). We further define

F = k · B0; G̃ = k · V0,

where k = (0, m/r, kz). It is also convenient at this point to
transform to a rotating frame defined by ω = −G̃(rs) where rs

is the particular mode rational surface of the growing tearing
mode [7]. The radial components of equations (7) and (8)
then give

−FB1r + i
2

r
(V0θV1θ − B0θB1θ ) + GV1r − i

dp∗
1

dr
= 0, (9)

V1r = G

F
B1r , (10)

where G = ω + G̃. Further, the θ and z components of
equations (7) and (8) can be used to obtain the following
equations:

ip∗
1 = B1r

r

(
H

∂F

∂r
+

2mB0θH

r2
− HF

r

)
− HF

r

∂B1r

∂r

−V1r

r

(
H

∂G

∂r
+

2mV0θH

r2
− HG

r

)
+

HG

r

∂V1r

∂r
, (11)

i
2

r
(V0θV1θ − B0θB1θ ) = 2m(ip∗

1)

r2

(V0θG − B0θF )

(F 2 − G2)

+

[
2(FB1r + GV1r )

(F 2 − G2)

(
B2

0θ

r2
+

V 2
0θ

r2

)
− 4V0θB0θ

r2

× (GB1r + FV1r )

(F 2 − G2)
−

(
∂V 2

0θ

∂r
− ∂B2

0θ

∂r

)(
FB1r

r
− GV1r

r

)
(F 2 − G2)

+

(
B0θ

∂V0θ

∂r
− V0θ

∂B0θ

∂r

)
(GB1r − FV1r )

]
, (12)

where H = r3/(k2
z r

2 + m2). Using equations (11) and (12) to
substitute for p∗

1 and (V0θV1θ − B0θB1θ ) in equation (9) and
after some rearrangement of terms one gets,

F
d

dr

(
H

dψ

dr

)
− 2mH

r2α

G

F

(
V0θ − G

F
B0θ

)
dψ

dr
− ψ

d

dr

×
(

H
dF

dr

)
− Fψ

[
r +

2m

r2F 2α

(
H

dF

dr
+

2mB0θH

r2

−HF

r

) (
B0θ − G

F
V0θ

)
− 2

rF 2α

(
B2

0θ + V 2
0θ

)
+

4

rF 2α

× G

F
V0θB0θ +

1

F 2α

(
dV 2

0θ

dr
− dB2

0θ

dr

)
+

r

F

d

dr

(
2mB0θH

r3

)

− r

F

d

dr

(
HF

r2

)
− H

rF

dF

dr
− r

G

F

(
B0θ

dV0θ

dr
− V0θ

dB0θ

dr

)]

= G
d

dr

(
H

dW

dr

)
− 2mH

r2α

(
V0θ − G

F
B0θ

)
dW

dr

−W
d

dr

(
H

dG

dr

)
− GW

[
r +

2m

r2GFα

(
H

dG

dr
+

2mV0θH

r2

−HG

r

) (
B0θ − G

F
V0θ

)
+

2

rF 2α

(
B2

0θ + V 2
0θ

) − 4

rGFα

× V0θB0θ +
1

F 2α

(
dV 2

0θ

dr
− dB2

0θ

dr

)
+

r

G

d

dr

(
2mV0θH

r3

)

− r

G

d

dr

(
HG

r2

)
− H

rG

dG

dr
− r

F

G

×
(

B0θ

dV0θ

dr
− V0θ

dB0θ

dr

)]
, (13)
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where α = 1 − (G2/F 2) and we have simplified the
notation somewhat by using ψ for normalized B1r and W for
normalized V1r . Further, using equations (6) and (10) in above
equation (13) and after affecting some simplifications one can
get the following equation in the single variable ψ ,

H
d2ψ

dr2
+

(
dH

dr
+ hf

)
dψ

dr

−
[

g

F 2
+

gf

F 2
+

1

F

d

dr

(
H

dF

dr

)]
ψ = 0 (14)

where

g = (αm2 − 1)rF 2

α(k2
z r

2 + m2)
+

k2
z r

2

α(k2
z r

2 + m2)

×
(

αrF 2 + F
2(kzr − mB0θ )

k2
z r

2 + m2
+ β

dP0

dr

)
,

hf = 2H

α

G

F

(
G

F

1

F

dF

dr
− 1

F

dG

dr

)
,

gf = 2H

α

G

F

dF

dr

(
G

F

dF

dr
− dG

dr

)
+

4

rα2

G

F
V0θB0θ +

GH

rα

×
(

∂G

∂r
+

2mV0θ

r2

)
+

2V0θ

α

dV0θ

dr
− G

α

d

dr

(
2mHV0θ

r2

)

+

(
m2

k2
z r

2 + m2
− 2

α

)
2V 2

0θ

rα
+

Gr

α

d

dr

(
HG

r2

)

+

(
4

α2

k2
z r

2

k2
z r

2 + m2

G

F

B0θ

r
− 2mH

r2α2

(
dG

dr
− G

r

))

×
(
V0θ − G

F
B0θ

)
−

(
2mH

r2α2

G

F

(
dG

dr
+

2mV0θ

r2
− G

r

))

×
(

B0θ − G

F
V0θ

)
.

