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The local dispersion relation for waves with frequencies in the range of the diamagnetic frequencies
v j* and parallel wave numbers satisfying the conditionskics /ve* ;1 and qRki@1 has been
obtained in the framework of kinetic theory keeping the equilibrium density, temperature, and
parallel velocity gradients into account (j is the species index,qR the connection length, andcs the
speed of sound!. The analysis applies to the cases where the radial scale of the oscillations is
comparable to or smaller than the equilibrium length scale. As the velocity-space integral appearing
in the dispersion relation can be calculated only in asymptotic limits, exact instability criteria are
obtained by means of the Nyquist diagram. Definingt i5Ti /Te , h i5] r ln Ti /]r ln Ni , and z

5] rU i ,i /cs] r ln Ni , it is found that unstable modes appear forh i.11A12z2/(11t i) ~which
agrees with the standard ion temperature gradient instability conditionh i.2 if z50) and 0,h i

,12A12z2/(11t i) ~the caseh i,0 has not been analyzed!, i.e., for z2> h i(22h i)(11t i)
~which doesnot agree with the standard parallel velocity shear instability conditionuzu.& if h i

50). The center of the unstable range is characterized by the relationkics /ve* 52z/2(11t i) from
which it follows thatqRki@1 is verified if @kbas/2(11t i)#qR] rU i ,i /cs@1 (kb is the wave vector
component in the direction of the binormal!. The oscillations are not tied, under those conditions, to
any particular rational surface; the roles of magnetic shear, trapped electrons, ion gyroradius and
torus curvature are moreover negligible. The growth/decay rate of the oscillations has been
calculated in the neighborhood of marginal~in!stability; the excitation/damping mechanism is
~inverse! ion Landau damping. The wave frequency is a function of position so that localization of
a wave packet results from a competition between linear growth and distortion~wave breaking in
smaller eddies!. Applications of the theory include the transition from the edge localized mode-free
to enhanced D alpha high confinement regime and intermittency. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1677177#

I. INTRODUCTION

We noted recently that the experimental conditions lead-
ing to the transition from ELM-~edge localized mode-! free
to EDA ~enhancedDa! behavior in ALCATOR C-Mod1–3 H
~high confinement!-mode discharges do approximately
match those required for onset of the parallel velocity shear
~PVS! instability according to D’Angelo’s criterion4 applied
to the pedestal.5 Moreover, the mode number of the quasico-
herent~QC! mode which appears in the EDA phase is in the
range expected for the PVS oscillations that are predicted to
become first unstable. The washboard~WB! mode observed
in relation to type II ELMs in the Joint European Torus~JET!
may be triggered by the same instability.6 A simple picture of
the driving process has been given by Cattoet al.7 in the
limit Ti /Te!1. Smith and von Goeler extended the analysis
of D’Angelo to include wave–particle resonant interaction.8

@In Refs. 4–8, the parallel velocity shear instability was re-
ferred to as the Kelvin–Helmholtz, or the parallel velocity
shear Kelvin–Helmholtz, or the parallel Kelvin–Helmholtz

instability; that is confusing since the Kelvin–Helmholtz
mode is generally triggered by a radial shear in theperpen-
dicular ~usually poloidal! velocity; the Kelvin–Helmholtz
appellation is abandoned in this work.#

Motivated by those results, we have undertaken to work
out a rigorous theory of

~i! the linear parallel velocity shear instability in the
presence of a temperature gradient~which previous
theories did not take into account! and its relation to
the ion temperature gradient~ITG! instability;

~ii ! the nonlinear saturation of the new ITG-PVS instabil-
ity and the related anomalous particle, momentum and
energy fluxes.

As a unique theoretical description cannot encompass all
equilibrium situations, the conditions considered are those
prevailing at the edge of ALCATOR C-Mod and many other
tokamaks, with the exception of the ratio of kinetic to mag-
netic pressure which is artificially boosted on the ground that
the ratio of the amplitudes of the oscillating magnetic and
electric fields depends on the magnitudes of the wave vectora!Electronic mail: a.rogister@fz-juelich.de
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components; although those are ordered here according to
the experimental results concerning the QC mode, shorter
wavelengths are expected to be generated in nonlinear pro-
cesses.

The local dispersion relation for ITG-PVS oscillations in
the presence of density, temperature, and parallel velocity
gradients has been derived from an appropriate expansion of
Vlasov’s equation. The normalized frequencyz[(v2vE

2kiU i ,i)/ve* ~wherevE is theEÃB Doppler frequency,ve*
the electron diamagnetic frequency, andU i ,i the parallel flow
velocity! and the instability criterion depend only onki /kb ,
the ratio of the wave vector components along the directions
of the magnetic field and of the binormal~the binormal unit
vector is perpendicular toB and to the normal to the flux
surface!. Transition to instability is studied by extending the
Nyquist diagram method9 employed by Goldston and Ruth-
erford for conventional ITG modes10 to situations wherez
[] rU i ,i /cs] r ln NiÞ0 (cs5ATe /mi is the sound speed!.

It is found that unstable modes appear both forh i.1

1A12z2/(11t i) and 0,h i,12A12z2/(11t i) ~where
t i5Ti /Te ; the caseh i5] r ln Ti /]r ln Ni,0 is not discussed!.
Those inequalities can be recast asz2. h i(22h i)(11t i).
At marginal ~in!stability, the mode frequency in the ion rest
framev85v2vE2kiU i ,i is v85(12h i /2)ve* and the par-
allel wave number is given bykics /ve* 52z/2(11t i); it
follows that qRki is much larger than unity (qRki@1) if
@kbas/2(11t i)#qR] rU i ,i /cs@1. We have suggested
elsewhere5 that the latter condition is met in the H-mode
pedestal of ALCATOR C-Mod~and, most likely, of many
other tokamaks!. The oscillations are not tied, under those
conditions, to any particular rational surface. The roles of
magnetic shear, trapped electrons, ion gyroradius and torus
curvature are moreover negligible so that an analysis in cy-
lindrical geometry is appropriate. We note that our first cri-
terion onh i agrees with the standard ion temperature gradi-
ent instability conditionh i.2 for z50. Our criterion forz
agrees with those of D’Angelo and Cattoet al. if t i51 and
h i51 but disagrees ifh i50 ~which is precisely the case
they considered!; the values ofkics /ve* differ by a factor 2
from those of D’Angelo; the frequenciesv8 fully disagree
(v850 in D’Angelo’s paper!. A more fundamental differ-
ence and the interpretation thereof will be given later.

