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The role of impurity radiation in influencing the toroidal flow and radial electric fields �parameters
critical for determining turbulent transport� has been studied on the edge of a tokamak plasma. It is
demonstrated for the first time that the impurities distributed in an asymmetric �poloidally� manner
may lead to significant density and temperature perturbations on magnetic surfaces. These, in turn,
interact with the � dependent toroidal field variations and yield a mean divergence of the stress
tensor driving strong neoclassical toroidal flows. A self-consistent theory of interplay of equilibrium,

fluctuations, neoclassical flows, and E� �B� shear rotation in a tokamak is also presented. It is shown
that the resulting enhanced toroidal velocity shear on the outer radiative layers produces a stabilizing
effect on the well known instabilities �which determine edge transport� such as the drift resistive
ballooning mode, the drift trapped electron mode, and the ion temperature gradient mode. For
various values of the radiation asymmetry parameter, investigation of the turbulent particle flux as
a function of the density gradient shows that the plasma can undergo a bifurcation into a
better-confined state with a peaked density. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2192509�
I. INTRODUCTION

It is now widely recognized that edge physics plays a
key role in determining the global confinement performance
of tokamak discharges. Several experiments have demon-
strated that the transition from L-mode �low confinement� to
H-mode �high confinement� can be affected by plasma flows
in the edge of a tokamak plasma. A great deal of work1 has
been done in recent years on the origin of toroidal flows and
radial electric fields in the tokamak edge plasma. There is
evidence2 that flows with strong shear are induced in the
plasma even in the absence of any net toroidal momentum
injection into the device. This has led to suggestions that the
flows may be associated with neoclassical ambipolar trans-
port effects,1 polarization of the edge plasma by ion loss and
radio-frequency-induced ion compression effects,3 effects as-
sociated with asymmetric neutral gas injection,4 etc. In this
paper we explore the idea that poloidally asymmetric radia-
tion from the tokamak edge plasmas may be responsible for
radial electric fields and toroidal flows. We take our cue from
the physics of the radiative improved �RI� confinement
mode, which is triggered under certain conditions in limiter
tokamaks when seeding impurities like neon or argon are
introduced. This new operational regime was discovered in
the Impurity Study Experiment �ISX-B� tokamak5 and then
confirmed and thoroughly reinvestigated on the Tokamak
Experiment for Technology Oriented Research
�TEXTOR-94�.6,7 Compared to the L �low� confinement

mode, the RI mode is characterized by more peaked density
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and temperature profiles, larger operating densities �N̄e may
be well above the Greenwald limit�, and larger confinement
times ��E may be close to edge localized mode �ELM�
H-mode values�. The mechanisms considered presently to
lead to confinement improvement in the RI mode are largely
based on the reduction of the growth rate of the toroidal ion
temperature gradient �ITG� mode when the plasma Zeff

increases.8 It is argued that the plasma density profile peaks
when the ITG mode gets suppressed owing to the pinching
effects associated with the dissipative-trapped electron
�DTE� mode.9 The density peaking further suppresses the
ITG and the plasma undergoes a bifurcation into the im-
proved confinement, high-density regime. However, signifi-
cantly there is experimental evidence10 that the toroidal flow
velocity in the impurity seeded plasma is larger and more

peaked than in the nonseeded plasma �i.e., has more E� �B�

velocity shear�; yet there has been little effort to explain this
feature or to make use of it to contribute to the stabilization
of the ITG mode and other edge instabilities. In all likeli-
hood, both effects are taking place in RI mode discharges,
namely a direct reduction of the ITG growth rate due to the
increase of Zeff and a suppression of the turbulence due to the
increased velocity shear. It is therefore of significant interest
to examine novel mechanisms associated with impurity in-

jection which contribute to the E� �B� velocity shear profile.
This paper explores one such mechanism. The basic

physics of the generation of neoclassical toroidal and poloi-

dal rotation velocities in high collisionality plasmas goes as
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follows. When an impurity such as neon is injected into a
typical L-mode discharge, it radiates copiously until it
reaches lithium- and beryllium-like states. This occurs typi-
cally in the outer 20%–25% of the discharge minor radius in
relatively small devices. Furthermore, the impurities are not
distributed symmetrically in the poloidal direction but show
in–out and up–down asymmetries;7 quantitatively, the asym-
metry in concentration could be as much as a factor of 2.
This concentration asymmetry leads to large poloidal asym-
metries in the radiation from even thermally stable plasmas.
Asymmetric radiation generates temperature, density, poten-
tial, and parallel ion flow perturbations on the magnetic sur-
face that interact with the theta-dependent toroidal field
variations to produce a mean divergence of the stress tensor.
According to neoclassical theory11 such a mean divergence
drives significant mean toroidal flows on these surfaces. We
note in passing that this effect will be weaker in bigger,
hotter plasmas �like those in a fusion reactor� because the
large parallel electron thermal conduction will prevent the
formation of significant electron temperature perturbations
on a magnetic surface. Since the basic process is at work in
the radiative region only, a significantly enhanced toroidal
velocity shear U�,i

