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The local dispersion relation for waves with frequencies in the range of the diamagnetic frequencies
w]* and parallel wave numbers satisfying the conditidgss/ws ~1 and gRk>1 has been
obtained in the framework of kinetic theory keeping the equilibrium density, temperature, and
parallel velocity gradients into accourjtig the species indexR the connection length, ard the

speed of sound The analysis applies to the cases where the radial scale of the oscillations is
comparable to or smaller than the equilibrium length scale. As the velocity-space integral appearing
in the dispersion relation can be calculated only in asymptotic limits, exact instability criteria are
obtained by means of the Nyquist diagram. DefiniRg=T;/T., 7;=0,InT,/4,InN;, and ¢

=d,U;;/csd, InN;, it is found that unstable modes appear fgr>1+ V1-22/(1+ 7)) (which
agrees with the standard ion temperature gradient instability conditioi2 if {=0) and 0< 7,
<1-+1-2%/(1+7) (the casen <0 has not been analyzed.e., for = 7;(2— %) (1+ 7))

(which doesnot agree with the standard parallel velocity shear instability conditior v2 if #;

=0). The center of the unstable range is characterized by the relatighvs = — {/2(1+ ;) from

which it follows thatqRk>1 is verified if[k sas/2(1+ 7)) JqRd, U, i /cs>1 (Kg is the wave vector
component in the direction of the binormarhe oscillations are not tied, under those conditions, to
any particular rational surface; the roles of magnetic shear, trapped electrons, ion gyroradius and
torus curvature are moreover negligible. The growth/decay rate of the oscillations has been
calculated in the neighborhood of margin@h)stability; the excitation/damping mechanism is
(inverse ion Landau damping. The wave frequency is a function of position so that localization of
a wave packet results from a competition between linear growth and disténtare breaking in
smaller eddies Applications of the theory include the transition from the edge localized mode-free
to enhanced D alpha high confinement regime and intermittenc20@ American Institute of
Physics. [DOI: 10.1063/1.1677177

I. INTRODUCTION instability; that is confusing since the Kelvin—Helmholtz
mode is generally triggered by a radial shear in pleepen-

We noted recently that the experimental conditions leadgjcular (usually poloidal velocity; the Kelvin—Helmholtz
ing to the transition from ELM{edge localized modgfree  gppellation is abandoned in this wofk.
to EDA (enhanceda) behavior in ALCATOR C-Mod™*H Motivated by those results, we have undertaken to work
(high Conflnemer.)tmode discharges do approx!mately out a rigorous theory of
match those required for onset of the parallel velocity shear
(PVS) instability according to D’Angelo’s criterichapplied (i)  the linear parallel velocity shear instability in the
to the pedestal Moreover, the mode number of the quasico- presence of a temperature gradiéwhich previous
herent(QC) mode which appears in the EDA phase is in the theories did not take into accourgnd its relation to
range expected for the PVS oscillations that are predicted to the ion temperature gradie(liTG) instability;
become first unstable. The washbo&B) mode observed (ii)  the nonlinear saturation of the new ITG-PVS instabil-
in relation to type Il ELMs in the Joint European Tor&T) ity and the related anomalous particle, momentum and
may be triggered by the same instabifit.simple picture of energy fluxes.
the driving process has been given by Catal.” in the
limit T;/T,<1. Smith and von Goeler extended the analysisAs a unique theoretical description cannot encompass all
of D'Angelo to include wave—particle resonant interactfon. equilibrium situations, the conditions considered are those
[In Refs. 4—8, the parallel velocity shear instability was re-prevailing at the edge of ALCATOR C-Mod and many other
ferred to as the Kelvin—Helmholtz, or the parallel velocity tokamaks, with the exception of the ratio of kinetic to mag-
shear Kelvin—Helmholtz, or the parallel Kelvin—Helmholtz netic pressure which is artificially boosted on the ground that
the ratio of the amplitudes of the oscillating magnetic and
dElectronic mail: a.rogister@fz-juelich.de electric fields depends on the magnitudes of the wave vector
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ferent from that found by D’Angelo in the framework of the

the experimental results concerning the QC mode, shortdwo fluids equations, where a bifurcation from two oscillat-
wavelengths are expected to be generated in nonlinear pring (Rew’'#0, Imwo’=0) to a damped and a growing

cesses.
The local dispersion relation for ITG-PVS oscillations in

(Rew'=0, Imw'+#0) solutions occurs at instability thresh-
old. The Vlasov—Boltzmann equation on which our analysis

the presence of density, temperature, and parallel velocitis based is a first principle equation; the validity of the two

gradients has been derived from an appropriate expansion
Vlasov's equation. The normalized frequeney: (w— wg
—kU; )/ oy (wherewg is theEXB Doppler frequencyw?
the electron diamagnetic frequency, ang, the parallel flow
velocity) and the instability criterion depend only én/kp,

fdtids equations relies on certain hypothesis which are not
always fulfilled. It is remarkable that the values of
d;U;/csd, InN; andk,cs/ws obtained at marginalin)sta-
bility from the two approaches are nevertheless comparable.
The paper is organized as follows: In Sec. Il, we define

the ratio of the wave vector components a|0ng the directi0n§nd order the dimensionless variables which are relevant to

of the magnetic field and of the binorm@he binormal unit
vector is perpendicular t8 and to the normal to the flux
surface. Transition to instability is studied by extending the
Nyquist diagram methddemployed by Goldston and Ruth-
erford for conventional ITG modé%to situations where’
=9,U /csd; INN;#0 (cg=\T/m; is the sound speed

It is found that unstable modes appear both #pr-1
+V1-22%(1+7) and < <1—\1-%(1+7) (where
7,=T;/T,; the caseyp;= g, InT;/d, In N;<O0 is not discussed
Those inequalities can be recast@&s> 7,(2— 7,)(1+ 7).
At marginal (in)stability, the mode frequency in the ion rest
frameon’=w—wg—kU,; is o' =(1- 7,/2)ws and the par-
allel wave number is given by cs/wk=—¢/2(1+ 7); it
follows that qRK; is much larger than unitygRk>1) if
[Kgag/2(1+ 7)) |qRJ, U, i/cs>1. We have suggested
elsewherg that the latter condition is met in the H-mode
pedestal of ALCATOR C-Modand, most likely, of many
other tokamaks The oscillations are not tied, under those

both the equilibrium and the oscillations as powers of a suit-
able expansion parametés); the terms in the equilibrium
and perturbed Vlasov—Boltzmann equations are ordered ac-
cordingly. The Vlasov—Boltzmann equations are solved or-
der by order in Sec. lll where we obtain the local dispersion
relation; electrostatic theory is here adequate owing to the
low kinetic to magnetic pressure rat®=2uq(P.+ P;)/B?