The growth/decay rate of the oscillations has been cal-
culated in the neighborhood of marginal~in!stability. The
excitation/damping mechanism is~inverse! ion Landau
damping. Since the radial width of the oscillations we con-
sider is comparable to the equilibrium length scale~the width
of the QC mode which is observed in ALCATOR C-Mod
EDA discharges is, e.g., comparable to the width of the
H-mode pedestal!, the wave frequency is a function of posi-
tion and localization of a wave packet will result from a
competition between linear growth and distortion, i.e., wave
breaking into smaller eddies. Stabilization and damping by
finite b effects may act as an energy sink on the shorter wave
length modes being generated~b is the ratio of kinetic to
magnetic pressure!. We recall that inverse Landau damping
results from wave–particle resonant interaction. The instabil-
ity mechanism which is predicted here is therefore quite dif-

ferent from that found by D’Angelo in the framework of the
two fluids equations, where a bifurcation from two oscillat-
ing (Rev8Þ0, Imv850) to a damped and a growing
(Rev850, Imv8Þ0) solutions occurs at instability thresh-
old. The Vlasov–Boltzmann equation on which our analysis
is based is a first principle equation; the validity of the two
fluids equations relies on certain hypothesis which are not
always fulfilled. It is remarkable that the values of
] rU i ,i /cs] r ln Ni and kics /ve* obtained at marginal~in!sta-
bility from the two approaches are nevertheless comparable.

The paper is organized as follows: In Sec. II, we define
and order the dimensionless variables which are relevant to
both the equilibrium and the oscillations as powers of a suit-
able expansion parameter~m!; the terms in the equilibrium
and perturbed Vlasov–Boltzmann equations are ordered ac-
cordingly. The Vlasov–Boltzmann equations are solved or-
der by order in Sec. III where we obtain the local dispersion
relation; electrostatic theory is here adequate owing to the
low kinetic to magnetic pressure ratiob52m0(Pe1Pi)/B

2

and tok'ai!1 (k'5Akb
22] r

2 is the perpendicular compo-
nent of the wave vector andai is the ion gyroradius!. Mar-
ginal instability is discussed in Sec. IV with the help of the
Nyquist diagram. The growth rate near marginal instability is
calculated in Sec. V. The relations between the fluctuating
magnetic field components and electric potential are obtained
in Sec. VI. We conclude in Sec. VII with the summary of the
results, the justification of the approximations, and some
general remarks. A forthcoming paper will discuss particle,
energy, and momentum transport, as well as the ambipolarity
constraint.

II. ORDERING OF DIMENSIONLESS PARAMETERS
AND EXPANSION SCHEME

A. Ordering

In the pedestals of high density H-mode tokamak dis-
charges, the electron and ion mean free paths alongB are
typically of the order of the connection length whereas the
equilibrium density and temperature length-scales are com-
parable to~actually only slightly larger than! the ‘‘poloidal
ion gyroradius.’’ That implies

n̂ j[qRn j /cj;1 ~1!

and

~ai !p /uLT,Nu;1, ~2!

wheren j is the collision frequency for the particular species
@n j51/t j ; we adopt Braginskii’s definitions of the electron
( j [e) and ion (j [ i ) collision times11#, cj5ATj /mj is the
thermal velocity, (ai)p5ai uB/Buu, ai5ci /V i is the ion gy-
roradius,Bu(w) is the poloidal~the toroidal! component of the
magnetic field, andLT5(] r ln T)21, LN5(] r ln N)21.

Since the ratioBu /Bw is small ~typically ;1021), it is
convenient to expand with respect to

m5uBu /Bwu!1. ~3!
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According to neoclassical theory,12,13,5 the poloidal and tor-
oidal flow velocities are of order Uu,i'] rTi /eBw

[ciai /LTi andUw,i'] rTi /eBu[ci(ai)p /LTi , respectively;
we thus introduce@in view of ~2! and ~3!#:

Ub,i;Uu,i;ciai /LTi;mci ~4a!

and

U i ,i;Uw,i;ci~ai !p /LT,i;ci ~4b!

@we define the unit vectorsn̂[B/B, b̂5n̂3 p̂, and p̂

5¹P/u¹Pu; Ub i5Ui•b̂ is the component of the flow veloc-

ity in the direction of the binormalb̂; the order of magnitude
relationsUb;Uu andU i;Uw follow from Bu /Bw;m!1].

The minor plasma radius is much larger than the edge
gradient length scales; thus also the ordering

LT(N);mr ; ~5a!

moreover

r 5
qRBu

Bw
;mqR. ~5b!

We consider mode structures whose radial length scales are
comparable to those of the equilibrium profiles and assume
kb] r;1; thus, in view of~2! and ~3!:

ai] r ln nj;ai] r ln pj;kbai;ai /LT(N);m, ~6a!

where lower-case symbols refer to the oscillations and capi-
tals to the equilibrium variables.

According to D’Angelo, the modes most prone to insta-
bility are characterized byki /kb'ai /LN and their angular
frequency isv'kiU i ,i2kßEr /B, where Er is the radial
electric field. The latter is related to the temperature and
density length scales through the radial momentum balance
equation

Er5Uw,iBu2Uu,iBw1] r Pj /eNi .

It follows from ~6a! that

kiai;m2 ~6b!

and

v;v j* ~7!

where the

v j* [kb~Tj /ejB!] r ln Nj ~8!

are the electron and ion diamagnetic frequencies~we con-
sider comparableTe andTi ; ee52ei52e). Moreover,~5a!
and ~5b! lead to

kiqR;m21@1 ~6b8!

as anticipated.
Relations~1!, ~6a!, ~5a!, and~5b! imply that the ion col-

lision frequency and the diamagnetic frequencies are in the
ratio

n i

v i*
;

n iLN

kbaici
;

n̂

kbai

LN

qR
;m ~9!

and that

v i*

V i
;kbai

ai

LN
;m2. ~10!

It remains to scale the ratiosme /mi and b52m0(Pe

1Pi)/B
2. It is appropriate to choose

Ame /mi;m2 ~11!

and, for reasons mentioned below,

b;m2. ~12!

The edge pedestal of ALCATOR C-Mod is characterized by
densitiesNj;231020 m23 and temperaturesTj;150 eV;
the magnetic field beingB;5 T, the local value ofb is
O(1023)!Ame /mi . We have nevertheless chosen the order-
ing ~11!–~12! on the grounds that~i! somewhat higher edge
values of b can occur in tokamaks with lower magnetic
fields and~ii ! ~12! and~6a!, respectively,~12! and~11!, yield
(c/vp,i)] r ln ni;kb(c/vp,i);kbai /Ab;1, respectively ce

;cA , where c is the speed of light,vp,i the ion plasma

frequency, andcA5AB2/m0miNi the Alfvén speed. That or-
dering ofb will play a role when considering particle trans-
port and the ambipolarity constraint; it has, however, no size-
able effect on the dispersion relation and the stability
criterion unlessk'ai;1 ~Ref. 14!#.

The parallel component of the equilibrium Ampe`re’s
equation leads to the scaling relation

r
] ln rBu

]r
;b

qR

ai

U i ,e2U i ,i

ci
.

Since the current flowing through the pedestal is a small
fraction of the total plasma current, we requestr ] r ln rBu

<m which leads to@in view of ~2!, ~3!, ~5a!, ~5b!, and~12!#

U i ,e2U i ,i;m2ci ~13!

at most.

B. Expansion scheme

The ordering of the dimensionless equilibrium param-
eters and of the frequency and wave vector components of
the oscillations allows us to compare the magnitudes of the
terms in the corresponding Vlasov–Boltzmann equations
once the relation between the amplitudes of the perturbed
distribution functions, the electric potential, and the magnetic
field components is established.

We first note that the adiabatic relation

ef/Te; f e /Fe ~14!