/ �where the prime denotes differentiation
with respect to r� is produced in and near the radiation layer.
This, in turn, increases the radial electric field imposed by
the radial force balance equation Er /B�= �Ti /eB��� ln Pi /�r

+ �B� /B��U�i−U�i and the E� �B� rotation velocity shear

�Er /B��/= �UE�/= �U�,i�/− �� /q��U�,i�/−4�B /B���i
2aiciR

−2p�1
− p�. �Here, we have introduced the notations for thermal
velocity, Larmor radius, and cyclotron frequency of ions:

ci=�Ti /mi, ai=ci /�i, and �i=eB /mi. Other notations intro-
duced are those of the peaking factor: p=LTi

/LN=�i
−1; the

temperature and density gradient scales: LT and LN; the flux
surface average notation � �, �i=R /2LTi

, R, the major radius
of the discharge, and q=rB� /RB�, the safety factor. Further-
more, U�,i�−1.83�Ti /eB���� ln Ti /�r� is the poloidal ion ve-
locity in Pfirsh-Schlüter regime.11� Following recent theoret-

ical work,12 we expect the radiation asymmetry driven E�

�B� shear flow to suppress the most important instabilities in
the radiative edge, namely the ITG,13 DTE,8 and high-m drift
resistive ballooning �DRB�14 modes. This leads to a reduc-
tion in particle and thermal convective fluxes that sharpens
the density and temperature profiles locally. If this sharpen-
ing leads to further suppression of the turbulence, then the
plasma may bifurcate into a better-confined state.

The remainder of the paper is organized as follows. The
basic equations and coordinate system used are described in
Sec. II. In Sec. III, the general formulation of neoclassical
toroidal flow and ordering of various terms are given. In Sec.
IV, we discuss the applications of our theory to experiments.
A brief summary of our results is given in Sec. V.

II. BASIC EQUATION

We start with Braginskii’s two-fluid equations15 includ-
ing the Mikhailovskii and Tsypin corrections to the stress
tensor term in the ion momentum equation.16 These equa-

tions are the ion continuity equation, the ion and electron
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momentum equation, the energy equations for ion and elec-
tron species, the parallel electron momentum equation,

�Ni

�t
+ �� · NiU� i = 0, �1�

mjNj	 �

�t
+ U� j · �� 
U� j

= − �� Pj − �� · �� j + ejNj�E� + U� j � B� � , �2�

3

2
Ni	 �

�t
+ U� i · �� 
Ti + Pi�� · U� i = − �� · q� i, �3�

3

2
Ne	 �

�t
+ U� e · �� 
Te + Pe�� · U� e = − �� · q�e − Qrad�	� , �4�

where j= i ,e, the charge ej =e for the ion and ej =−e for the
electron, �� i is the ion stress tensor given by Braginskii15 and
Mikhailovskii and Tsypin16 �see the Appendix�, 
cx is the
charge exchange rate, Qrad�	� is the radiation power density
loss due to impurities radiation, q� i=−��i��Ti−��i��Ti

+�xin̂��� Ti and q�e=−��e��Te−��e��Te+�xen̂��Te are the
ion and electron diffusive thermal fluxes, ��i

=3.9�NiTi /mi
i� and ��e=3.2�NeTe /me
e� are the parallel ion
and electron diffusion coefficients, ��i and ��e are the per-
pendicular ion and electron diffusion coefficients, �xi

=5NiTi /2mi�i and �xe=5NeTe /2me�e are the cross field dif-
fusion coefficients �diamagnetic heat flux� associated with
ions and electrons; other plasma notations are standard. Note
we have neglected the electron energy transferred through
the equilibration rate process since 1� �e

mfp/qR�2�me /mi is
taken in the analysis �where e

mfp is the electron mean free
path�.

We use the coordinate system �p̂ , b̂ , n̂� that is tied to

magnetic field, n̂=B� /B, the unit vector along the magnetic
field lines, p̂ is orthogonal to the magnetic surface, and

b̂= n̂� p̂ is the binormal component. The unit vectors

p̂ , b̂ , n̂ are related to the flux coordinates ê� , ê	 , ê� by

p̂ = ê�, b̂ = 	B�

B

ê	 − 	B	

B

ê�,

�5�

n̂ = 	B	

B

ê	 + 	B�

B

ê�.