and tok, a;<1 (k, = Vki— a7 is the perpendicular compo-
nent of the wave vector anal is the ion gyroradius Mar-
ginal instability is discussed in Sec. IV with the help of the
Nyquist diagram. The growth rate near marginal instability is
calculated in Sec. V. The relations between the fluctuating
magnetic field components and electric potential are obtained
in Sec. VI. We conclude in Sec. VII with the summary of the
results, the justification of the approximations, and some
general remarks. A forthcoming paper will discuss patrticle,
energy, and momentum transport, as well as the ambipolarity
constraint.

conditions, to any particular rational surface. The roles of
magnetic shear, trapped electrons, ion gyroradius and torus
curvature are moreover negligible so that an analysis in cyd. ORDERING OF DIMENSIONLESS PARAMETERS

lindrical geometry is appropriate. We note that our first cri-

AND EXPANSION SCHEME

terion onz; agrees with the standard ion temperature gradia_ ordering

ent instability conditions;>2 for {=0. Our criterion for{
agrees with those of D’Angelo and Cagobal. if =1 and
7;=1 but disagrees ifp;=0 (which is precisely the case
they considered the values ok cs/w} differ by a factor 2
from those of D'Angelo; the frequencias’ fully disagree
(w"=0 in D'’Angelo’s paper. A more fundamental differ-
ence and the interpretation thereof will be given later.

The growth/decay rate of the oscillations has been cal-

culated in the neighborhood of margin@h)stability. The
excitation/damping mechanism ig§nversg ion Landau

In the pedestals of high density H-mode tokamak dis-
charges, the electron and ion mean free paths aB®rage
typically of the order of the connection length whereas the
equilibrium density and temperature length-scales are com-
parable to(actually only slightly larger thanthe “poloidal
ion gyroradius.” That implies

and

damping. Since the radial width of the oscillations we con-

sider is comparable to the equilibrium length saéhe width
of the QC mode which is observed in ALCATOR C-Mod

(a)p/|Lrnl~1, (2

EDA discharges is, e.g., comparable to the width of thewherey; is the collision frequency for the particular species

H-mode pedestalthe wave frequency is a function of posi-
tion and localization of a wave packet will result from a

[vj=1/7;; we adopt Braginskii's definitions of the electron
(j=e) and ion (=i) collision times'], ¢;=T;/m; is the

competition between linear growth and distortion, i.e., wavethermal velocity, &),=a;|B/B|, aj=c;/€); is the ion gy-

breaking into smaller eddies. Stabilization and damping byoradius,BM) is the poloidalthe toroida) component of the
finite 38 effects may act as an energy sink on the shorter wavenagnetic field, and.t=(d, InT)"%, Ly=(4, InN)"%.

length modes being generatéd is the ratio of kinetic to
magnetic pressuyeWe recall that inverse Landau damping

Since the ratidB,/B,, is small (typically ~107Y), it is
convenient to expand with respect to

results from wave—patrticle resonant interaction. The instabil-

ity mechanism which is predicted here is therefore quite dif-
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According to neoclassical theoty**®°the poloidal and tor- ¥ a;

oidal flow velocities are of orderU,;~d,T;/eB, Ewkﬁai L—’V,uz- (10
' i N

=c;a;/Lyi andU, ;~4,T;/eBy=ci(a;)p /L, respectively;
we thus introducéin view of (2) and(3)]: It remains to scale the ratiosi,/m; and B8=2uq(Pe

+P,)/B2. It is appropriate to choose

Upgi~Uygi~Cia/Lri~ uci (4a)
and Me/m;~ (11)
Upi~Ugi~ci(a)p/Lyi~c; (4b)  and, for reasons mentioned below,
B~ u?. (12

[we define the unit vectori=B/B, b=AXp, and p
The edge pedestal of ALCATOR C-Mod is characterized by
o vk _ _ densitiesN;~2x 10 m~2 and temperature3;~150 eV;
ity in the direction of the binormab; the order of magnitude the magnetic field beindd~5 T, the local value ofB is
relationsU s;~U, andU;~U, follow from B,/B,~u<1].  0(10 %)< ./m./m;,. We have nevertheless chosen the order-
The minor plasma radius is much larger than the edg%g (11)—(12) on the grounds thaii) somewhat higher edge
gradient length scales; thus also the ordering values of 8 can occur in tokamaks with lower magnetic

=VP/|VP|; Ug=U;-b is the component of the flow veloc-

Lo~ &5 (58 fields and(ii) (12) and(6a), respectively(12) and(lll), yield
(clwp)d; Inn~kg(clwy)~Kgai/\/B~1,  respectively c,
moreover ~Ca, Wherec is the speed of lightw,; the ion plasma
gRBy frequency, ana,= VB?/ uwom;N; the Alfven speed. That or-
r=-g— ~wmaR (5B gering of 8 will play a role when considering particle trans-

¢ port and the ambipolarity constraint; it has, however, no size-

We consider mode structures whose radial length scales aff)e effect on the dispersion relation and the stability
comparable to those of the equilibrium profiles and assumeitarion unles, a;~1 (Ref. 14]
i . .

kgdr~1; thus, in view of(2) and(3): The parallel component of the equilibrium Anrps
equation leads to the scaling relation

(6a)

where lower-case symbols refer to the oscillations and capi-
tals to the equilibrium variables.
According to D’Angelo, the modes most prone to insta-

a;d; Inn;~a;d, Inp;~kga;~a; /Ly~ u,

alnrB, gRUj—Uy;
r ~B—— —.
ar a; Ci

bility are characterized b, /kz~a;/Ly and their angular
frequency isw~kU,;—kgE,/B, where E, is the radial

Since the current flowing through the pedestal is a small
fraction of the total plasma current, we request InrB,

electric field. The latter is related to the temperature and=# Which leads tdin view of (2), (3), (5a), (Sb), and(12)]

density length scales through the radial momentum balance Uje— Uy

equation
EI’:U(,o,iBH_UG,iB(pJ'_’?er /eNi .
It follows from (6a) that

kjay~ p? (6b)
and

o~ of (7)
where the

o =kg(T;/€;B)d, InN; (8)

are the electron and ion diamagnetic frequend¢igs con-
sider comparabl&, andT;; e,= —e;= —e). Moreover,(5a

and (5b) lead to
quR""M71>1 (Bb,)

as anticipated.
Relations(1), (6a), (5a), and(5b) imply that the ion col-

~,u20i (13)

at most.

B. Expansion scheme

The ordering of the dimensionless equilibrium param-
eters and of the frequency and wave vector components of
the oscillations allows us to compare the magnitudes of the
terms in the corresponding Vlasov—Boltzmann equations
once the relation between the amplitudes of the perturbed
distribution functions, the electric potential, and the magnetic
field components is established.

