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Zonal Flow and Zonal Magnetic Field Generation by Finite # Drift Waves: A Theory
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The understanding of low to high (L-H) transition in tokamaks has been an important area of in-
vestigation for more than a decade. Recent 3D finite 8 simulations of drift-resistive ballooning modes
in a flux tube geometry by Rogers et al. [Phys. Rev. Lett. 81, 4396 (1998)] have provided a unique
parametrization of the transition in a two-dimensional phase space. Comparison of the threshold curve in
this phase space with data from ASDEX and C-MOD has shown very good agreement. In this Letter we
provide a simple theory, based on the generation of zonal flow and zonal magnetic field in a finite-beta
plasma, which explains this threshold curve for L-H transition in tokamaks.
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The observation of the low to high confinement (L-H)
transition in tokamaks heralded significant optimism for
achieving the goal of fusion in a laboratory plasma [1-3].
More recently the observation of enhanced confined modes
in all the major devices has also added to the optimism
[4,5]. As a consequence, understanding of this remarkable
self-organization of the tokamak plasma to these good con-
finement regimes is an important area of research. Central
to all these enhanced confinement regimes, be they in the
edge region or the core region of the plasma, is the genera-
tion of sheared flows or zonal flows, which are believed to
be responsible for suppressing fluctuations and inhibiting
transport. Thus it is important to understand the mecha-
nisms for the generation of shear flow.

We have recently reviewed the study of shear flow gen-
eration in fluids and plasmas, with a focus on the linear
instability analysis [6], and therefore will defer the reader
to this paper for details and relevant references. Besides
these studies in which the dominant mechanism for the
generation of the flow is related to the nonlinear mode cou-
pling, other mechanisms, like ion orbit loss [7] and the
anomalous Stringer-Winsor [8] and anomalous viscosity
mechanisms [9], which rely on toroidal geometry, and
more recently the two-fluid self-organized singular layer
model [10], have also been investigated. A very recent re-
view by Connor and Wilson [11] gives an excellent over-
view of the observations and theories for L-H transition in
tokamaks.

The modeling of L-H transitions in tokamak plasmas
has also been an active area of research. Starting with
the work of Guzdar et al. [12], Rogers et al. [13] and Xu
et al. [14] have systematically developed edge models for
studying the cause of anomalous transport in the L phase
and the subsequent improvement in confinement in the H
phase. Rogers ef al. [13], in their finite-beta simulations
of drift-resistive ballooning modes, have identified a two-
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dimensional parameter space involving ayup and ap
in which the edge plasma displays dramatic changes in
transport. The first parameter ayup = Bg>R/L p» with
safety factor g, major radius R, pressure gradient scale
length L, and ratio 8 of the plasma pressure to the mag-
netic pressure, is the standard MHD parameter identified
for the onset of ideal ballooning modes. The second
parameter «p is the dimensionless diamagnetic parame-
ter. It is the ratio of the diamagnetic drift frequency
pscs/LoL,(1 + 7) to the ideal growth rate c¢;/\/RL,/2.
Here p; is the ion Larmor radius with the electron and
ion temperature, c, is the ion acoustic velocity, Ly is the
characteristic scale length [9,10] of the drift-resistive bal-
looning instability, L, is the density gradient scale length,
and 7 = T; /T, is the ratio of ion to electron temperature.
From their simulations, they showed that for small ap
and apypp below the ideal limit, the anomalous trans-
port from resistive ballooning modes is very large and in-
creases with ampp. They interpret the computed large
levels of transport to be responsible for the density limit in
tokamaks. However, for finite ap, as aypgp 1S increased,
there is a transition from a poorly confined state (L mode)
to a good confined state (H mode). This simulation is
the first to identify a beta dependence for the L-H tran-
sition. Also subsequent comparison with data from AS-
DEX [15], C-Mod [16], and DIII-D [17] showed that the
numerically computed shape of the boundary curve for the
L-H transition was in good agreement with the observa-
tions. However, the constant associated with the curve
was different for the three cases. In this Letter we report
a simple theory for the generation of zonal flow and zonal
magnetic field in a finite-beta plasma. Recently Gruzinov
et al. [18] have studied the problem of zonal field genera-
tion by using the wave-kinetic approach. Their focus has
been on understanding the dynamo problem. We present
here the coherent modulational instability analysis and its
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implications to L-H transitions. Furthermore, we show
how this instability mechanism can lead to a threshold
curve similar to the one obtained by Rogers et al. [13].