The differential operators can be written as

p̂ · �� � h�
−1 �

��


�

�r
 L�

−1,

b̂ · �� � 	B�

B

h	

−1 �

�	


1

r

�

��
 r−1, �6�

n̂ · �� � 	B	

B

h	

−1 �

�	


1

qR

�

��
 �qR�−1,

where h�=1/h�B	, h	=JB	, J=h�h	h� is the Jacobian of the

transformation, � is the poloidal magnetic flux,	 is the gen-
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eralized poloidal angle, � is the toroidal angle, 

=h	B� /h�B	rB� /RB	 is the pitch of the field lines, and
q= �
d	 is the safety factor. We note that h�=R0�1
+� cos 	� and B�=B�0�1−� cos 	� in case of a large aspect
ratio tokamak with a circular cross section, where �=r /R0 is
the inverse aspect ratio, r, and respectively R0 the minor and
major radii. In this paper we use the notations and ordering
as given in the paper by Rogister17 unless otherwise
mentioned. We note that these notations can easily be
identified with the standard tokamak coordinates system
��−radial�r� ,	−poloidal, ��� ,�−toroidal���� in the limit of
a large aspect ratio tokamak with a circular cross section and
toroidal symmetry �� /���0�.

III. NEOCLASSICAL TOROIDAL FLOW

We now present the basic model calculation demonstrat-
ing these effects. We first examine the toroidal flow, which
may be driven due to poloidally asymmetric radiation from
tokamak plasma. The scaling relevant to the edge is defined
as17

r

qR


ci

qR
i


L�

r
 	me

mi

1/4

 	 ai

L�

1/2

 � � 1 
Ln

L�


LT

L�

. �7a�

We order the ion flow velocities with respect to the ion ther-
mal velocity as follows:17

U�i  �ci, U	i  �2ci, U�i � 0, �7b�

where 
i is the ion collision frequency �=10−12

�ZeffNi /Ti
3/2�2Ai�1/2 if Ni is expressed in m−3 and Ti in eV;

Ai is the ion atomic mass�, mi�me� the ion �electron� mass,
and � a small parameter that we use later for expanding the
basic equations and calculating the neoclassical toroidal flow.

Summing up the projection of ion and electron momen-
tum equations onto toroidal direction, we obtain

J� =
1

B	

ê� · ��� · �� i + miNi	 �

�t
+ U� i · �� 
U� i� . �8�

The convective term in the above momentum Eq. �8� can be
expressed as

Niê� · ��U� i · �� �U� i�

= − J−1U�i	 �

��
�h	h�NiU�i� +

�

�	
�h�h�NiU	i�


+ �Jh��−1	 �

��
�h	h�

2 U�iU�i� +
�

�	
�h�h�

2 U	iU�i�
 . �9�

Here we have made use of a tensorial relation

�� ê�=−ê��� ln h�.
In a general coordinate system, the continuity Eq. �1� is
given as
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�Ni

�t
+ J−1	 �

��
�h	h�NiU�� +

�

�	
�h�h�NiUi	�
 = 0. �10�

Combining Eqs. �8�–�10� and integrating the resulting ex-
pression over magnetic flux surfaces leads to the relation

� Jh�

d	

2�

��miNiU��
�t

+ � ê� · ��� · �� i�Jh�

d	

2�

+
�

��
� Jh�h�

−1miNiU�iU�i
d	

2�
= � J�h	h�

d	

2�
,

�11�

where the third term on the right-hand side �RHS� of Eq. �11�
corresponds to the radial angular momentum flux.

In the absence of neoclassical radial convection effects
and radial current, Eq. �11� can be rewritten as

� Jh�ê� · ��� · �J�d	 =
�

��
� Jh�h	

−1���d	 = 0, �12�

0 = � ê� · ��� · �� i�Jh�d	

=
�

��
� h�

−1Jh�d	��3−4,i���

+
�

��
� h�

−1Jh�d	���1−2,i����

= −
mi

e

�

��
�h�

2 B�
2 � d		 Pi

B4

�

�	
�U�iB� +

8

5

q�i

B4

�B

�	

�

−
12

10

mi

e

�

��
�h�

2 B�
2 � d		 
i

�i

B	J

B�

Pi

B2h�
−1�U�i

��

� . �13�

We expand the equilibrium quantities in powers of the in-
verse aspect ratio �i.e., ��� and seek solutions of the form

F��,	� = F�0�����1 + �f �1���,	� + O��2�� ,

�14�
B/B0 = �1 − � cos 	�, b�1���,	� � − � cos 	 ,

where F���=Ni���, Ti
�0����, ����, U� i,e���, or B���, and the

equilibrium variables are functions of � the poloidal mag-
netic flux alone, whereas f�� ,	�=ni�� ,	�, ti�� ,	�, ��� ,	�,
u� i,e�� ,	�, or b�� ,	� are the perturbed variables that are func-
tions of � and 	, the generalized poloidal angle.