ForG = 0 andβ = 0 equation (14) reduces to the standard
outer layer equation that has been analysed in the paper by
Furth, Rutherford and Selberg [15]. More recently, Nishimura
et al [13] have extended the results of [15] to include finite
β effects and have shown that finite β can have a stabilizing
effect on �′. The effect of equilibrium sheared flows on �′

has been examined in the past by Chen and Morrison [5] but
only in a simple slab geometry. For G finite and in the limit
of a slab geometry (r → ∞, d/dr → d/dx) our equation (14)
reduces to the set of equations that have been discussed by
Chen and Morrison [5]. Note that in the slab limit the finite
β contribution disappears. Thus equation (14) represents a
more generalized description of the outer layer dynamics that
takes into account finite β contributions, cylindrical curvature
effects as well as sheared flow effects.

Equation (14) is singular at the mode rational surface
(r = rs) and the solution ψ has a discontinuity in its derivative
across this surface. The measure of this discontinuity is given
by the parameter �′, defined as

�
′ = 1

ψ(rs)

[
dψ

dr
(rs+) − dψ

dr
(rs−)

]
, (15)

where rs± = rs ±δ. Multiplying equation (14) by rψ , dividing
by H and integrating over the radius in the range of {0, rs−}

 0
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B
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10
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V0θ, νf=3.0

Figure 1. Profiles of B0θ and V0θ .

and {rs+, a} one can obtain the following expression for �′,

�′ = − 1

rsψ2
s

∫ a

0

[(
dψ

dr

)2

+

{
g

HF 2
+

1

HF

d

dr

(
H

dF

dr

)

− 2m2k2
z

(k2
z r

2 + m2)2
+

gf

HF 2
+

1

2r

d

dr

(
rhf

H

)}
ψ2

]
r dr.

(16)

In arriving at the above expression we have assumed the usual
boundary conditions for the mode to be ψ(a) = 0 (conduct-
ing outer boundary wall) and ψ(r) ∼ rm, m > 0 as r → 0.
The various terms in the integral can be identified with phys-
ical energy contributions from various quantities such as the
magnetic perturbation, velocity perturbation and equilibrium
flows. Since the expression involves gradients of equilibrium
quantities such as the flow and the magnetic field, their profiles
can play an important role in determining the sign and magni-
tude of �′. The profile dependence can be quite sensitive due
to the predominance of contributions from terms which be-
come singular near the mode rational surface where F → 0.
The variation of �′ with various equilibrium parameters is the
principal subject of our numerical investigations presented in
the subsequent sections.

3. Numerical evaluation of ∆′

To investigate the influence of flows on the outer layer
dynamics we have solved equation (14) numerically to
determine �′ for a model set of profiles of B0θ and velocity V0θ .
An advanced shooting method, first developed by Nishimura
et al [13] for the finite β problem, has been adopted for this
purpose. The algorithm involves numerical integration of the
equation away from the singular layer towards the boundaries.
The following analytic expressions representing asymptotic
solutions for ψ near the resonant surface have been used to
launch the numerical solutions:

ψ = Al|s|h+1 − Bl|s|−h; for x < xs, (17)

ψ = Ar |s|h+1 + Br |s|−h; for x > xs, (18)

where x = r/rs, rs is the location of the singular layer and
s = x − xs .

h = −1

2
+

1

2

√
1 − 4Ds.
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Figure 2. Profiles of (a) P (pressure), (b) q, (c) F and (d) G.

The Mercier coefficient Ds is given as

Ds = − q2
s

q ′
s

2αxs

[
β

dP0

dx
+

2x

Hk2
z r

2
s

V0θ

dV0θ

dx
+

2

Hk2
z r

2
s

×
(

m2

k2
z r

2
s x2 + m2

− 2

α

)
V 2

0θ +

(
4

α

G

F

B0θ

x
− 2m

αxk2
z rs

dG

dx

)

×
(

V0θ − G

F
B0θ

)
− 2m

αxk2
z rs

G

F

(
dG

dx
+

2mV0θ

rsx2

)

×
(

B0θ − G

F
V0θ

)
+

4

αHk2
z r

2
s

G

F
V0θB0θ

]
x=xs

. (19)

We iterate the constants A and B until the solution satisfies the
appropriate boundary conditions [13]. The value of �′ is then
obtained as

�′ = Ar

Br

− Al

Bl

.