We first note that the adiabatic relation

el To~TfolFq (14)

[where ¢ is the perturbed electric potential amg (F.) the
perturbed(equilibrium) electron distribution functiohis a
straightforward consequence of the inequality/k,c,

lision frequency and the diamagnetic frequencies are in the- kﬁascS/kHLNce~,u2<1 (we note thatw} ~kgasCs/Ly);

ratio
v viln v Ly
of ac  ka ar ®
[OF BAiLi sai q

and that

hence ng/N.~p./P.~€ed/T,. The oscillations must be
charge neutral since the Debye Iengtt"§1-=\/soTj/Nje2

are smaller than the characteristic length-scales by many or-
ders of magnitude [indeed, kB)\D,j~(cS/c)kBaS/\/E
~cg/c]; thusf; /F~fo/Fq.
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The perturbed magnetic field is obtained from Amgl®  where the notatiori0) refers to leading order variables. We
equation. The binormal and radial components of the perthus adopt the ordering

turbed current are
C b, /B~ Bp, IP~B(edIT) (183
jpg=B " (Petpi)L (153 and

and
b, /B~bg/B~uBp, IP~up(ep/T). (18b

jr:—ikﬁl_n,*l(peeri)L (15b) ' @ ©
in leadi q h h h gicul [The perturbed total pressure is thuspe€+ pi’)
in leading order, where thp, are the perpendicular pres- +Bbﬁo)/Mo:(pé0)+pi(0))u in the leading ordet.

SUres. The paTa"e' c.ompon_entiolf the perturbeq current ob- The kinetic equations describing the small amplitude os-
tains from V.j=0: j,=—(ik))"'V.j,. The divergence . ions

drjr TiKgj g of the perpendicular current density vanishes in

the leading(see the above relationand first (as will be f(r)exp(—iot+ikyr 6+ik Re)

shown latey orders. Noting thak /kg~Kk/d, In(pe+p)~ u,
we obtainj,/j(jz)~u. It follows immediately from Am-
pere’s equation thab, ~bg~ ub; with

in cylindrical plasmas are given beloWAs mentioned in
Sec. |, the cylindrical geometry is adequatekjgR>1;
that will be carefully justified in the Sec. VII. We note

©0)p_ _ )1 (0) 2 that kg=(B,/B)(ky—B¢k,/B,) and k=(B,/B)(k,
b~ /B=—po(pe '+ Pi"), /B%, (18) +Byk,/B,).] In order to proceed most easily with the ex-
2 20 L (0)_ ) pansion, the order of magnitude of each term with respect to
(97 —Kp)by = — poik g —ikyd, by, (173 Q;d.f; (on the right-hand sideis indicated for ions(first
2 1200 (0) () © estimate and electrons(second estimajeby appropriate
(ﬁr—kﬁ)b'g = Modt]| +kBkHbH ) (17b powers ofu<<1,

f;

€; Jd J
. . . . ] .
[(—lcﬁ—lkvnﬂzL cossd; +ikgu, sins)+ —Er( coss — —sins )
m

j vl Ulag
u2ub  pZut B wipd i3
BB B ( J J d
=0 o\ VL . V) — Uy — _(1+C032§) Uy
+——| 9, In—| —| sin2s\ *y 9 —|f;
Bz(rB>2 oot v s |
4 135 L
e J J J P P
+ — (—ik”¢+iwa”)——r9,gb COSQ__Sing_ _|k Sin —— +CO0S
m, v, dvy v, ds sd gavL ngﬁs
wiut uthub w3 win
Jd J UHa Jd J U”a
—b,| sins| v, — —v,—| —coss —bg| coss| vy———v, — | —sing
' J‘(91)” HaUL UJ_(?Q A HaUL LZSIUH UJ_(‘)Q FJ
PR w3ud
=Q;—+ —Q;—+C,y(f,F)+Cy(F,f)
150 T J J _ (19)
1;1 w2u? u3;ud u3;ud

The velocity field has been defined by=pv, coss  agreement with the findings of Catb al.’ a, is the parallel
+bv, sins+fv,, wheres is the velocity space angle around component of the vector potential, is the collision opera-
the equilibrium magnetic field. The gyrofrequendy;  tor for specieg; it can be split into
=e;B/m; is positive for ions and negative for electrons. No C.=C..+C..

e ee el
assumption has been made concerning either the equilibrium ' '
or the perturbed distribution functions as to their dependenc@nd
ons, v,, andv;. The term proportional taJ, In(By/B,) Ci=Cii+Cie,
arises as the unit vectoﬁs=(B¢/B)é9—(Bng)é¢ and f respectively.C.; and C; o can be expanded in powers of
=(B,/B)é,+(B,/B)&, are space-varying; it describes the ym./m;. An important property of the electron—ion and
role of magnetic shear but turns out here to be negligible, inon—electron collision operators is that
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Cei(F,F)~(mg/m)*2p Fo amplitude; an estimate of those is thus required. We shall
assume
and
Ci e(F,F)~(me/m;) 2y, F; &
, T )7

regardless of;, if the departure of the electron distribution
function F, from a Maxwellian is not larger than which is small compared to the mixing length estimate
O(yme/m;)*® and|U,— U;|<c; (that applies to the full and (ed/T~1/kglr(ny~1) but leads to a large anomalous ion
perturbed operators as welNonlinear terms are not consid- energy flux InKpikﬁ¢/B>~kBa,-|e¢/leci P, in comparison to
ered here, but will be discussed in the forthcoming work onthe neoclassical heat fluxqzviaizPi /L+ [the ratio being
anomalous transport. O(ur™1); that circumstance will of course simplify the trans-
Solving Eq.(19) for f; requires knowledge of the equi- port analysis in the forthcoming pagetnder those condi-
librium distribution functionsF;. The kinetic equations de- tions, the kinetic equations describing the equilibrium distri-
scribing the latter include quadratic terms in the oscillationbution functionsF; are:

e; d ) d
(dy+v, coss d,)+ —E,| coss — —sing F;
m, J

.3 Uy v, ds
Ho .3
mip
18480, [1n20) %] gina i O ) (1+cosz) 1|k
gz Or an) 5| sin2s Ulav” UH&UJ_ (1+cos )vlag i
u3ud
%) 7 (K d—iwayg*f)+| coss ——si )<a¢*f>+ ins——+ coss — )< k" 1)
— — ! —( —lwa ; COSs — —sIns SINs —— + COSs -1
m;y | du H4. 6 e.Hs ] du v, ds r3. 5J v | v, ds 'f 5 ’
+si i i O |ty + ’ O | —sins 2% | ibrt )+ 2 (br s
sin — —v;——|—Co0S cos ——v, —|—sin —
S UL&UH i 50,05 { L §> S\ Va0, vié’v” S, ds { 4 f.,> (9§< i j>
i wip 7
=C,y(F,F)+(Cy(f*,f))+Q,d,F,, (20
w3 u® uSu’ L1
|
where a star refers to the complex conjugate and the angular FJ=EJ+I~:J, fJ=f_J+7J, (213

brackets to an average over the oscillations fast time scale
(alternatively over the poloidal and toroidal variation of the
oscillations.