To bring the asymmetric radiation effects in generation
of neoclassical toroidal flow, we model the impurities power
radiation as a function of poloidal coordinate as

Qrad = Qrad
�0��1 + �1 cos�	 − 	*�� � Qrad�1 + g�	,	*�� ,

�15�

where Qrad
�0� is the averaged radiation power density, where 	

is the poloidal angle, 	=0 corresponds to the low field side
midplane, 	* to the position of maximum radiation, and �1 to
the degree of asymmetry.
Substituting Eq. �14� into Eq. �13�, we get
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� ��n�1� + ti
�1� − 4b�1��	 �u�i

�1�

�	
+ U�i

�0��b�1�

�	



− 1.6	�i
�0�B	

�0�

B0

1

h	
�0�	 �ti

�1�

�	

�b�1�

�	

� d	

2�

+
12

10

Pi
�0�

B0
2


i
�0�

�i
�0�

h	
�0�

B�0

1

h�
�0�

�U�i
�0�

��
= 0, �16�

where pj
�1�= pj / Pj

�0�, nj
�1�=nj /Nj

�0�, tj
�1�= tj /Tj

�0�, ��1�=e� /Ti
�0�

are the normalized perturbed variables, respectively, and u�i
�1�

is the perturbed parallel ion velocity, 	�i=3.9Ti
�0� /mi
i

�0�,

i

�0� is the ion collision frequency, and j= i ,e.
To evaluate the relation between ion temperature, poten-

tial, and density perturbations, we first write the electron
temperature perturbation from electron energy equation. In
the limit ��e /
e��rLTe

/q2R2��1 �where parallel electron
thermal conduction �Te /me
eq

2R2 dominates over convec-
tion processes ��Te /me�e��1/rLTe

��, the poloidally asym-
metric electron temperature perturbation is given by the
steady-state heat balance equation

�� · q�e = − Qrad
�0��r��1 + �1 cos�	 − 	*�� . �17�

Here q�e=−��,e��Te−��,e��Te is the heat flux. Although the
perpendicular heat conductivity ��,e may be anomalous, the
classical parallel electron thermal conductivity ��,e

=3.2NeTe /me
e plays by far the dominant role if the electron
temperature is not uniform on the magnetic surface.15 For
�1��1, the steady-state poloidal variation of the electron
temperature due to asymmetric radiation is

te
�1� = − ��0� cos�	 − 	*� , �18�

where ��0��r�=Qrad
�0��1q2R2 /Te

�0���,e and te
�0�= te�	� /Te

�0����. It
is to be noted that the value of ��0� is larger at smaller elec-
tron temperature. The electron temperature in the edge of all
small devices is much smaller than the big devices like Joint
European Torus �JET�. Thus due to a small edge electron
temperature and a smaller parallel conduction of heat �both
of which influence the generation of asymmetry in the radia-
tion and the poloidal electron temperature inhomogeneity�,
the effects are much stronger in smaller devices as compared
to big machines like JET. Second, the electron temperature is
typically Te

�0��150 in the edge of the bigger machine and
density profile is stepped. This region is stable to ITG mode.
Where as the high temperature of electron �i.e.,
Te

�0���70–150�eV� occurs deep inside the edge of smaller
devices. The transport in this region is mainly controlled by
ITG mode. The flow generated due to asymmetric radiation

at higher temperature can stabilize the ITG mode via E� �B�

shear rotation. The poloidal asymmetry of the equilibrium
electron temperature could also be produced by the Shafra-
nov shift of nonconcentric magnetic surfaces; however, that
effect turns out to be quantitatively smaller than the one dis-
cussed above.

In the large mobility limit me /mi→0, the poloidal angle

�	� dependent electron temperature perturbation combines
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with the leading order parallel electron momentum equation
eNeE� +��Pe+0.71Ne��Te=0 to yield the modified electron
adiabatic relation

�i�
�1� = n�1� + 1.71te

�1� = n�1� − 1.17��0� cos�	 − 	*� , �19�

where �i=Ti /Te.
The leading order parallel ion momentum equation �i.e.,

eNi���+��Niti+nTi=0� yields

ti
�1� = − n�1� − ��1�

= − �1 + 1/�i�n�1� + 1.71���0�/�i�cos�	 − 	*� . �20�

We next evaluate the toroidal flow perturbation in terms of
density and ion temperature perturbations from ion continu-
ity equation. In leading order, the perpendicular ion flow and
the continuity Eq. �1� read