The basic equations used have been derived by Zeiler
et al. [19]. They are
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n=rh/ng, ¢ =ed/T,,and y = (Qiva/cIBo)i are the
normalized perturbed density, electrostatic potential, and
parallel vector potential, respectively. In these equations
R is the major radius, (); is the ion gyroradius, c; is
the ion acoustic speed computed with only the electron
temperature, L, is the density gradient scale length, v, is
the Alfven velocity, and ¢ is the toroidal angle. Here a few
comments are in order. We have neglected the curvature
terms as well as any dissipation effects. The curvature
terms play a role in destabilizing the finite-beta drift waves
observed in the simulations, whose stability we investigate.

In the linear analysis that follows, the implicit assump-
tion is that we have a large amplitude finite-beta drift wave.
All the three quantities n, ¢, and ¢ associated with this
pump wave can be written as

& = &oexplikyy + ikjz — iwot), @)

where ¢ represents any one of the three quantities. To
investigate the stability of this wave to the generation of
shear/zonal flow (¢;) and zonal magnetic field (¢y), the
perturbed quantities can be represented as

& = & explikex —
+ &4 explikex + ikyy + ikyz — iw+t)
+ &_exp(ikyx — ikjz —iw-t), 8)
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where w+ = w = wy. The first term represents the
shear/zonal flow (¢;) and zonal magnetic field (/). The
zonal magnetic field occurs only in a finite-beta plasma.

015001-2

The second and third terms represent all three perturbed
quantities for the sidebands which couples the shear flow
and zonal magnetic field to the pump drift wave. The wave
number and frequency matching conditions determine the
spatial and temporal dependence assigned to the * side-
bands. Because of the dispersive character of the drift
waves, the two sidebands are nonresonant and are equally
important. This four-wave coupling is therefore the sim-
plest model representing the generation of shear flow and
zonal magnetic field by a finite-beta drift wave. This rep-
resentation is the local version of that used by Chen et al.
[20] and the complex representation of that used by Guz-
dar et al. [6]. Here wg is the mode frequency satisfying
the dispersion relation for drift and drift-Alfven waves,

W wo(wy — ws)

2 2 -
L+ kypg o kﬁvfzx 0. 9)
Here w. = kypscs/L, is the electron diamagnetic fre-
quency. In this Letter we will consider only the shear flow
and zonal field generation by the drift-wave branch and
address the issue of shear flow generation by drift-Alfven
waves in a later publication.

The four coupled equations for zonal flow ¢, zonal field
s, and the sidebands ¢+ lead to the following dispersion
relation for shear flow/zonal field generation:
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A is the frequency shift between the pump wave and
the sidebands. This arises due to the dispersive nature
of drift waves. Here k3 = k2 + k2 and y, = Tleol =
(kykyc2/Q:)l ol is the maximum growth rate for the
shear flow instability for the electrostatic case.

This dispersion relation is the finite-beta slab version of
Eq. (10) in the work of Chen et al. [20] and also includes
the large mode-number limit because of the terms associ-
ated with the nonlinear polarization drift in the drift-wave
components. If we examine this dispersion relation, we
find that there are two distinct finite 8 effects. The first
such effect, which appears in the matrix element M, is due

A=1+kip? - (13)
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to the finite 8 associated with the pump drift wave and the
sidebands. The second finite-beta effect arises because of
the zonal field ;. The nature of the coupling shows that
the zonal flow and the zonal field are on the same footing,
both being driven by the pump wave and the two sidebands.

To solve the dispersion relation for the zonal flow/zonal
field [Eq. (10)], it is first necessary to solve the disper-
sion relation for the pump drift [Eq. (9)]. Normalizing
the frequency wy to the drift frequency w., and assuming
ky ~ (gR)™!, the normalized dispersion relation [Eq. (9)]
becomes

1 A
1+ kjpl — o Qok;pB(Qo — 1) =0. (14
Subsequently the growth rate for the shear/zonal flow and
field [Eq. (10)] becomes

y = (kepy) (kypy) [Ma(1 — Q2k2p2B)
+ MpQ3kZpZkipl B — A?1V2 (15)

Here Qo = wo/w«, B = B(gR/L,)?/2, and A2 =
(1/2) (ps/Ln)*(ky ps)2 Q3 /| pol?. Also the growth rate has
been normalized to ;|¢g|. These normalizations show
that there are four dimensionless parameters, (1) k,p;,
(2) keps, (3) B, and (4) |¢olL,/ ps. The simple dispersion
relation [Eq. (15)] for the growth rate yields very interest-
ing results for the generation of shear/zonal flow and field.