The evolution and asymptotic forms of the equilibrium - om - o
and perturbed distribution functions are clearly related. For FJ:f F,ds/27r, fJ:f f,ds/27. (21b
that reason, the Vlasov—Boltzmann equati¢h® and (20) 0 0
must be solved simultaneously. That is possible only in the _ _ ) )
framework of a self-consistent expansion, the latter allowing'he shortest time scale that will be considereda@) is the
to obtain the higher ordeis; andf; in an iterative manner. ©€Nergy transport time scal@jF, is accordingly introduced
That justifies the lengthy considerations of this section. Th@nly at the order where the time independent equations have
present analysis will show that the distortions of the equilib-"0 Physically meaningful solutiortin the absence of ad-
rium electron and ion distribution functions owing to the €dquate source terms
fluctuations are small enough as not to affect the dispersion
relation and the stability analysis. However, as the leading
order perturbed electron distribution is Maxwellian, calcula-a. The leading order equilibrium distribution
tion of anomalous particle transport requires knowledge ofunctions
higher order perturbed, and therefore equilibrium distribution
functions.

WhereEJ andf_J are the gyrophase averageskofandf;:

Equation(20) yields, at orders.® through u?:

~0)_
IIl. ITERATIVE SOLUTION OF THE COUPLED Fi( '=0,
VLASOV-BOLTZMANN EQUATIONS

oF(®
ﬁvl '

_ In view of the large gyrofrequencies, it will be useful to Qi&g,:i(l):vl COSs&,Fi(O)Jr EEr COSs
split Fy andf; as m
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0,0.FP=v, cossg,FM Those results are introduced into the gyrophase average of
Eq. (19) at orderu? for ions, respectively, at ordex* for
€ d . electrons(The average equations are trivially satisfied at the
- _ (1) ge eq y
* m Er| coss dv | sins v, s P lower orders. We obtain
for ions and ed
fO=—F0 (24)
Ing):'[g(el):T:(ez)zo Te
for electrons. Sincél9) yields and

T9=0 and TO=TM=FP=0, KT
' e e e ki(wy= Uy ) FO— L2, RO

the gyrophase average of EQO) at orderu? for ions, re- Ti(o): keB ?Ifé, (253
spectively, at ordep.® for electrons, reads (0—wg) =K [
Ci(F©,F©)=0, respectivelyC4(F®,F®)=0. where

(The gyrophase equations are trivially satisfied, and therefore kBT )
provide no information, at the lower orderslhe leading eB aF7=of
order equilibrium distribution functions are therefore

1+ %

2¢? 2

vZ+(v—Up)? 3}

v— Ui Uy
]Fi“’), (25b)

2 _ 2
UJ_+(UH UII,I) (22) C; Cid, In Ni
2¢?

F§°>:Ni(2wc$)3’2exp[ —

and we=~KgE, /B (26)
is theEXB Doppler frequency.

(23) The expressions of the leading order electron and ion
densities are

v+ (0= Uy e)?

2¢2

FO=Ne(2m c§)3’2exp[ -

At this order, there is no constraint dn,— T; and the only
constraint onU; ¢— U, ; is U c— U <uce. [That follows

from the property of the collision operators mentioned below .
Eq. (19) and, more simply, from the fact that the energy and ni(o):(e(b/Ti)j do/ (' —kvl’)‘l[ Kiv|
momentum exchange rates between electrons and ions are —o

smaller than the ion collision frequency k§me/m;~ 12.]

n=(ed/Te)N,, (273

12 '
vt E vy AUy
Ci Ci&r In Ni

B. The leading order perturbed distribution functions (270
and the dispersion relation
wherev;=v;—U,; and o'=w—wg—kU;;. The charge
At order w for ions, respectively.® for electrons, Eq. neutrality conditionn,=n; provides the wave dispersion re-
(19) yields lation which thus reads, in the leading order:

Q0. M=v, coss f(°)+ F(O)a ¢) 1+7=D(w’). (28

Here 7,=T,/T, and
+|kBUJ_ S|n§(f(o)+.r F(O)¢) "
D(w,):NFlf7 dUH’((l)’_kHU”,)71

o, O
+_
m ; COSs v, o 2 1\ v 4 Uy, (0
and @O 527 2) T e o, InN;
e _
Qed,f c(aa):vL COSQ(&rf‘(EO)-FT—eFéO)(?rgb) Z+Ti(l—%)
e
0 0 i
+ikgu, Sm@(f( )+-|- Fe )¢) +lu+ %uz exp( —u?/27;), (29
€e f(o) PR *
+—FE, coss where z=w'/w} , §=¢9,UHJ/_CS(9r InN;, and §=k”cs_/we
Me vy For|lm o’|<|Rew’], the functionD(w’) can be rewritten as
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D( ,) 1 Pfx q ( g )71 Im(D) (a) Im(D) (b) Im(D) (c)
w )= u(z—&u
NemT J-=
7i i o, 2 9 i a1 v 1
X1 zZ+ 7 1—? +lu+ EU exp(—us/27) ¥ ~ Re(D) Re(D) (O Re(D)
71 i z 2
| 2_7]@ z+7| 1 E +§E+E?
X exp( — z22127,£%), (30)

whereP is the Cauchy principal part integral and the imagi- F'G: 1 (@ Map of the semicirclgz| <, Imz>0 in the complexD plane;
nary contribution arises from the residue following the pre—f:bo)ntzﬁ r';';q;'itzcomour for &z <2 and (+§)/¢<0; (c) the Nyquist
scription of Landauthe latter being imposed by causality o

We note that

(i) The dispersion relatio28) involves only two wave
related dimensionless parameters, namelynd &
since wg <k, those are proportional te'/k, and
w'lk,, respectively;

(i)  Although we orderedd, In(n;,p;,¢)~Ks~Ly. the
radial derivative of the fluctuations does not appear a
this order; in other words, the dispersion relation is
scalar orlocal;

(iii)  Unlike the derivative of the equilibrium toroidal ve-
locity, the derivative of the radial electric field does
not enter Eq(28); that implies that the stabilizing or
destabilizing roles ob,E, and d,U,; are of quite a
different nature;