b̂ · U� i = U�i =
1

eBNi
h�

−1	 �

��
Pi + eNi

��

��

 ,

�21�

p̂ · U� i = U�i = −
1

eBNi
	B�

B

h	

−1	 �

�	
Pi + eNi

��

�	

 ,

and

�� · �NiU� i� =
1

J

�

�	
�h�h�NiU	i� = 0. �22�

Combining Eqs. �21� and �22�, we obtain

�

�	
	NiU�i

B

 = 	h�B�

e

 �

�	
� 1

B2	 �Pi

��
+ eNi

��

��

� , �23�

where the U	i= �B� /B�U�i
− �B	 /B�U�i relation is used. Equa-

tion �23� offers the relation between �u�i
�1� /�	, n�1�, and b�1�. It

follows by combining Eqs. �23� and �20�

�u�i
�1�

�	
= − U�i

�0� �

�	
�n�1� − b�1��

−
Ti

�0�

eB
h�B��	 e

Ti
�0�

���0�

��
−

1

�i

� ln Nj
�0�

��

 �n�1�

�	

− 2	 e

Ti
�0�

���0�

��
+ �1 + �i�

� ln Ni
�0�

��

 �b�1�

�	

−
1.71��0�

�i

� ln Ni
�0�

��
sin�	 − 	*�� . �24�

We now derive the relation between the density n�1�, the tem-
perature ti

�1�, and magnetic perturbations b�1� from the ion

energy equation �3� and obtain
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− � 1

B0
h�

−1���0�

��
+ 	B	

�0�

B�
�0�
U�i

�0��h	
−1�n�1�

�	

− �	3

2
�i − 1
	Ti

�0�

eB0

h�

−1� ln N�0�

��
� e

Ti
�0�h	

−1���1�

�	

+
3

2
� 1

B0
h�

−1���0�

��
+ 	B	

�0�

B�
�0�
U�i

�0��h	
−1�ti

�1�

�	
− 5	Ti

�0�

eB0



�	h�
−1� ln Ti

�0�

��

h	

−1�b�1�

�	
= 	�i

�0�	B	
2

B�
2 
h	

−2�2ti
�1�

�	2 . �25�

The expressions of ��1�, ti
�1� from Eqs �21� and �22�, and

b�1�=−� cos 	 inserting into �25�, we obtain the following
relation in n�1�:

�4UE
�0� + 	3

2
�i − 1
U*i

�0� + 4	 B	

B�
�0�
U�i

�0�� �n�1�

�	

+
3

2
� 1.71��0��UE

�0� + 	3

2
�i − 1
U*i

�0�

+ 	B	
�0�

B�0�

U�i

�0��sin�	 − 	*� + 5��iU*i
�0� sin 	

=
r

q2R2�2	�i
�0��

2n�1�

�	2 + 1.71	�i
�0���0� cos�	 − 	*�� .

�26�

Here UE
�0�= �1/B0�h�

−1���0� /��=−Er /B0 and U*i
�0�

= �Ti
�0� /eB0�h�

−1� ln Ni
�0� /�� are the E� �B� and ion diamag-

netic drifts, respectively.
We write the solution of Eq. �26� in the form of

n�1� = �1 cos 	 + �2 sin 	 , �27�

where the coefficients �1 and �2 are given by

�1 =
QZ − YS

Q2 + S2 and �2 = −
QY + SZ

Q2 + S2 �28�

and

Q = 4UE
�0� + 	3

2
�i − 1
U*i

�0� + 4	 B�

B�

U�i

�0�, �29�

S = 2	�i	 r

q2R2
 , �30�

Y = −
3

2
� 1.71��0��UE

�0� + 	3

2
�i − 1
U*i

�0�

+ 	B�
�0�

B�0�

U�i

�0��sin 	* − 1.71	�i
�0� r

q2R2��0� cos 	*, �31�

Z = 5��iU*i
�0� +

3

2
� 1.71��0��UE

�0� + 	3

2
�i − 1
U*i

�0�

+ 	B�
�0�

B�0�

U�i

�0��cos 	* − 1.71	�i
�0� r

q2R2��0� cos 	*. �32�
For large aspect ratio tokamaks with circular cross sections,
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in which case 	=� and b�1�=−� cos �, h�
−1� /��� /�r,

�B� /B�h	
−1� /�	r−1� /��, and by substituting the values of

ti
�1�, u�i

�1�, and n�1� as a function of poloidal angle ��� from
Eqs. �20�, �24�, and �27� into Eq. �16�, we get the equation
for the toroidal flow in the presence of asymmetric radiation
as

�U�,i

�r
+ �0.2q2 Ti

eB�
	 � ln Ti

�r

2

��1 − 40.7	1 +
0.94

�i
+

0.22

�i
2 
��0�

�
cos �*�

− 4.45	 ci
2�i

R2
i
2
��0�

q
�cos �* − sin �*�

− 0.6	1 −
0.96

�i

 Ti

reB�

� ln Ti

�r

�i


i
��0�� sin �*� = 0,

�33�

with Q /S1.28�q2R2
i /�irLTi
��1 and the relation U�i

=UE+ �1+�i�U*i+ �B� /B��U�i.
Here the loss of momentum due to charge exchange with

neutrals has been ignored in the derivation of Eq. �33�. This
is acceptable when the neutral density has a value below a
critical neutral density. This may be estimated by comparing
the momentum loss via the charge exchange term
miNi
cxU�,i with �2i�

2U�,i /�r2 �where �2i=12Pi
i /10�i
2�.