@wheref is the perturbed electric potential andf e (Fe) the
perturbed~equilibrium! electron distribution function# is a
straightforward consequence of the inequalityv/kice

;kbascs /kiLNce;m2!1 ~we note thatv j* ;kbascs /LN);
hence ne /Ne;pe /Pe;ef/Te . The oscillations must be

charge neutral since the Debye lengthslD, j5A«0Tj /Nje
2

are smaller than the characteristic length-scales by many or-
ders of magnitude @indeed, kblD, j;(cs /c)kbas /Ab
;cs /c]; thus f i /Fi; f e /Fe .
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The perturbed magnetic field is obtained from Ampe`re’s
equation. The binormal and radial components of the per-
turbed current are

j b5B21] r~pe1pi !' ~15a!

and

j r52 ikbB21~pe1pi !' ~15b!

in leading order, where thep' are the perpendicular pres-
sures. The parallel component of the perturbed current ob-
tains from ¹• j50: j i52( ik i)21¹.j' . The divergence
] r j r1 ikb j b of the perpendicular current density vanishes in
the leading~see the above relations! and first ~as will be
shown later! orders. Noting thatki /kb;ki /] r ln(pe1pi);m,
we obtain j i / j r( j b);m. It follows immediately from Am-
père’s equation thatbr;bb;mbi with

bi
(0)/B52m0~pe

(0)1pi
(0)!' /B2, ~16!

~] r
22kb

2 !br
(0)52m0ikb j i

(0)2 ik i] rbi
(0) , ~17a!

~] r
22kb

2 !bb
(0)5m0] r j i

(0)1kbkibi
(0) , ~17b!

where the notation~0! refers to leading order variables. We
thus adopt the ordering

bi /B;bp' /P;b~ef/T! ~18a!

and

br /B;bb /B;mbp' /P;mb~ef/T!. ~18b!

@The perturbed total pressure is thus (pe
(0)1pi

(0))
1Bbi

(0)/m05(pe
(0)1pi

(0)) i in the leading order.#
The kinetic equations describing the small amplitude os-

cillations

f ~r !exp~2 ivt1 ikuru1 ikwRw!

in cylindrical plasmas are given below.@As mentioned in
Sec. I, the cylindrical geometry is adequate ifkiqR@1;
that will be carefully justified in the Sec. VII. We note
that kb5(Bw /B)(ku2Bukw /Bw) and ki5(Bw /B)(kw

1Buku /Bw).] In order to proceed most easily with the ex-
pansion, the order of magnitude of each term with respect to
V j]§ f j ~on the right-hand side! is indicated for ions~first
estimate! and electrons~second estimate! by appropriate
powers ofm!1,

F (2 iv1 ik iv i1v' cos§] r1 ikbv' sin§)1
ej

mj

ErS cos§
]

]v'

2sin§
]

v']§
D G f j

m2;m6 m2;m4 m;m3 m;m3 m;m3

1
BfBu

B2 S ] r ln
Bu

Bf
D v'

2 F sin 2§S v'

]

]v i

2v i

]

]v'
D 2(11cos 2§)

m3;m5

v i]

v']§G f j

1
eJ

mJ
H ~2 ik if1 ivai!

]

]v i

m2;m4 m4;m6

2] rfS cos§
]

]v'

2sin§
]

v']§
D

m;m3

2 ikbfS sin§
]

]v'

1cos§
]

v']§
D

m;m3

2brFsin§S v'

]

]v i

2v i

]

]v'
D 2cos§

v i]

v']§
G2bbFcos§S v i

]

]v'

2v'

]

]v i
D 2sin§

v i]

v']§
G J

m3;m3 m3;m3

FJ

5VJ

] f J

]§
1

bi

B
VJ

]FJ

]§
1CJ~ f ,F !1CJ~F, f !

1;1 m2;m2 m3;m5 m3;m5

. ~19!

The velocity field has been defined byv5 p̂v' cos§

1b̂v' sin§1n̂vi , where§ is the velocity space angle around
the equilibrium magnetic field. The gyrofrequencyV j

5ejB/mj is positive for ions and negative for electrons. No
assumption has been made concerning either the equilibrium
or the perturbed distribution functions as to their dependence
on §, v' , and v i . The term proportional to] r ln(Bu /Bf)
arises as the unit vectorsb̂5(Bf /B)êu2(Bu /B)êf and n̂
5(Bf /B)êf1(Bu /B)êu are space-varying; it describes the
role of magnetic shear but turns out here to be negligible, in

agreement with the findings of Cattoet al.7 ai is the parallel
component of the vector potential.CJ is the collision opera-
tor for speciesj ; it can be split into

Ce5Ce,e1Ce,i

and
Ci5Ci ,i1Ci ,e ,

respectively.Ce,i and Ci ,e can be expanded in powers of
Ame /mi . An important property of the electron–ion and
ion–electron collision operators is that
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Ce,i~F,F !;~me /mi !
1/2neeFe

and

Ci ,e~F,F !;~me /mi !
1/2n i i Fi

regardless ofFi , if the departure of the electron distribution
function Fe from a Maxwellian is not larger than
O(Ame /mi)

15 and uUe2Ui u<ci ~that applies to the full and
perturbed operators as well!. Nonlinear terms are not consid-
ered here, but will be discussed in the forthcoming work on
anomalous transport.

Solving Eq.~19! for f J requires knowledge of the equi-
librium distribution functionsFJ . The kinetic equations de-
scribing the latter include quadratic terms in the oscillation

amplitude; an estimate of those is thus required. We shall
assume

ef

T
;m

which is small compared to the mixing length estimate
(ef/T;1/kbLT(N);1) but leads to a large anomalous ion
energy flux Im,pikbf/B.;kbaiuef/Tu2ciPi in comparison to
the neoclassical heat fluxq2n iai

2Pi /LT @the ratio being
O(m21); that circumstance will of course simplify the trans-
port analysis in the forthcoming paper#. Under those condi-
tions, the kinetic equations describing the equilibrium distri-
bution functionsF j are:

F ~] t1v' cos§ ] r !
m;m3

1
eJ

mJ
Er S cos§

]

]v'

2sin§
]

v']§ D
m;m3

GFJ

1
BfBu

B2 ] r S ln
Bu

Bf
D v'

2 F sin 2§S v'

]

]v i
2v i

]

]v'
D2~11cos 2§!

m3;m5

v i]

v']§GF j

2
eJ

mJ H ]

]v i
^~ ik if2 ivai!* f j&

m4;m6 m6;m8

1S cos§
]

]v'

2sin§
]

v']§ D ^] rf* f J&
m3;m5

1S sin§
]

]v'

1cos§
]

v']§ D ^2 ikbf* f J&
m3;m5

1Fsin§S v'

]

]v i
2v i

]

]v'
D2cos§

v i]

v']§G^br* f J&
m5;m5

1Fcos§S v i

]

]v'

2v'

]

]v i
D2sin§

v i]

v']§G^bb* f J&
m5;m5

1
]

]§
^bi* f J&
m4;m4

J
5CJ~F,F !

m3;m5

1^CJ~ f * , f !&
m5;m7

1VJ]§FJ
1;1

, ~20!

where a star refers to the complex conjugate and the angular
brackets to an average over the oscillations fast time scale
~alternatively over the poloidal and toroidal variation of the
oscillations!.