(iv)  The wave frequency in the laboratory frame is a func-

Since, on the one hand, Re>1 for z— +« and ReD<1 for

z— — and, on the other hand, IB<0 for bothz— =

(we assumen;>0), D moves in an anticlockwise fashion

along a(infinitely small trajectory which is tangent to the
oint D=1 and otherwise below the real axis asARmsses
rom large and positive values to large and negative values

along the semicircle at infinity (I vanishing at the two

ends of the contolr The corresponding topology is shown

in Fig. 1(a). [We note for completeness that the trajectory in

the vicinity of the pointD=1 is above the real axis i

<0 and that lim_ ...ImD behaves agexp(—7/27&?),

rather than ag? exp(—Z/27&?), if 7,=0; the caser;=0

obviously requires a special analy$itn view of the preced-

. . i A ing paragraph, a necessary condition for instability to occur

tion 9f various |_nhom.ogeneous. equilibrium param- is that the NyquistD) contour crosses the real axisagoes

eters; the oscillation will be localized, as a result, to Afrom — o to + oo along the real axis, i.e., that the residue in

region vyhere the linear grpwth ba}lances the wave d'SEq. (30) vanishes for some values of Those are solutions
integration process associated with the frequency gras

dient; ultimately,d,w (and therefore the equilibrium

gradient$ will be controlled by anomalous transport, N, (¢ 7 _
that is equivalent to self-organized criticality. 2_522 + E+ ljz+m| 1= 2 =0, (31a
ie.,
IV. NYQUIST STABILITY ANALYSIS ¢ mr(2— )
o _ _ 21 == —({+H|1=\/1-——F|. (31b
The Nyquist diagram technique allows us to determine 7 (£+$)

the conditions under which the dispersion relation admitsrhe residue is proportional to the numerator of the integrand
unstable solutions. We f':\ssum/)é >0 without loss of gener- i the first term of(30) atu=z/£. For the values of which
ality; instability occurs if Imw’>0 and, therefore, Im>0.  cancel the residue, the numerator of the integrand divides

We let z trace out a closed contour in the complex plane.exactly by ¢— ¢u). The value oD when ImD=0 can there-
going from —< to + on the real axis and closing anti- fore be obtained exactly:

clockwise on a semicircle at infinity in the upper half-plane.

As z traces out that contour, the functi@(z) will also trace 1 o Ui 7i21,2

out some closed contoithe Nyquist contoyrin the com- D(z)="~ \/—fwdu(gl”“ 2¢ )

plex D-plane. If the poinD(z) =1+ 7, [cf. Eq.(28)] falls in EV2mT

a region encircled by, and lying to the left of, this contour, X exp( — u?/27))

then the dispersion relation admits a root with2w0, i.e.,

the plasma is unstable. o £+ 7iZ12 -
The semicirclefz| —o maps into limy,_..D(z)=1 [cf. g 222 (32

Eq. (29)]. To analyze the behavior & at large positive and

large negativeeal values ofz we note that Eq(30) yields e note thaD(z,)>D(2,) if z,<z,. That implies that the

point D=1+ 7; will lay to the left of, and be encircled by,
T oy Z° z? the Nyquist contour if
lim, ... D=1+ ——i\/-—— —=exg — —— |-
z 27, 2 |§ 27¢ D(z,)<1+ 7,<D(zy), (33
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where(3J) is the sufficient condition for instability. Introduc-
ing (31b) into (32) yields

{+¢ 77i7'i(2_77i)}
D-1=+—F+ —-——.
2¢ ((+8)7°
The equalityD =1+ 7; requests that

(1+ 7)€+ L&+ 9(2— 3;)14=0

1= (32)

[whichever sign is considered in (32 and, therefore,

ENE 2T
N 2(1+) '

(34)
Different cases have to be envisaged in the framework of
the Nyquist stability analysis:

(D) 72— m)>({+ )%
Im D=0 admits no real solution. Therefore, the Nyquist

contour cannot cross the real axis. The plasma is stable.

(2 (&+8&)7>nm(2— 7)>0.
Im D=0 admits two real solutions having the same sign.
Two subcases have to be considered.
(i) (£+€)/&>0. The two values oD —1 given in (32)
are negative and conditiof83) cannot be fulfilled. The
plasma is stable.
(i) (£+&)/1£<0. The two values ob —1 givenin (32)
are positive. The Nyquist contour has the form shown in
Fig. 1(b). Condition(33) reads

{+é [ miTi(2— )
£ ({+9)
{+¢ 7i7i(2— ;)
<2n<--——|14\J1-——-|. @9
£ (£+8)

Inspection of Eq.(34) shows that the values df| for

which these inequalities are satisfied and the plasma is

)

unstable are

|d>16nd = N mi(2— ) (1+ 7). (36)
To {= ¢, corresponds
§=&n= — {nd2(1+ 7). (36')

All other values of¢ are stable whed= ¢y, . Introduc-
iNg {= Ly and &= &, INto (35) shows that the equality
is satisfied on the left-hand side. The frequency of the

marginally unstable mode thus corresponds to the largest

of the two values of in Eq. (31b), namely,

z=2p,=1-0.57;. (37

We note that36) agrees with the criterion of D’Angelb,
namely,d, U, ;= =v2\cs [N=— (4, InN))] if 7;=1 and
7,=1; (36') andk,/k,= =\cs/v2Q); then disagrees by

a factor 2. There is however complete disagreement if
7;=0 which is the case he actually considered. The dis-

agreement is also complete as concerns the frequency of

the marginally stable modéis equation(18) yields w’
=0]. Cattoet al.” obtained; = — ¢[ 1+ 7+ 1/4¢?] as the
marginal stability conditiontheir local theory, below
Eg. (22)]. Minimizing with respect to¢ yields i,

On ion temperature gradient and parallel velocity shear . . .

Kc? & T

2113

=*xJ1+7, —¢=*1/2J1+7, and z=1/2 in agree-

ment with the results of this subsectighand only if

n,=1. The discrepancies are probably related to the fol-

lowing:

(@ The casep;=0 requires a separate Nyquist analysis
(as the contour in the vicinity of the poifti=1 is
no longer below the real axis

(b) Eq.(36') yields &,,=0 if %;=0; ion resonant inter-
action and the instability growth ratgnear thresh-
old do vanish faster than any power &fc;/w’
—0 under those conditions; the Nyquist technique,
however, picks up the first mode to become un-
stable, irrelevant of the expected values)yof

(c) Cattoet al. did not take ion, but took the electron
resonant interaction into account.