This comparison leads to the inequality N0�3.6�i
2
i / �LT

2

��v�cx� for neglecting the charge exchange effects; here

cx����v�cxN0� /3 is the charge exchange rate, N0 is the neu-
tral density, and ��v�cx�10−14 m3 s−1. Note that in the ab-
sence of asymmetric radiation, we recover the results of
Refs. 11, 18, 19, and 22. Among the radiation asymmetry
driven terms, the second �with the coefficient 4.45�
provides the dominant contribution. Going back to the
derivation, its origin is a component of the divergence
of the Mikhailovsky-Tsypin tensor proportional to

−1.6�	�i
�0�B	

�0� /B0h	
�0��� ��ti

�1� /�	���b�1� /�	�d	 /2�, where

ti
�1�= ti��� /Ti�r� and b�1� is the theta � dependent component

of the toroidal field. Note that parallel force balance on the
electron and ion fluids and the assumption of quasineutrality
leads to the relationship ti

�1� te
�1���0�, where ��0� is related

to the radiation asymmetry parameter �1. Order of magni-
tude wise, ��0�Qrad

�0��1q2R2 /Te
�0���,e

�0��Pe0
core�1 / Pe0

edge
e�E�
��qR / f�2, where  f is the electron mean free path, �E is the
energy confinement time, and Pe0

edge and Pe0
core are the electron

pressure at the edge and at the core, respectively.

IV. APPLICATIONS OF THE THEORY

We solve Eq. �33� under the local approximation where
�r ln U�i��r ln Ti�−1/LT. With these approximations, the

�0�
steady-state equation for U�,i simplifies to
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�U�,i

�r
= �− 0.8

q3�i
2

�

�ici

R2

��1 − 40.7	1 +
0.94

�i
+

0.22

�i
2 
��0�

�
cos �*�

+ 4.45	 ci
2�i

R2
i
2
��0�

q
�cos �* − sin �*�

− 1.2	1 −
0.96

�i

q�i

�2

�ici

R2

�i


i
��0�� sin �*� . �34�

We now apply our results to TEXTOR-94 RI mode
discharges.6–8 Edge parameters are typically Ti

�0�=150 eV,
Te

�0�=80 eV, Ni
�0�=1�1019 m−3, and LTi

0.05 m at the ra-
dius r=0.35 m outside which most of the seeded impurity
radiation takes place; moreover, R=1.75 m, a=0.46 m,
B=2.25 T, q�3, and Ai=2 �atomic mass�. In Fig. 1 the nor-
malized toroidal flow �LTi

��rU�,i�� /ci is plotted as a function
of the angle �* �the location of maximum radiation� for vari-
ous values of the asymmetry parameter ���0�� and a fixed
value of Zeff=1.5. This figure demonstrates that the toroidal
flow may be significantly enhanced by the asymmetric radia-
tion even for values of ��0� lower than 0.1%. It is to be noted
that the radiation asymmetry and the parallel electron ther-
mal conduction effects determine ��0� and is therefore likely
to be smaller in bigger, hotter devices like JET, ITER, etc.
We may thus conclude that flow generation due to radiation
asymmetry effects may not be important for hot edge plas-
mas.

We now present a semiquantitative explanation of how a
small poloidal asymmetry in the radiated power can modify
the basic characteristic of L-mode discharges and then lead
to a L-RI mode transition. We follow the procedure used by
Tokar8 to study the bifurcation of the tokamak plasma;
namely, we consider the stationary continuity equation and
balance the convective fluxes associated with the various
components of the turbulence with the particle sources at the

FIG. 1. Plot of the normalized toroidal flow �LTi
��rU�,i�� /ci as a function of

��* �the poloidal location of maximum radiation due to the seeded impurity�
for a fixed value of Zeff=1.5 and various values of the temperature asym-
metry parameter ��0�: ��0�=1.0�10−5 �solid line�, ��0�=5.0�10−5 �dashed-
dotted line�, ��0�=1.0�10−4 �dotted line�.
edge.
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Particle transport as a function of peaking factor �p� can
be described from the steady-state continuity equation

G�p� = � − r−1�
0

r

Serdr, � = �ITG + �DTE + DDRBM,

�35�

where �ITG�−DITG�rNe, �DTE�−DDTE��rNe+Ne�r ln q�,
and �DRBM�−DDRBM�rNe are the particle fluxes associated
with ITG, DTE, and DRBM modes, respectively, and Se is
the particle source/unit volume near the edge.