The evolution and asymptotic forms of the equilibrium
and perturbed distribution functions are clearly related. For
that reason, the Vlasov–Boltzmann equations~19! and ~20!
must be solved simultaneously. That is possible only in the
framework of a self-consistent expansion, the latter allowing
to obtain the higher ordersFJ and f J in an iterative manner.
That justifies the lengthy considerations of this section. The
present analysis will show that the distortions of the equilib-
rium electron and ion distribution functions owing to the
fluctuations are small enough as not to affect the dispersion
relation and the stability analysis. However, as the leading
order perturbed electron distribution is Maxwellian, calcula-
tion of anomalous particle transport requires knowledge of
higher order perturbed, and therefore equilibrium distribution
functions.

III. ITERATIVE SOLUTION OF THE COUPLED
VLASOV–BOLTZMANN EQUATIONS

In view of the large gyrofrequencies, it will be useful to
split FJ and f J as

FJ5F̄J1F̃J , f J5 f̄ J1 f̃ J , ~21a!

whereF̄J and f̄ J are the gyrophase averages ofFJ and f J :

F̄J5E
0

2p

FJd§/2p, f̄ J5E
0

2p

f Jd§/2p. ~21b!

The shortest time scale that will be considered in~20! is the
energy transport time scale;] tFJ is accordingly introduced
only at the order where the time independent equations have
no physically meaningful solution~in the absence of ad-
equate source terms!.

A. The leading order equilibrium distribution
functions

Equation~20! yields, at ordersm0 throughm2:

F̃ i
(0)50,

V i]§Fi
(1)5v' cos§] rFi

(0)1
ei

mi
Er cos§

]Fi
(0)

]v'

,
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V i]§Fi
(2)5v' cos§] rFi

(1)

1
ei

mi
Er S cos§

]

]v'

2sin§
]

v']§ DFi
(1) ,

for ions and

F̃e
(0)5F̃e

(1)5F̃e
(2)50

for electrons. Since~19! yields

f̃ i
(0)50 and f̃ e

(0)5 f̃ e
(1)5 f̃ e

(2)50,

the gyrophase average of Eq.~20! at orderm3 for ions, re-
spectively, at orderm5 for electrons, reads

C̄i~F (0),F (0)!50, respectivelyC̄e~F ~0!,F ~0!!50.

~The gyrophase equations are trivially satisfied, and therefore
provide no information, at the lower orders.! The leading
order equilibrium distribution functions are therefore

Fi
(0)5Ni~2pci

2!23/2expF2
v'

2 1~v i2U i ,i !
2

2ci
2 G ~22!

and

Fe
(0)5Ne~2p ce

2!23/2expF2
v'

2 1~v i2U i ,e!
2

2ce
2 G . ~23!

At this order, there is no constraint onTe2Ti and the only
constraint onU i ,e2U i ,i is U i ,e2U i ,i<mce. @That follows
from the property of the collision operators mentioned below
Eq. ~19! and, more simply, from the fact that the energy and
momentum exchange rates between electrons and ions are
smaller than the ion collision frequency byAme /mi;m2.]

B. The leading order perturbed distribution functions
and the dispersion relation

At order m for ions, respectivelym3 for electrons, Eq.
~19! yields

V i]§ f i
(1)5v' cos§S ] r f i

(0)1
ei

Ti
Fi

(0)] rf D
1 ikbv' sin§S f i

(0)1
ei

Ti
Fi

(0)f D
1

ei

mi
Er cos§

] f i
(0)

]v'

and

Ve]§ f e
(3)5v' cos§S ] r f e

(0)1
ee

Te
Fe

(0)] rf D
1 ikbv' sin§S f e

(0)1
ee

Te
Fe

(0)f D
1

ee

me
Er cos§

] f e
(0)

]v'

.

Those results are introduced into the gyrophase average of
Eq. ~19! at orderm2 for ions, respectively, at orderm4 for
electrons.~The average equations are trivially satisfied at the
lower orders.! We obtain

f e
(0)5

ef

Te
Fe

(0) ~24!

and

f̄ i
(0)5

ki~v i2U i ,i !Fi
(0)2

kbTi

eB
] rFi

(0)

~v2vE!2kiv i

ef

Ti
, ~25a!

where

kbTi

eB
] rFi

(0)5v i* H 11h iFv'
2 1~v i2U i ,i !

2

2ci
2 2

3

2G
1

v i2U i ,i

ci

] rU i ,i

ci] r ln Ni
J Fi

(0) , ~25b!

vE52kbEr /B ~26!

is theEÃB Doppler frequency.
The expressions of the leading order electron and ion

densities are

ne
(0)5~ef/Te!Ne , ~27a!

ni
(0)5~ef/Ti !E

2`

`

dv i8~v82kiv i8!21H kiv i8

2v i* F11h i S v i8
2

2ci
2 2

1

2D 1
v i8

ci

] rU i ,i

ci] r ln Ni
G J Fi

(0) ,

~27b!

where v i85v i2U i ,i and v8[v2vE2kiU i ,i . The charge
neutrality conditionne5ni provides the wave dispersion re-
lation which thus reads, in the leading order:

11t i5D~v8!. ~28!

Heret i5Ti /Te and

D~v8!5Ni
21E

2`

`

dv i8~v82kiv i8!21

3Hv82v i* F11h i S v i8
2

2ci
2 2

1

2D 1
v i8

ci

] rU i ,i

ci] r ln Ni
G J Fi

(0)

5
1

A2pt i
E

2`

`

du~z2ju!21Fz1t i S 12
h i

2 D
1zu1

h i

2
u2Gexp~2u2/2t i !, ~29!

where z5v8/ve* , z5] rU i ,i /cs] r ln Ni , and j5kics /ve* .
For uIm v8u!uRev8u, the functionD(v8) can be rewritten as
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D~v8!5
1

A2pt i

PE
2`

`

du~z2ju!21

3Fz1t i S 12
h i

2 D1zu1
h i

2
u2Gexp~2u2/2t i !

2 iA p

2t i

1

uju Fz1t i S 12
h i

2 D1z
z

j
1

h i

2

z2

j2G
3exp~2z2/2t ij

2!, ~30!

whereP is the Cauchy principal part integral and the imagi-
nary contribution arises from the residue following the pre-
scription of Landau~the latter being imposed by causality!.
We note that

~i! The dispersion relation~28! involves only two wave
related dimensionless parameters, namely,z and j;
since ve* }kb , those are proportional tov8/kb and
v8/ki , respectively;

~ii ! Although we ordered] r ln(nj ,pj ,f);kb;LN(T)
21 , the

radial derivative of the fluctuations does not appear at
this order; in other words, the dispersion relation is
scalar orlocal;

~iii ! Unlike the derivative of the equilibrium toroidal ve-
locity, the derivative of the radial electric field does
not enter Eq.~28!; that implies that the stabilizing or
destabilizing roles of] rEr and ] rU i ,i are of quite a
different nature;

~iv! The wave frequency in the laboratory frame is a func-
tion of various inhomogeneous equilibrium param-
eters; the oscillation will be localized, as a result, to a
region where the linear growth balances the wave dis-
integration process associated with the frequency gra-
dient; ultimately,] rv ~and therefore the equilibrium
gradients! will be controlled by anomalous transport,
that is equivalent to self-organized criticality.