Equation(36) yields two unstable domains with respect
to #; ; those are

0<p<1—-V1-2%(1+7) (383
and
2>p>1+\1- 21+ 7). (38b)

The criterion(38b) agrees with the standard ITG insta-
bility condition #%;>2 if {=0.
Of interest is the ratio

w? 2 (I+5)2- 7
- (39

showing that asymptotic expansion of the dispersion
function near margingiin)stability for w’/k,c;—0 is al-
lowed if 7,—2 and asymptotic expansion f&c; /'
—0 is allowed if ;—0 or 7,—0 (see Appendix In
those cases, resonant interaction of ions with the waves
is however exponentially weak.

Of interest is also thaby,, has the sign ofv} if 7;<2

and the sign ofw* if 7;>2.

n;i>2.

Im D=0 admits two real solutions having opposite signs.
The corresponding values @ —1 have also opposite
signs and the Nyquist contour has the form shown in Fig.
1(c). Condition(33) reads

[ miTi(7i—2)
1+—2+1
(L+9)

[ miT(ni—2) ]
1+—2—1
(£+8)

if ({+&)/é>0 and
[ miTi(—2) 1
l+—2—1
(£+8)
7 7i(7—2) ]
i+t —— 41
({+6)3

e
&

{+¢
<27'i<—

3

cre

3

<L2n<——
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if ({+&)/£<0. The left-hand side inequalities are always

satisfied. The right-hand side inequalities are satisfied if
lies between the two values given (84), namely,

3 NE+ L+ 1) mi(gi—2)+¢
2(1+ Ti)

<\/Z2+(1+ ) ni(ni—2)—¢
2(1+ Ti)

(40)

[it is understood that/¢2+ (1+ 7)) 7;(7—2) is positive
and ((+¢&)/&>0, respectively, {+£)/£<0. Since those
conditions are complementarihe plasma is always un-

stable The inequality(40) provides the unstable range with

respect toé. Its center is at

g=¢=—{2(1+m) (42)

and its width isA £= {2+ (1+ 1) (7~ 2)/(1+ 7); both
|¢| andA¢ increase witH¢|. AssumingZ>0 in the following

discussion, (40) shows that the upper unstable value

of & is reduced with respect to the case=0 [in-
deed, VZ2+(1+7) mi(m—2)—{— V(A+ ) p(7—2)<0]

Rogister, Singh, and Kaw

oz (68° ﬁ)

Zihr gtzhr gthr
1 sz (89 _sr) 1
1+ zhr ftzhr - Zhr) N2TT,

X foc duﬁexp(—uzlh) (43
—® Zipr— gthru I

(first order terms ind¢/ &, do vanish since the unstable
range is of zero measure with respectétdf &= &) from
which it follows that

whereas the lower unstable value decreases by a largarhere

amount than the upper value.
We note that(36') and (41) will have important conse-
guences concerning anomalous momentum transport.

V. GROWTH RATE NEAR MARGINAL STABILITY
(7,<2)

The dispersion functioi29) can be rewritten as

1 oo
D(z)=\/2_J du
T Y T
1 77iZ
—— +_
» & ‘ 2§
1 (77i22 4 Ui)
—— | ztl|z+ 7| 1-—
z—¢éu\ 2¢ 2
X exp(—u?/27)). (29)

[Replaceu by (u—z/&)+2z/¢ in (29) and proceed. At mar-
ginal stability, the second term vanishies. Eq. (313] and
the first is equal to *+ 7,. We let

{=Linet 64, &= &net 68, =zt 0z (42
close to threshold. Expanding the functibifz) and making
use of the equalitie636') and 7;z/ Enr= — Linr [Which fol-
lows from (36), (36'), and(37) if #;<2; the casep;>2 is
not discussed here, since it is always unsthbields the
relation

5z 8¢ (86)%\ | )
—=1+7)|2—- , 44
Zipy N\l &y 1T
where
1 o u exp(— u?/27,
| = f du Einr o 7i) (45)
N2mrT J - Zipr— &l
Sincezy, is real, we may write
I=R—-i7, (46)
1 o uexp —u?/2r,
R— Pf Ethr o 7i) (46))
N2TT, - Zipye— &Y
is the Cauchy principal part integral and
J= 727z, X — 25,27} (46'")
is the residue multiplied by the angte
The imaginary part obz can be expressed as
im 2= (14 3| 2 oL (55)2> Zyp7iJ @
m oz= T; — ,
Nl & | (RET)PHT?

which shows thats¢/ (>0 is destabilizing, whereas both
6&l &n>0 and 6¢/&,,,<0 are stabilizing, as expected from
the results of the Nyquist analysi$We recall thatdw’
=wg 6z and wgz>0 by convention. The coefficient of
[2(8L] L) — (5El E)?] is typically of order unity if 7; is
finite (the standard case for reactor applicatioharge
growth rates are thus predictéthose are proportional to the
diamagnetic frequengy The plot Iméz versus#; or 7; is
also expected to display a peak whBl»; , 7)) — 7.

In the casdmostly of academic interest;— 0, one ob-
tains| =M= r, £ /25,= 77 /(2— n;) andJ=0; thus

i 5z_< 5 (5§>2)
Imriﬂozthr_ gthr 2§t2hr

That expression diverges fay;=1. The expansion of the
dispersion functiorD must then be carried out up to second
order in6z. That will yield a quadratic equation whose roots

i

n—1
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will be either real or imaginary. The later case correspondsto _ ©
an ideal instability, similar to the instability we find in the (—iw+ikp)f {7+
Appendix for 7;—0 if |{|>1. The threshold conditiof{|

v, (cossd, +ikgsins)

>1 is identical to that obtained from the Nyquist analysis € d . d e
[see(36)] if and only if ;=1. + EET COSQE_S'M v,ds) |
VI. MAGNETIC FLUCTUATIONS e F? g g
_Hlkud)ﬂ__ﬁ o, ¢ COSGa__SIng 7
Electric field oscillations induce current density and i i i vl vios
magnetic field oscillations. It is the purpose of this section to 9 of i(2)
obtain the relations between the fluctuatign®, and ¢. +ik5¢(singﬁ+008q 0 g ”Fi[llzﬂi 3
As already mentioned, the parallel current density ob- L L8 s
tains from the equation and
j=—(ik) V., , 48 ) L € d
JH ( H) Jl ( ) |kHU”f(eO)+ UL(COSQ&r+|kﬁS|n§)+_eEr COSs — f(el)
where the perpendicular current density can be calculated Me dv
from e IFY e R
. 3 —Hlk”(f)T_H(&,—(}SCOSQ"FIkB(ﬁSIn@)JFL]
j.=e JdVvl(f)COSS-i-bSing)f (n) I e L
4
O ()
B . B i F(N+2) ¢ ds
dvo, (p coss+bsins)fg

respectively; that leads similarly to
at the successive order®Ve note that the electron distribu-