We consider a simple case where the spatial symmetry

breaking term due to E� �B� shear rotation reduces the linear
growth of the instabilities12 and modifies the steady-state
condition in the continuity equation to yield a new expres-
sion for the peaking factor p=1/�i.

8 In the presence of

E� �B� shear rotation, the reduced linear growth rate of the
background instabilities has the general form �=�ln�1−�2�,
where �ln is the linear growth rate and �ln�

2 is the shear
damping rate; ��k�UE

/ Wk /�ln is the average radial symme-
try breaking term, with k� the poloidal wave vector and Wk

the radial width of the unstable mode.12 As stated earlier we
assume that the ITG, DTE and high-m DRB modes dominate
the transport of ionized particles at the plasma edge. The
linear growth rates of these modes are well known and may
be described as follows:

�a� The ITG growth rate13

�ITG = �ln
ITG�1 − �2� , �36a�

where �ln
ITG��0

ITGFITG�p�, FITG�p�
=��1−0.17p−0.25�ip

2−1.36/�i�, and �0
ITG

=2�k��scs /R��i
1/2 , k��s�0.05.

�b� The DTE mode growth rate8

�ln
DTE � �0

DTEFDTE�p� , �36b�

where FDTE= p and �0
DTE=8�k��scs /R�2�r�e�i /R
e�f tr.

�c� The linear growth rate of the high-m DRB mode

�ln
DRBM � cs��2/RLn� , �36c�

�ln
DRBM=�0

DRBFDRB�p�, �0
DRB=2cs /R�i

1/2, FDRB�p�= p1/2, and
kr

−1��2�q�s�2�R
e /ce��me /mi�1/2�i
1/2p1/2 is the radial corre-

lation length.14

Particle transport due to these instabilities is estimated
from the mixing length argument, which yields DAN

��ln /kr
2. The equation for the peaking factor that finally
emerges is
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G�p� = �0� p

�i
1/2	F�p� −

�E�B

�0
ITG 


+ 2	 r

R

3/2�ecs


eR
	p − 0.5

ŝ

�i�

	p −

�E�B

�0
DTE


+ 2��q�2	me

mi

1/2	R
e

ce

p3/2	p1/2 −

�E�B

�0
DRBM
� − Ŝ = 0.

�37�

Here the three first terms represent the particle fluxes related
to the ITG, DTE, and DRB mode instabilities, including the

reduction factor associated with E� �B� shear ���ln�2

��E�B���UE�/�2 /�ln� and particle pinch associated with the
DTE mode ��0.5ŝ /�i��; the last term represents the inward

particle flux originating from the edge; Ŝ=r−1�0
rSerdr ,

2.5�1019 m−2 s−1,8 �0=8Necs��s�i /R�2, and k��s0.5 are

assumed throughout. If E� �B� shear stabilization is strong
enough to completely stabilize any of the instabilities, the
corresponding contribution to the particle flux is taken as
zero.

Figure 2 shows a plot of G�p� for a fixed value of
Zeff=1.5 and various values of the radiation asymmetry pa-
rameter �1. It is noted that for low values of �1, G�p� van-
ishes for three values of p, including a low one; thus the
discharge can settle in a stable stationary state with a low
peaking factor and stay there without any bifurcation. This is
because we have chosen a value of Zeff that is lower than that
considered by Tokar8 so that the bifurcations studied by him
are not operative. Even at these lower values of Zeff, the
plasma can, however, display bifurcations into a peaked
density state when �1 exceeds about 9%; in these cases
the equation G�p�=0 has only one real root, which corre-

FIG. 2. The turbulent particle flux associated with ITG, DTE, and DRB
modes as a function of the peaking parameter p=1/�i for ��0�=1.0�10−5

�solid line�, ��0�=1.0�10−4 �dashed�, ��0�=3.7�10−4 �dashed-dotted�, and
��0�=4.0�10−4 �dotted�.
sponds to a relatively high peaking factor. The reason for the
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density peakedness is the considerable increase of the veloc-
ity shear at higher values of �1; that reduces the growth rates
�e.g., F�p�−�E�B /�0� at constant p and hence requires
higher values of peaking parameter to balance the particle
source.