IV. NYQUIST STABILITY ANALYSIS

The Nyquist diagram technique allows us to determine
the conditions under which the dispersion relation admits
unstable solutions. We assumeve* .0 without loss of gener-
ality; instability occurs if Imv8.0 and, therefore, Imz.0.
We let z trace out a closed contour in the complex plane,
going from 2` to 1` on the real axis and closing anti-
clockwise on a semicircle at infinity in the upper half-plane.
As z traces out that contour, the functionD(z) will also trace
out some closed contour~the Nyquist contour! in the com-
plex D-plane. If the pointD(z)511t i @cf. Eq. ~28!# falls in
a region encircled by, and lying to the left of, this contour,
then the dispersion relation admits a root with Imz.0, i.e.,
the plasma is unstable.

The semicircleuzu→` maps into limuzu→` D(z)51 @cf.
Eq. ~29!#. To analyze the behavior ofD at large positive and
large negativereal values ofz we note that Eq.~30! yields

limz→6` D511
t i

z
2 iA p

2t i

h i

2

z2

uju3
expS 2

z2

2t ij
2D .

Since, on the one hand, ReD.1 for z→1` and ReD,1 for
z→2` and, on the other hand, ImD,0 for both z→6`
~we assumeh i.0), D moves in an anticlockwise fashion
along a~infinitely small! trajectory which is tangent to the
point D51 and otherwise below the real axis as Rez passes
from large and positive values to large and negative values
along the semicircle at infinity (Imz vanishing at the two
ends of the contour!. The corresponding topology is shown
in Fig. 1~a!. @We note for completeness that the trajectory in
the vicinity of the pointD51 is above the real axis ifh i

,0 and that limz→6`Im D behaves asz exp(2z2/2t ij
2),

rather than asz2 exp(2z2/2t ij
2), if h i50; the caseh i50

obviously requires a special analysis.# In view of the preced-
ing paragraph, a necessary condition for instability to occur
is that the Nyquist (D) contour crosses the real axis asz goes
from 2` to 1` along the real axis, i.e., that the residue in
Eq. ~30! vanishes for some values ofz. Those are solutions
of

h i

2j2 z21S z

j
11D z1t i S 12

h i

2 D50, ~31a!

i.e.,

z1,252
j

h i

~z1j!F16A12
h it i~22h i !

~z1j!2 G . ~31b!

The residue is proportional to the numerator of the integrand
in the first term of~30! at u5z/j. For the values ofz which
cancel the residue, the numerator of the integrand divides
exactly by (z2ju). The value ofD when ImD50 can there-
fore be obtained exactly:

D~z1,2!52
1

jA2pt i

E
2`

`

duS h i

2
u1z1

h iz1,2

2j
D

3exp~2u2/2t i !

52S z

j
1

h iz1,2

2j2 D . ~32!

We note thatD(z1).D(z2) if z1,z2 . That implies that the
point D511t i will lay to the left of, and be encircled by,
the Nyquist contour if

D~z2!,11t i,D~z1!, ~33!

FIG. 1. ~a! Map of the semicircleuzu→`, Im z.0 in the complexD plane;
~b! the Nyquist contour for 0,h i,2 and (z1j)/j,0; ~c! the Nyquist
contour forh i.2.
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where~33! is the sufficient condition for instability. Introduc-
ing ~31b! into ~32! yields

D2151
z1j

2j F216 A12
h it i~22h i !

~z1j!2 G . ~328!

The equalityD511t i requests that

~11t i !j
21zj1h i~22h i !/450

@whichever sign is considered in (328)] and, therefore,

j5
2z6Az22h i~22h i !~11t i !

2~11t i !
. ~34!

Different cases have to be envisaged in the framework of
the Nyquist stability analysis:

~1! h it i(22h i).(z1j)2.
Im D50 admits no real solution. Therefore, the Nyquist
contour cannot cross the real axis. The plasma is stable.

~2! (z1j)2.h it i(22h i).0.
Im D50 admits two real solutions having the same sign.
Two subcases have to be considered.
~i! (z1j)/j.0. The two values ofD21 given in (328)
are negative and condition~33! cannot be fulfilled. The
plasma is stable.
~ii ! (z1j)/j,0. The two values ofD21 given in (328)
are positive. The Nyquist contour has the form shown in
Fig. 1~b!. Condition~33! reads

2
z1j

j
F12A12

h it i~22h i !

~z1j!2 G
,2t i,2

z1j

j
F11A12

h it i~22h i !

~z1j!2 G . ~35!

Inspection of Eq.~34! shows that the values ofuzu for
which these inequalities are satisfied and the plasma is
unstable are

uzu.uzthru5Ah i~22h i !~11t i !. ~36!

To z5z thr corresponds
j5jthr52z thr/2~11t i !. ~368!

All other values ofj are stable whenz5z thr . Introduc-
ing z5z thr andj5j thr into ~35! shows that the equality
is satisfied on the left-hand side. The frequency of the
marginally unstable mode thus corresponds to the largest
of the two values ofz in Eq. ~31b!, namely,
z5zthr5120.5h i . ~37!

We note that~36! agrees with the criterion of D’Angelo,4

namely,] rU i ,i56&lcs @l52(] r ln Ni)# if t i51 and
h i51; (368) andkz /ky56lcs /&V i then disagrees by
a factor 2. There is however complete disagreement if
h i50 which is the case he actually considered. The dis-
agreement is also complete as concerns the frequency of
the marginally stable mode@his equation~18! yields v8
50]. Cattoet al.7 obtainedz52j@11t i11/4j2# as the
marginal stability condition@their local theory, below
Eq. ~22!#. Minimizing with respect toj yields z thr

56A11t i , 2j561/2A11t i , and z51/2 in agree-
ment with the results of this subsectionif and only if
h i51. The discrepancies are probably related to the fol-
lowing:
~a! The caseh i50 requires a separate Nyquist analysis

~as the contour in the vicinity of the pointD51 is
no longer below the real axis!;

~b! Eq. ~368! yieldsj thr50 if h i50; ion resonant inter-
action and the instability growth rateg near thresh-
old do vanish faster than any power ofkici /v8
→0 under those conditions; the Nyquist technique,
however, picks up the first mode to become un-
stable, irrelevant of the expected values ofg;

~c! Catto et al. did not take ion, but took the electron
resonant interaction into account.

Equation~36! yields two unstable domains with respect
to h i ; those are

0,hi,12A12z2/~11t i ! ~38a!
and

2.hi.11A12z2/~11t i !. ~38b!

The criterion~38b! agrees with the standard ITG insta-
bility condition h i.2 if z50.
Of interest is the ratio

v82

ki
2ci

25
z2

j2ti

5
~11ti!u22hiu

tihi

~39!

showing that asymptotic expansion of the dispersion
function near marginal~in!stability for v8/kici→0 is al-
lowed if h i→2 and asymptotic expansion forkici /v8
→0 is allowed if t i→0 or h i→0 ~see Appendix!. In
those cases, resonant interaction of ions with the waves
is however exponentially weak.
Of interest is also thatv thr8 has the sign ofve* if h i,2
and the sign ofv i* if h i.2.