tion function of ordern+2 must be considered simulta- J dvo, (4, coss +ikgsins)(F@-F#)=0.
neously with the ion distribution function of order since

the characteristic velocities are in the ratjme/m~u?.)  The parallel component of the oscillating magnetic field ob-
a.f (9 and 4.f ?) vanish identically; with the help of the tains from

equations defining, f () anda f & (Sec. Il B), it is readily

verified that ik gy = kol
(or from g,y = — woj g) under those conditions. That leads to
f dvo , (4, coss +ikgsins)(TH-T3)=0. Eq. (16). We proceed now with the calculation of the diver-
gence of the higher order perpendicular ion and electron cur-
a.f? anda f @ are given by rents. We have, at first:

f dvo, (dr Cosg“kﬁsmg)fi(g):f dvo, (— 4, sins+ik 4 coss)af &
_g-! (—iw+ikw)v, (—d, sins+ikgzcoss)f V)
S f VI —1(w212)(a%+ k%)sin 25 —v?ikgd, cos X]f 7
FikgB (= N ),
Integrating by parts and replacingf (?) andd.f (*), we find after some lengthy but straightforward algebra that
[(57—Kk3) ] [('Ikg)N;— ;P /eB]

fdVUL(&rCOSngikBsing)fi(3):ikBB’1(2i’l + (0, ) ;[ (o' IKg)N;+d,P;/eB] | —ik B EnNn®,
+o[(Grwelkg)(Nip+py ile)]

where (The first and second order equilibrium dengity}’ andN{®
have been absorbed M{®=N;.) Furthermore,

- 02/2)f ©
P fdv(m'”ilz)f' fdVUl((?rcosmLikBsing)fS’):—ikﬁB*lErng).

*

niwk fw exp(— u?/2c?)

u !
V2me; J -« o' —kju

1+

(49) The parallel current density is therefore given by the expres-
sion

=n{0T;
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ji=—(kg/ky)(m; /B?)

[(97=kp) $1[(w'/kg)N;— 3, P; /eB]
Xy + (@) [(0'IKg)N;+d,P;/eB]
+0i[(drwelkg)(Nip+p, i/e)]
Equation (50) shows that the parallel current arises as to
cancel the charge separation which tends to occur in th
plane perpendicular t8 owing to finite ion gyroradius ef-
fects. The radial and binormal components of the perturbe

following rangesxu~wj* (w}* is the electron or ion diamag-
netic frequency; we assum€&~T, so that w~—w}),
kgai~a;d, Inn~u<1 (a; is the ion gyro-radius angh<1

an expansion parameter of ordeB,/B,) and Kk
~kga;j/Ly, where Ly=d,InN;. Unlike previous
analysis*’1% we have taken the equilibrium density, tem-
gerature, and parallel velocity gradients simultaneously into
account (parameters %;=4,InT,/6,InN;~1 and ¢
d_—ﬁrUu,i/Csﬁr InN;,~1); we have assumed thaj<r<qR,

(50

magnetic field are obtained from

(97 —K3)b,= — poik gjy — ik, ;b

and

(97— kz) bg=pod;j+kgkiby,

respectively. Thus,
(arz - kf}) br

[(7—K3)$][(w'Ikg)N;—d,P;/eB]

02

LY.

- 2
kiNica P

ol | g

and
(7—K3)bg
Kg

kiNica

Kt
2% F
kB

+(3,$) 9 [(w'/kg)N;+ 3, P;/eB]

pi%+pt")
e

(59)

[(2=K3) ¢1[(w'[Kg)N;—a,P; /eB]
+(a,¢)ﬁr[(w’/k3)Ni+a,Pi /eB]

X dy
+4,

Kg

We have made use qi{®.=

r

=)

(0)_
Ple=
duced the symbolic notation d,z/. It is easily seen that the

&2

. (52
p+p ]+ ©?
e

®=eN,¢ and intro-

normalized magnetic and electric fluctuatiobs/B and

e¢/T are in the ratio

as is typical for transport barriers and, in particular, for
H-mode pedestals; we have also neglected the torus curva-
ture and considered the electrons to be “adiabatic.” Those
simplifications and the local analysis are justified below for
k,gR>1, which inequality turns out to be the verified for the
marginally unstable oscillations in the H-mode pedestal of
ALCATOR C-Mod if the parallel velocity gradient is esti-
mated from neoclassical thedty® As a consequence, the
dispersion relatior{30) involves only two parameters defin-
ing the oscillations, namelyy'/k; and w’/k; .

Our primary aim has been to determine the exact stabil-
ity limits in the parameter spacg , ¢, andr;=T;/T,. Those
cannot be obtained from asymptotic expansions of the dis-
persion relation(29) or (30), the reason being that the
asymptotic regime to consider is not knowaipriori and may
moreover change with the values of the parametes 7, .

[As Eq. (39) shows, expansion with respect kg /w’ is

e.g. not allowed ify;—2 (hencewy,—0) but is possible if
7i—0 (hencew,— w}). The first, respectively the second,
case corresponds to ITG, respectively electron drift branch,
marginal(in)stability if —0; generally speaking, expansion
of the dispersion function leads to misleading results for the
ITG-PVS instability] The Nyquist diagram technique is the
only analytical method that is able to yield accurate stability
criteria under those conditions. The dispersion function how-
ever can be simplified near threshold, once the threshold re-
lation is known, and the expression of the growth rate be
obtained. Instability is driven by wave—particle resonant in-
teraction(more precisely by inverse ion Landau damping
except in the limitr;— 0 which, for fusion plasmas, is of no
interest. Despite the large gradients, the electrostatic approxi-
mation of the dispersion relation is justified for the plasma
edge.

More details on the results obtained in the present work

2,2
b, /B -5 Kgai are given hereafter.
eplT KiLnem (1) The local instability condition reads
or
== (2= n)(1+7). (53)
b, /B ko,

mﬁ—
edlT " g7—kj

[That result disagrees with those obtained by D’Angelo and
by Catto et al. for the parallel velocity shear instability

according to whether the first or the last term on the right(|z|> 1+ 7, for 7,=0); the casey; =0 is however atypical
hand side of51) is dominant.