In the absence of flow our numerical values of �′ agree with
those of Nishimura et al [13] for a choice of their model profile.

4. Results and discussion

We now present our numerical results of �′ values obtained for
the (m = 2, n = 1) tearing mode. We have used the following
equilibrium profile for the normalized poloidal magnetic field

B0θ (x) = rs

Rq0

x

(1 + x2ν)1/ν
; q(x) = q0(1 + x2ν)1/ν,

where R the major radius is taken to be a constant quantity and
ν is an index that controls the flatness of the magnetic profile.
To account for finite β effects we have chosen the normalized
pressure profile to be

P0(x) = 1 −
(

x

xb

)2

.

The equilibrium pressure balance is ensured by providing a
small variation in B0z. The plasma boundary is chosen to
be at xb = 2 and by constructing xs = 1. Note that since
q(xs) = m/n = 2, for the (2, 1) tearing mode, the index ν and
the quantity q0 are related as q0 = 21−(1/ν). For the velocity
profile we have chosen the following model form,

V0θ (x) = rsV0z

Rqv0

x

(1 + x2νf )1/νf
; qv(x) = qv0(1 + x2νf )1/νf ,
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Figure 3. Eigenfunction ψ for the (m = 2, n = 1) mode.
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Figure 4. Change of �′ with β for different V0z.

where qv = rV0z/(RV0θ ). For our numerical studies we have
chosen V0z to be constant corresponding to differential flow at
the core with respect to the edge and used a profile in V0θ whose
peakedness is controlled by the index νf . For convenience
we choose qv0 = m/2(1/νf ) which makes the magnetic and
velocity profiles to have a similar behaviour near the singular
layer, i.e. G = 0 where F = 0. Such a choice does not
pose a serious physical restriction on the choice of velocity
profiles since G has been defined in a rotating frame and the
velocity profile in the laboratory frame (namely, G̃) is allowed
to vanish at a place other than where F = 0. Our present
choice makes the numerical analysis a lot easier and does not
change the overall stability results. Figure 1 shows two sets
of profiles of B0θ and V0θ plotted for values of (ν = 1.0, 3.0)
and (νf = 1.0, 3.0) respectively, and other typical equilibrium
profiles are shown in figure 2. Figure 3 depicts a typical
eigenfunction for the (m = 2, n = 1) mode. In figure 4 we
have plotted the variation of �′ with β for various values of the
flow velocity V0z. The flatness profile indices ν and νf are held
constant at the value of unity. The solid curve (no flow case)
corresponds to the previous result of Nishimura et al [13] and
shows the stabilizing effect of finite β on �′. Due to a factor of
2 difference in the definition of β between our normalization
and that adopted in [13], the x axis scale is expanded by a factor
of 2 in our case. When finite flow velocity is turned on (at the
same values of ν and νf ) we notice two differences from the
no flow result. At low β finite flow has a slightly destabilizing
effect but the threshold β at which the curve begins to sharply
drop to negative values is decreased as seen from the two other

 0

 0.4

 0.8

 1.2

 1.6

0  0.04 0.08  0.12
V0z

ν=1.0, β=0.2

νf=1.0
νf=2.0
νf=3.0

∆’

Figure 5. Change of �′ with V0z for different V0θ profiles.

curves in the figure. Thus one can access higher β values more
easily in the presence of flows. This trend however is strongly
influenced by the shape of the velocity profile. This is shown
in figure 5 where the variation of �′ with V0z is shown at a
fixed value of β = 0.2, ν = 1 and for different values of νf .
As νf increases we see that there is a change in the behaviour
of �′ beyond a threshold value of νf and flow begins to have
a stabilizing effect. This sensitivity to the profile parameter
is also seen for the magnetic field. In figure 6 we show how
�′ changes with the magnetic field flatness parameter ν for a
zero β plasma. As can be seen there is a dramatic rise in the
value of �′ as ν increases, i.e. as the magnetic field profile
gets more peaked. At a given value of ν if νf is raised then
�′ decreases somewhat indicating that raising the peakedness
of the flow profile has a stabilizing influence. The stabilizing
influence is more pronounced at higher values of ν. We have
also studied the effect of finite β on �′ with velocity profiles
of different νf and for a fixed value of ν = 1. It is found that
β has a stabilizing influence on �′ at a given value of ν = 1 in
agreement with the results of [13]. Increasing νf at this value
of ν and for a given value of β provides a further stabilizing
influence but the incremental effect is small. However the trend
changes distinctly when the value of ν is increased to higher
values. As figure 7 demonstrates, for a value of ν exceeding a
critical value increasing β can have a destabilizing effect (e.g.
the curves for ν = 2, 3 with νf = 2). This is very similar to the
turnover behaviour that is observed in figure 5 for the �′ versus
V0z curve where νf is changed keeping β and ν constant.