~3! h i.2.
Im D50 admits two real solutions having opposite signs.
The corresponding values ofD21 have also opposite
signs and the Nyquist contour has the form shown in Fig.
1~c!. Condition~33! reads

2
z1j

j
FA11

h it i~h i22!

~z1j!2 11G
,2t i,

z1j

j
FA11

h it i~h i22!

~z1j!2 21G
if ( z1j)/j.0 and

z1j

j
FA11

h it i~h i22!

~z1j!2 21G
,2t i,2

z1j

j
FA11

h it i~h i22!

~z1j!2 11G
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if ( z1j)/j,0. The left-hand side inequalities are always
satisfied. The right-hand side inequalities are satisfied ifj
lies between the two values given in~34!, namely,

2
Az21~11t i !h i~h i22!1z

2~11t i !

,j,
Az21~11t i !h i~h i22!2z

2~11t i !
~40!

@it is understood thatAz21(11t i)h i(h i22) is positive#
and (z1j)/j.0, respectively, (z1j)/j,0. Since those
conditions are complementary,the plasma is always un-
stable. The inequality~40! provides the unstable range with
respect toj. Its center is at

j5 j̄52z/2~11t i ! ~41!

and its width isDj5Az21(11t i)h i(h i22)/(11t i); both
u j̄u andDj increase withuzu. Assumingz.0 in the following
discussion, ~40! shows that the upper unstable value
of j is reduced with respect to the casez50 @in-

deed, Az21(11t i)h i(h i22)2z2A(11ti)hi(h i22),0]
whereas the lower unstable value decreases by a larger
amount than the upper value.

We note that~368! and ~41! will have important conse-
quences concerning anomalous momentum transport.

V. GROWTH RATE NEAR MARGINAL STABILITY
„h iË2…

The dispersion function~29! can be rewritten as

D~z!5
1

A2pt i

E
2`

`

du

3F 2
1

j
S z1

h iz

2j
D

1
1

z2ju
S h iz

2

2j2 1S z

j
11D z1t iS 12

h i

2
D G

3exp~2u2/2t i !. ~298!

@Replaceu by (u2z/j)1z/j in ~29! and proceed.# At mar-
ginal stability, the second term vanishes@cf. Eq. ~31a!# and
the first is equal to 11t i . We let

z5z thr1dz, j5j thr1dj, z5zthr1dz ~42!

close to threshold. Expanding the functionD(z) and making
use of the equalities~368! andh izthr /j thr52z thr @which fol-
lows from ~36!, ~368!, and ~37! if h i,2; the caseh i.2 is
not discussed here, since it is always unstable# yields the
relation

S dz

zthr
1

~dj!2

j thr
2 22

dz

z thr
D

5S 1

11t i

dz

zthr
1

~dj!2

j thr
2 22

dz

z thr
D 1

A2pt i

3E
2`

`

du
zthr

zthr2j thru
exp~2u2/2t i ! ~43!

~first order terms indj/j thr do vanish since the unstable
range is of zero measure with respect toj if j5j thr) from
which it follows that

dz

zthr

5~11t i !S 2
dz

z thr

2
~dj!2

j thr
2 D I

I 2t i

, ~44!

where

I 5
1

A2pt i
E

2`

`

du
j thru exp~2u2/2t i !

zthr2j thru
. ~45!

Sincezthr is real, we may write

I 5R2 iI, ~46!

where

R5
1

A2pt i

PE
2`

`

du
j thru exp~2u2/2t i !

zthr2j thru
~468!

is the Cauchy principal part integral and

I5Ap/2t izthr exp~2zthr
2 /2t i ! ~4688!

is the residue multiplied by the anglep.
The imaginary part ofdz can be expressed as

Im dz5~11t i !S 2
dz

z thr

2
~dj!2

j thr
2 D zthrt iI

~R2t i !
21I2 , ~47!

which shows thatdz/z thr.0 is destabilizing, whereas both
dj/j thr.0 anddj/j thr,0 are stabilizing, as expected from
the results of the Nyquist analysis.~We recall thatdv8
5ve* dz and ve* .0 by convention.! The coefficient of
@2(dz/z thr)2(dj/j thr)

2# is typically of order unity if t i is
finite ~the standard case for reactor application!. Large
growth rates are thus predicted~those are proportional to the
diamagnetic frequency!. The plot Imdz versush i or t i is
also expected to display a peak whenR(h i ,t i)→t i .

In the case~mostly of academic interest! t i→0, one ob-
tains I 5R5t ij thr

2 /zthr
2 5h it i /(22h i) andI50; thus

limt i→0

dz

zthr
5S dz

z thr
2

~dj!2

2j thr
2 D h i

h i21
.

That expression diverges forh i51. The expansion of the
dispersion functionD must then be carried out up to second
order indz. That will yield a quadratic equation whose roots
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will be either real or imaginary. The later case corresponds to
an ideal instability, similar to the instability we find in the
Appendix for t i→0 if uzu.1. The threshold conditionuzu
.1 is identical to that obtained from the Nyquist analysis
@see~36!# if and only if h i51.

VI. MAGNETIC FLUCTUATIONS

Electric field oscillations induce current density and
magnetic field oscillations. It is the purpose of this section to
obtain the relations between the fluctuationsj , b, andf.

As already mentioned, the parallel current density ob-
tains from the equation

j i52~ ik i!
21¹.j' , ~48!

where the perpendicular current density can be calculated
from

j'5eF E dvv'~ p̂ cos§1b̂ sin§! f̃ i
(n)

2E dvv'~ p̂ cos§1b̂ sin§! f̃ e
(n12)G

at the successive orders.~We note that the electron distribu-
tion function of ordern12 must be considered simulta-
neously with the ion distribution function of ordern since
the characteristic velocities are in the ratioAme /mi;m2.)
]§ f i

(0) and ]§ f e
(2) vanish identically; with the help of the

equations defining]§ f i
(1) and]§ f e

(3) ~Sec. III B!, it is readily
verified that

E dvv'~] r cos§1 ikb sin§!~ f̃ i
(1)2 f̃ e

(3)!50.

]§ f i
(2) and]§ f e

(4) are given by

~2 iv1 ik iv i! f i
(0)1Fv'~cos§] r1 ikb sin§!

1
ei

mi
Er S cos§

]

]v'

2sin§
]

v']§ D G f i
(1)

2
ei

mi
ik if

]Fi
(0)

]v i
2

ei

mi
F] rfS cos§

]

]v'

2sin§
]

v']§ D
1 ikbfS sin§

]

]v'

1cos§
]

v']§ D GFi
[1]5V i

] f i
(2)

]§

and

ik iv i f e
(0)1Fv'~cos§] r1 ikb sin§!1

ee

me
Er cos§

]

]v'
G f e

(1)

2
ee

me
ik if

]Fe
(0)

]v i
2

ee

me
~] rf cos§1 ikbf sin§!