VII. DISCUSSION

and requires an independent Nyquist analysiéth respect
to the parameter;, two unstable ranges occur:

i . . = _ —_ A
A. Summary of the results (1) 0<mi<miy=1=N1=5/(1+7) (54)
In this paper, we have obtained and analyzed the localthe casen; <0 has not been investigatednd
kinetic dispersion relation for oscillations with frequencies
and perpendicular, respectively parallel, wave numbers inthe (i) »>n ,=1+1- 211+ 7). (55
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[That result agrees with the standard ion temperature gradi-
ent instability criterion ;>2 if {=0).] At threshold, the
wave frequency is

On ion temperature gradient and parallel velocity shear . . .
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[parallel ion dynamics, ion gyroradius, and curvature
yield terms proportional tokc;/»")?, (a;d,;)?, and
(cia;d,/Rw’)? in the wave equation; the ratios

(0'1Kic;)aid ~ (o'} ) (Ls/Ly) (Kgay IkLg)?<1

and @;d,/kR)~kgzai(a/85)/(kLs)*<1 are here of
interest(we approximate the radial wave numhbgr
by 1/(kqR)A, A=1/k.S being the distance between
the neighboring rational surfaces,, andr 1y ;
S§=rd,Ing andL,=qR/S are the magnetic shear pa-
rameter the magnetic shear length, respectiyely
the trapped electron response is negligifi&1®
hence, also in view o' /k ce<1, the validity of the
adiabatic approximation.

{,=(1-0.57) w3 (56)

(0'"=w—wg—kU,; is the wave frequency in the ion rest
frame whereas the ratio of the parallel and binormal com-
ponents of the wave vector obtained from E8f') is

(K /Kg)in=ag/2(1+ 7)Ly=9,U i/2(1+ 77)Q; . (57)

Equation(53) may be regarded as a generalized criterion for(jv)
the parallel velocity shear instability arl@5) as a general-

ized criterion for the ion temperature gradient instability.
Equation(54) is rather related to the electron drift branch, as
the frequency of the marginally stable mod§,— w? in the

ion rest frame if{—0. The frequency of the marginally ¢ Remarks

stable ion drift modeoy,— 0" w} if {—0; oy, has the sign ) o .
of * whatever the value of #0. _ (1) S_mce we have allowed the oscillations and_eqU|I!b—

(2) The growth/decay rate in the neighborhood of insta- UM ra@al sca!es to be comparable and_ no term |nvo.IV|ng
bility threshold is given by the ra}dlal gradients,(n; ,p; , #) appears in the dlspe_rsmn

equation, we conclude that the oscillations frequencies may
8L (88)? Zyy 7y J .
(R—)2+32 "
(58)
whereR andJ are given by(46') and(46''); w} is positive
by convention. The expansion leading(&8) is not valid if
7,—2, aSlinry Ene, @aNdzy,, vanish in that limit.

(3) The components of the oscillating magnetic field are
given in Eqgs.(16), (51), and(52). We note that the perturbed
parallel current arises as to cancel the charge separation
which tends to arise in the perpendicu|ar p|ane Owing toThe energy which is transferred to shorter radial Wavelengths
finite ion gyroradius effects. The reason whenters neither  Via the disintegration process might be reabsorbed through
the dispersion relation nor the stability criterion at the valuedinite 3 stabilization*

being considered is presumably that we assunaed The role of inhomogeneous electric fields and inhomo-
~kga~p< 114 geneous parallel flows must here be contrasted. The stabilis-

ing role of the former can only be understood in the above
context of wave packet distortion since its gradient does not
enter the dispersion relation. The gradient of the parallel ve-
locity not only affects the width of the wave packets it
contributes tod,w), but appears explicitly in the stability
criterion and the expression of the linear growth rate. Those
observations may explain the somewhat contrasted effects of
the EXB velocity gradient and of the parallel velocity gra-
dient which have been noticed in numerical simulatigtfs.

We note finally that it is misleading, in our opinion, to sin-
gularize the stabilizing role of thEXB velocity gradient;

the gradient of the diamagnetic frequencies, for example,
should have similar consequences.

(2) If the width and the amplitude of the unstable wave
packets are controlled by the frequency gradient, then en-
ergy, momentum, and particle bursts are expected when
(i) the poloidal and toroidal mode numbersandn are  |d,w| decreases momentarifyt is noted that small values of

independenithey are not linked by a relation of the ¢, w/w do not necessarily require small valuesdpt/T and

type q(ryn)=—m/nj; d,N/N!.] That may be relevant to intermittent behavior.
(i) the mode spans a large numberK;,qR) of rational ~ Conversely,d,» (and therefore the equilibrium gradients

surfaceqthose are defined by(r /) =—m/n’]; will be controlled by anomalous transport; that is equivalent
(i) the parallel ion dynamics cannot be balanced by finiteto self-organized criticality.

ion gyroradius nor by curvature effects, which justi- (3) It has been mentioned earli€Bec. VII A) that reli-

fies the local approximation and the cylindrical model able (in)stability criteria cannot be obtained from asymptotic

220 be space dependent. For example=[1— 7;(r)/2]w} (r)

&2 +we(r) +k U, ;(r) for the marginally unstable modeAs a
thr thr ' . . .

result, a wave packet of siag will get distorted and break

up into smaller structures over a time intervat 1wd, w.

Since finite amplitude will be reached onlyyfr=1 (where

v is the linear growth rajethe size of the wave packet is

bounded by

W=<v/d, .

Im ' =(1+ 7))

(60)

B. Justification of the approximations
Equation(57) can be rewritten as
(kiR in=[£/2(1+ 77) Jkga QR/L \]. (59

We have estimated thgt-1 andqR/Ly~6X 107 in the ped-
estal of ALCATOR C-Mod H-mode discharges which are
close to the ELM-free to EDA transitioht® Inserting the
poloidal mode numbek,~400 m ! of the QC mode ob-
served in EDA discharges am~0.35< 10" % m (see Refs.

5 and 16 yields (k,qR)y~20. Since k;=k.B/B=(m
+nq)/gR, we conclude thain+ng>1 (wherem andn are
the poloidal and toroidal mode numbgréinder those con-
ditions,

Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



2118 Phys. Plasmas, Vol. 11, No. 5, May 2004 Rogister, Singh, and Kaw

expansions of the local dispersion relation. That certainly = The dispersion relation near marginal stability is also
also applies for localized ITG-PVS modes, /k,c; being readily obtained ify;—0 and&«¢—0 [cf. (36) and (36")]:
again of order unity. Under those conditions, analyticalexpanding fork,ci<w' indeed yieldsz=1, in agreement
progress will require us to either generalize the Nyquist techwith (37).
nigue or to be guided by results from gyrokinetic
simulations??~24

(4) Equation(57) holds also above instability threshold
for the central value of the parallel wave number in the un-
stable rangéfor a givenkg). The anomalous radial flow of ‘m. Greenwald, R. Boivin, P. Bonobt al, Phys. Plasma8, 1943(1999.
parallel momentum will be proportional to a weighted value 2I. H. Hutchinson, R. Boivin, P. T. Bonokt al, Nucl. Fusion41, 1391

of k, over the spectrum and henceadJ ;. (2002.
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