5. Conclusions

These numerical results suggest that the combination of the
magnetic and velocity profile variations along with finite β

effects can profoundly influence the magnitude of �′ and
consequently the stability of the tearing mode. It should
be mentioned here that in our present formulation we have
not made an independent assessment of toroidal and poloidal
flows on the stability of the mode. Our analysis is based
on the variation of a quantity qv which combines the ratio
of these two velocities in a manner analogous to what the
quantity q does in the case of the equilibrium magnetic
fields. Thus the magnitude of the flow is represented by
qv0 and the velocity shear is varied by changing the profile
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Figure 6. Change of �′ with ν for different V0θ profiles.
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Figure 7. Change of �′ with β for different B0θ profiles.

index νf . The figures illustrating the numerical results
reveal the dependence of �′ on these quantities. This global
dependence of �′ needs to be appropriately accounted for
when estimating stability thresholds or saturation widths of
magnetic islands in the nonlinear Rutherford theory. Our
outer layer equation (14) provides a means for estimating
�′ in the presence of sheared flows particularly for large

aspect ratio machines. When toroidal effects become impor-
tant it is necessary to generalize the equation to account for the
additional geometric effects. The toroidal outer layer equation
will be similar to the cylindrical ones except for the presence
of flux surface averaged metric element terms [13, 16]. Our
present calculations were done with simple model profiles and
in a limited parametric space to highlight the sensitivity of �′

to the equilibrium profile parameters. A more direct utility of
our equation would be to estimate �′ using realistic equilib-
rium profiles obtained from MHD equilibrium codes. We are
presently carrying out such a calculation using profiles from
TOQ in order to get a better understanding of the stability
results obtained from the NEAR code [10].

References

[1] ITER Physics Expert Group on Disruptions, Plasma Control
and MHD, ITER Physics Basis Editors 1999 Nucl. Fusion
39 2251

[2] Hegna C.C. 1998 Phys. Plasmas 5 1767
[3] Sovinec C.R., Gianakon T.A., Held E.D., Kruger S.E.,

Schnack D.D. and the NIMROD Team 2003 Phys. Plasmas
10 1727

[4] Hofmann I. 1975 Plasma Phys. 17 143
[5] Chen X.L. and Morrison P.J. 1990 Phys. Fluids B 2 495
[6] Chen X.L. and Morrison P.J. 1992 Phys. Fluids B 4 845
[7] Wessen K.P. and Persson M. 1991 J. Plasma Phys. 45 267
[8] Finn J.M. 1995 Phys. Plasmas 2 198
[9] Finn J.M. and Sovinec C.R. 1998 Phys. Plasmas 5 461

[10] Chandra D., Sen A., Kaw P., Bora M.P. and Kruger S. 2005
Nucl. Fusion 45 524

[11] Kruger S., Hegna C.C. and Callen J.D. 1998 Phys. Plasmas
5 4169

[12] Sen A., Chandra D., Kaw P., Bora M.P. and Kruger S. 2005
32nd EPS Conf. Plasma Physics (Tarragona, 27 June–1
July 2005) ECA vol 29C P-2.046

[13] Nishimura Y., Callen J.D. and Hegna C.C. 1998 Phys. Plasmas
5 4292

[14] Lutjens H., Luciani J. and Garbet X. 2001 Phys. Plasmas
8 4267

[15] Furth H.P., Rutherford P.H. and Selberg H. 1973 Phys. Fluids
16 1054

[16] Hegna C.C. and Callen J.D. 1994 Phys. Plasmas 1 2308

1243

http://dx.doi.org/10.1088/0029-5515/39/12/303
http://dx.doi.org/10.1063/1.872846
http://dx.doi.org/10.1063/1.1560920
http://dx.doi.org/10.1088/0032-1028/17/2/005
http://dx.doi.org/10.1063/1.859339
http://dx.doi.org/10.1063/1.860238
http://dx.doi.org/10.1063/1.871091
http://dx.doi.org/10.1063/1.872730
http://dx.doi.org/10.1088/0029-5515/45/6/015
http://dx.doi.org/10.1063/1.873152
http://dx.doi.org/10.1063/1.873166
http://dx.doi.org/10.1063/1.1399056
http://dx.doi.org/10.1063/1.1694467
http://dx.doi.org/10.1063/1.870628

	1. Introduction
	2. Newcomb equation in the presence of flow
	3. Numerical evaluation of D'
	4. Results and discussion
	5. Conclusions
	 References