]

]v'

Fe
[1]

5Ve

] f e
(4)

]§
,

respectively; that leads similarly to

E dvv'~] r cos§1 ikb sin§!~ f̃ i
(2)2 f̃ e

(4)!50.

The parallel component of the oscillating magnetic field ob-
tains from

ikbbi5m0 j r

~or from ] rbi52m0 j b) under those conditions. That leads to
Eq. ~16!. We proceed now with the calculation of the diver-
gence of the higher order perpendicular ion and electron cur-
rents. We have, at first:

E dvv'~] r cos§1 ikb sin§! f i
(3)5E dvv'~2] r sin§1 ikb cos§!]§ f i

(3)

5V i
21E dvF ~2 iv1 ik iv i!v'~2] r sin§1 ikb cos§! f i

(1)

2@~v'
2 /2!~] r

21kb
2 !sin 2§2v'

2 ikb] r cos 2§# f i
2G

1 ikbB21~2f] rNi
(2)2Erni

(2)!.

Integrating by parts and replacing]§ f i
(2) and]§ f i

(1) , we find after some lengthy but straightforward algebra that

E dvv'~] r cos§1 ikb sin§! f i
(3)5 ikbB21V i

21H @~] r
22kb

2 !f# @~v8/kb!Ni2] r Pi /eB#

1~] rf!] r@~v8/kb!Ni1] r Pi /eB#
1] r@~] rvE /kb!~Nif1p',i /e!#

J 2 ikbB21Erni
(2) ,

where

p',i5E dv~miv'
2 /2! f i

(0)

5ni
(0)TiF11

h ive*

A2pci
E

2`

`

du
exp~2u2/2ci

2!

v82kiu
G . ~49!

~The first and second order equilibrium densityNi
(1) andNi

(2)

have been absorbed inNi
(0)[Ni .) Furthermore,

E dvv'~] r cos§1 ikb sin§! f e
(5)52 ikbB21Erne

(2) .

The parallel current density is therefore given by the expres-
sion
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j i52~kb /ki!~mi /B2!

3H @~] r
22kb

2 !f# @~v8/kb!Ni2] r Pi /eB#

1~] rf!] r@~v8/kb!Ni1] r Pi /eB#
1] r@~] rvE /kb!~Nif1p',i /e!#

J . ~50!

Equation ~50! shows that the parallel current arises as to
cancel the charge separation which tends to occur in the
plane perpendicular toB owing to finite ion gyroradius ef-
fects. The radial and binormal components of the perturbed
magnetic field are obtained from

~] r
22kb

2 !br52m0ikb j i2 ik i] rbi

and

~] r
22kb

2 !bb5m0] r j i1kbkibi ,

respectively. Thus,

~] r
22kb

2 !br

5
ikb

2

kiNicA
2 5

@~] r
22kb

2 !f# @~v8/kb!Ni2] r Pi /eB#

1~] rf!] r@~v8/kb!Ni1] r Pi /eB#

1] rF S ] rvE

kb
1

ki
2

kb
2 V i D S p',e

(0) 1p',i
(0)

e D G 6
~51!

and

~] r
22kb

2 !bb

52
kb

kiNicA
2

3] r 5
@~] r

22kb
2 !f# @~v8/kb!Ni2] r Pi /eB#

1~] rf!] r@~v8/kb!Ni1] r Pi /eB#

1] rF S ] rvE

kb

1
ki

2

] r
2 V i D S pe,'

(0) 1p',i
(0)

e
D G 6 . ~52!

We have made use ofp',e
(0) 5pi ,e

(0)5pe
(0)5eNef and intro-

duced the symbolic notation 1/] r
2 . It is easily seen that the

normalized magnetic and electric fluctuationsbr /B and
ef/T are in the ratio

br /B

ef/T
'b

kb
2ai

2

kiLN(T)

or

br /B

ef/T
'b

ki] r

] r
22kb

2

according to whether the first or the last term on the right-
hand side of~51! is dominant.

VII. DISCUSSION

A. Summary of the results

In this paper, we have obtained and analyzed the local
kinetic dispersion relation for oscillations with frequencies
and perpendicular, respectively parallel, wave numbers in the

following ranges:v;v j* (v j* is the electron or ion diamag-
netic frequency; we assumeTi;Te so that v i* ;2ve* ),
kbai;ai] r ln nj;m!1 (ai is the ion gyro-radius andm!1
an expansion parameter of orderBu /Bw) and ki

;kbai /LN , where LN5] r ln Nj . Unlike previous
analysis,4,7,10 we have taken the equilibrium density, tem-
perature, and parallel velocity gradients simultaneously into
account ~parameters h i5] r ln Ti /]r ln Ni;1 and z
5] rU i ,i /cs] r ln Ni;1); we have assumed thatLN!r !qR,
as is typical for transport barriers and, in particular, for
H-mode pedestals; we have also neglected the torus curva-
ture and considered the electrons to be ‘‘adiabatic.’’ Those
simplifications and the local analysis are justified below for
kiqR@1, which inequality turns out to be the verified for the
marginally unstable oscillations in the H-mode pedestal of
ALCATOR C-Mod if the parallel velocity gradient is esti-
mated from neoclassical theory.5,13 As a consequence, the
dispersion relation~30! involves only two parameters defin-
ing the oscillations, namely,v8/kb andv8/ki .

Our primary aim has been to determine the exact stabil-
ity limits in the parameter spaceh i , z, andt i5Ti /Te . Those
cannot be obtained from asymptotic expansions of the dis-
persion relation~29! or ~30!, the reason being that the
asymptotic regime to consider is not knowna priori and may
moreover change with the values of the parameterst i or h i .
@As Eq. ~39! shows, expansion with respect tokiv i8/v8 is
e.g. not allowed ifh i→2 ~hencev thr8 →0) but is possible if
h i→0 ~hencev thr8 →ve* ). The first, respectively the second,
case corresponds to ITG, respectively electron drift branch,
marginal~in!stability if z→0; generally speaking, expansion
of the dispersion function leads to misleading results for the
ITG-PVS instability.# The Nyquist diagram technique is the
only analytical method that is able to yield accurate stability
criteria under those conditions. The dispersion function how-
ever can be simplified near threshold, once the threshold re-
lation is known, and the expression of the growth rate be
obtained. Instability is driven by wave–particle resonant in-
teraction~more precisely by inverse ion Landau damping!,
except in the limitt i→0 which, for fusion plasmas, is of no
interest. Despite the large gradients, the electrostatic approxi-
mation of the dispersion relation is justified for the plasma
edge.

More details on the results obtained in the present work
are given hereafter.

~1! The local instability condition reads

z2>z thr
2 5h i~22h i !~11t i !. ~53!

@That result disagrees with those obtained by D’Angelo and
by Catto et al. for the parallel velocity shear instability
(uzu.A11t i for h i50); the caseh i50 is however atypical
and requires an independent Nyquist analysis.# With respect
to the parameterh i , two unstable ranges occur:

~ i! 0,h i,h i ,1512A12z2/~11t i ! ~54!

~the caseh i,0 has not been investigated! and

~ ii ! h i.h i ,2511A12z2/~11t i !. ~55!
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@That result agrees with the standard ion temperature gradi-
ent instability criterion (h i.2 if z50).# At threshold, the
wave frequency is

v thr8 5~120.5h i !ve* ~56!