V. CONCLUSIONS

In conclusion, we have shown that small poloidal asym-
metries in the radiation can lead to significant sheared neo-
classical toroidal flows in an impurity seeded tokamak
plasma. We have shown that these flows contribute to the
stabilization of edge instabilities and lead to the bifurcation
of the plasma into an improved confinement mode, viz., the
RI mode. Such effects are likely to be important only for
tokamak plasmas with significant collisionality in the edge
region. The transition triggered by poloidal asymmetries
takes place at lower plasma dilution factors than that trig-
gered by the reduction of the ITG growth rate at large value
of Zeff. We have carried out the calculations in the collisional
neoclassical limit; they are applicable to the outer 25% of the
plasma where radiative effects are large. However, the
sheared flow may extend to the plasma interior, either
through various possible momentum pinch mechanisms �see,
e.g., Ref. 20� or through inward propagation of a front owing
to increased variation of �Ti /�r and �Er /�r �see Sec. 5.3 of
Ref. 21�. We have neglected the anomalous toroidal momen-
tum relaxation for the strongly collisional edge in the present
analysis. The anomalous radial viscosity can contribute to
momentum relaxation but it is not necessary that the steady-
state radial electric field has anomalous feature. Even if it is
so; we believe that there must be some contribution from
neoclassical effects on steady-state toroidal flow and the
electric field. In the our paper, we derive the expressions of
neoclassical radial electric and toroidal flows that can be
compared to the experimental results in a collisional edge
plasma to pin down whether the neoclassical radial electric
field and toroidal flows have neoclassical or anomalous
characteristics.22

APPENDIX: THE STRESS TENSORS „�J I…

In the limit 
i /�i�1, the stress tensor15 with the
Mikhailovskii and Tsypin16 correction can be split into three
parts:

�J i = �J0,i + �J3−4,i + �J1−2,i. �A1�

The parallel stress tensor or diagonal matrix ��J0i�, the gyros-
tress tensor ��J3−4,i�, and the perpendicular stress tensor
J

16,17
��1−2,i� are given as follows. The parallel stress tensor is
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�J0i = − 3�0i	n̂n̂ −
IJ

3

�n̂ · �� U� i · n̂ −

�� · U� i

3
+ 1.615 �

2

5Pi
	n̂ · �� q� i · n̂ −

�� · q� i

3

 + 0.615

�
2

5Pi
� �− 	n̂ · �� q� i

* · n̂ −
�� · q� i

*

3

 +

q� i · �� ln Pi

3
−

�2q� i − q� i
*� · �� ln Ti

3
�� . �A2�

The gyrostress tensor is

�J3−4,i = − �3,i��p̂p̂ − b̂b̂��b̂ · �� U� i · p̂ + p̂ · �� U� i · b̂ +
2

5Pi
�b̂ · �� q� i · p̂ + p̂ · �� q� i · b̂�� − �p̂b̂ + b̂p̂�

��p̂ · �� U� i · p̂ − b̂ · �� U� i · b̂ +
2

5Pi
�p̂ · �� q� i · p̂ − b̂ · �� q� i · b̂�� + 2�p̂n̂ + n̂p̂�

��b̂ · �� U� i · n̂ + n̂ · �� U� i · b̂ +
2

5Pi
�b̂ · �� q� i · n̂ + n̂ · �� q� i · b̂�� − 2�b̂n̂ + n̂b̂�

��p̂ · �� U� i · n̂ + n̂ · �� U� i · p̂ +
2

5Pi
�p̂ · �� q� i · n̂ + n̂ · �� q� i · p̂��� �A3�

The perpendicular stress tensor

�1−2,i = − �1,i��p̂p̂ − b̂b̂��p̂ · �� U� i · p̂ − b̂ · �� U� i · b̂ +
2

5Pi
�p̂ · �� q� i · p̂ − b̂ · �� q� i · b̂�� + �p̂b̂ + b̂p̂�

��p̂ · �� U� i · b̂ + b̂ · �� U� i · p̂ +
2

5Pi
�p̂ · �� q� i · b̂ + b̂ · �� q� i · p̂�� + 4�p̂n̂ + n̂p̂�

��p̂ · �� U� i · n̂ + n̂ · �� U� i · p̂ +
2

5Pi
�p̂ · �� q� i · n̂ + n̂ · �� q� i · p̂�� + 4�b̂n̂ + n̂b̂�

��b̂ · �� U� i · n̂ + n̂ · �� U� i · b̂ +
2

5Pi
�b̂ · �� q� i · n̂ + n̂ · �� q� i · b̂��� , �A4�
where �0,i=0.96Pi
i
−1, q� i=−Pi /mi�3.9/
in̂n̂ ·�� Ti−5/2�in̂

��� Ti−2
i /�i
2n̂� �n̂��� Ti�� the heat fluxes, q� i

*

=1.04Pi /mi
in̂n̂ ·�� Ti, the indexes 3–4 and 1–2 refer to
Braginskii’s coefficients15 �3,i= Pi /�i, �1i=3Pi
i /10�i

2,
�2i=4�1i, and �4i=2�3i.
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