(v85v2vE2kiU i ,i is the wave frequency in the ion rest
frame! whereas the ratio of the parallel and binormal com-
ponents of the wave vector obtained from Eq.~368! is

~ki /kb! thr5zas/2~11t i !LN5] rU i ,i /2~11t i !V i . ~57!

Equation~53! may be regarded as a generalized criterion for
the parallel velocity shear instability and~55! as a general-
ized criterion for the ion temperature gradient instability.
Equation~54! is rather related to the electron drift branch, as
the frequency of the marginally stable modev thr8 →ve* in the
ion rest frame ifz→0. The frequency of the marginally
stable ion drift modev thr8 →01ve* if z→0; v thr8 has the sign
of ve* whatever the value ofzÞ0.

~2! The growth/decay rate in the neighborhood of insta-
bility threshold is given by

Im dv85~11t i !S 2
dz

z thr

2
~dj!2

j thr
2 D zthrt iI

~R2t i !
21I2 ve* ,

~58!

whereR andI are given by~468! and~4688!; ve* is positive
by convention. The expansion leading to~58! is not valid if
h i→2, asz thr , j thr , andzthr vanish in that limit.

~3! The components of the oscillating magnetic field are
given in Eqs.~16!, ~51!, and~52!. We note that the perturbed
parallel current arises as to cancel the charge separation
which tends to arise in the perpendicular plane owing to
finite ion gyroradius effects. The reason whyb enters neither
the dispersion relation nor the stability criterion at the values
being considered is presumably that we assumedai] r

;kbai;m!1.14

B. Justification of the approximations

Equation~57! can be rewritten as

~kiqR! thr5@z/2~11t i !#kbas@qR/LN#. ~59!

We have estimated thatz;1 andqR/LN;63102 in the ped-
estal of ALCATOR C-Mod H-mode discharges which are
close to the ELM-free to EDA transition.5,16 Inserting the
poloidal mode numberku;400 m21 of the QC mode ob-
served in EDA discharges andai;0.3531023 m ~see Refs.
5 and 16! yields (kiqR) thr~20. Since ki5k.B/B5(m
1nq)/qR, we conclude thatm1nq@1 ~wherem andn are
the poloidal and toroidal mode numbers!. Under those con-
ditions,

~i! the poloidal and toroidal mode numbersm andn are
independent@they are not linked by a relation of the
type q(r m/n)52m/n];

~ii ! the mode spans a large number (5kiqR) of rational
surfaces@those are defined byq(r m/n8)52m/n8];

~iii ! the parallel ion dynamics cannot be balanced by finite
ion gyroradius nor by curvature effects, which justi-
fies the local approximation and the cylindrical model

@parallel ion dynamics, ion gyroradius, and curvature
yield terms proportional to (kici /v8)2, (ai] r)

2, and
(ciai] r /Rv8)2 in the wave equation; the ratios
(v8/kici)ai] r;(v8/v i* )(Ls /LN)(kbai /kiLs)

2!1
and (ai] r /kiR);kbai(q/ ŝ)/(kiLs)

2!1 are here of
interest~we approximate the radial wave number] r

by 1/(kiqR)D, D51/kbŝ being the distance between
the neighboring rational surfacesr m/n8 and r m61/n8 ;
ŝ5r ] r ln q and Ls5qR/ ŝ are the magnetic shear pa-
rameter the magnetic shear length, respectively!#;

~iv! the trapped electron response is negligible;17,18,19

hence, also in view ofv8/kice!1, the validity of the
adiabatic approximation.

C. Remarks

~1! Since we have allowed the oscillations and equilib-
rium radial scales to be comparable and no term involving
the radial gradients] r(nj ,pj ,f) appears in the dispersion
equation, we conclude that the oscillations frequencies may
be space dependent. For examplev5@12h i(r )/2#ve* (r )
1vE(r )1kiU i ,i(r ) for the marginally unstable mode.! As a
result, a wave packet of sizew will get distorted and break
up into smaller structures over a time intervalt51/w] rv.
Since finite amplitude will be reached only ifgt>1 ~where
g is the linear growth rate! the size of the wave packet is
bounded by

w<g/] rv. ~60!

The energy which is transferred to shorter radial wavelengths
via the disintegration process might be reabsorbed through
finite b stabilization.14

The role of inhomogeneous electric fields and inhomo-
geneous parallel flows must here be contrasted. The stabilis-
ing role of the former can only be understood in the above
context of wave packet distortion since its gradient does not
enter the dispersion relation. The gradient of the parallel ve-
locity not only affects the width of the wave packet~as it
contributes to] rv), but appears explicitly in the stability
criterion and the expression of the linear growth rate. Those
observations may explain the somewhat contrasted effects of
the EÃB velocity gradient and of the parallel velocity gra-
dient which have been noticed in numerical simulations.20,21

We note finally that it is misleading, in our opinion, to sin-
gularize the stabilizing role of theEÃB velocity gradient;
the gradient of the diamagnetic frequencies, for example,
should have similar consequences.

~2! If the width and the amplitude of the unstable wave
packets are controlled by the frequency gradient, then en-
ergy, momentum, and particle bursts are expected when
u] rvu decreases momentarily.@It is noted that small values of
] rv/v do not necessarily require small values of] rT/T and
] rN/N!.] That may be relevant to intermittent behavior.
Conversely,] rv ~and therefore the equilibrium gradients!
will be controlled by anomalous transport; that is equivalent
to self-organized criticality.

~3! It has been mentioned earlier~Sec. VII A! that reli-
able~in!stability criteria cannot be obtained from asymptotic
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expansions of the local dispersion relation. That certainly
also applies for localized ITG-PVS modes,v8/kici being
again of order unity. Under those conditions, analytical
progress will require us to either generalize the Nyquist tech-
nique or to be guided by results from gyrokinetic
simulations.22–24

~4! Equation~57! holds also above instability threshold
for the central value of the parallel wave number in the un-
stable range~for a givenkb). The anomalous radial flow of
parallel momentum will be proportional to a weighted value
of ki over the spectrum and hence to] rU i ,i .
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APPENDIX: THE DISPERSION RELATION FOR t i\0
AND h i\0

The function D(v8) can be readily evaluated ifkici

!v8, which limit always applies ift i→0. As ImD(v8) van-
ishes faster than any power of the small parametert i @cf. Eq.
~30!#, the dispersion relation~28! takes the form

z22z2j~z1j!50.

One of the roots is unstable if

j21zj11/4<0,

i.e., if j is in the range

2~z1Az221!<2j<2~z2Az221!.

That is possible if

uzu.uz thru51.

For z5z thr561, one hasj5j thr52z thr/2 andz5zthr51/2
~hencev85ve* /2). Those results agree with those of Catto
et al. but disagree with~36! and ~37! unlessh i51. The ori-
gin of the discrepancy has been discussed below Eq.~37! and
at the end of Sec. V.

The dispersion relation near marginal stability is also
readily obtained ifh i→0 andj}z→0 @cf. ~36! and ~368!#:
expanding forkici!v8 indeed yieldsz51, in agreement
with ~37!.
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