Shown in Fig. 1 are the dispersion curves for the drift-
wave branch for ky,p, = 0.1 (solid line), kyp, = 0.25
(dashed line), and k,p, = 0.5 (dash—long-dashed line)
as a function of 3. As seen from the plots, the inclusion
of finite beta strongly reduces the frequency of the drift
wave. Using these eigenfrequencies, we now compute the
growth rate for the shear/zonal flow and field.

For the drift-wave pump mode, Fig. 2 shows the growth
rate of the maximally growing mode (maximized over
kyps) as a function of ,B for kyps = 0.1 (solid line),
kyps = 0.25 (dashed line), and k,p, = 0.5 (dash—long-
dashed line) for |¢o| = p,/L,. For kyp; = 0.1, the sta-
bilizing influence of the finite-beta effects associated with
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FIG. 1. Eigenfrequency () for drift-wave branch versus S
for | ol = ps/Ln, kyps = 0.1 (solid line), kyp, = 0.25 (dashed
line), and k,p; = 0.5 (dash—long-dashed line).
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the drift wave and the sidebands dominates, and the maxi-
mum growth rate decreases as a function of 3. However,
for the larger k,p, this stabilization occurs for small B
and the destabilizing influence of the zonal field coupling
dominates for larger 8. The minimum of this maximized
growth rate shifts to lower B as kyps increases.

We now argue that the threshold for the onset of L-H
transition is the minimum point of the curves. Namely,

d dy d’y
3. 4p
This can be understood as follows. At B = ., the shear
flow/zonal field causes stabilization of the turbulence and
as the density steepens 3 increases. This increases the
growth rate of the zonal flow/field instability, thereby fur-
ther enhancing the stabilization of the turbulence and the
steepening of the density gradient. On the other hand, for
B < B., even though the zonal flow instability is present,
the steepening of the density gradient cannot be sustained
since it causes the growth rate for the flow to decrease,
thereby allowing the turbulence to grow and cause more
transport.

The next step is to establish a threshold condition. Fig-
ure 3 is a plot of the quantity A, = (kyps)z,éc versus
kypy for eldol/T. = (1/2)ps/L, (diamond), e|dol/T, =
ps/Ln (circle), eldol/T. = 2ps/Ln (square) In fact,
for e|dol/T. = 2ps/Ln, the values of (kypy) B versus
ky p are almost identical to those for eldol/T. = 2ps/L,
(square). For the pump amplitude e|dol/T, = 1/2p,/L,,
and k,p, varying over a range of five, the value of A, =
(ky ps)? ,BC is tightly bound between 1.7 and 2.1. Thus we
can state the threshold criterion as (k, px)2 ,BC = 1.7-2.1.

If we assume that k, = 27 /Ly, where Ly is the
characteristic scale length defined in the work of Guzdar
et al. [12] and later in the work of Rogers et al. [13], then
(kyps)z,éc = 4772(1 + 7')aMHDaDz/(l t7+tmnt+ 7771')-
Thus for 7+ = T;T. =1, 5. = dInT,/dlnn = 1, n; =
dInT;/dInn = 1 as used in the simulation of Rogers
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FIG. 2. Maximum growth rate vy, versus B for drift-wave
pump with |¢g| = p,/L,. The different curves are for k,p, =
0.1 (solid line), k,p, = 0.25 (dashed line), and k,p, = 0.5
(dash—long-dashed line).
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FIG. 3. A. = (kyps)zfﬂf versus  kyp, for
(1/~2)ps/Ln (diamond), e|¢0|/Te = ps/Ln
e|¢0|/Te = zp.r/Ln (Square)-

elgol /T, =

(circle), and

et al. [13], this threshold condition therefore translates
to aMHDaD2 = (0.085-0.12. We fitted our amupap
scaling to the numerically obtained L-H transition curve
by Rogers et al. [13] and found the scaling was in agree-
ment with their results; however, the constant for their
data was 0.35. As mentioned earlier, for comparison of
the Rogers et al. [13] result with the DIII-D and C-MOD
data, their constant had to be adjusted to lower values
by two to four. This was due to the differences in the
definitions of ap used in the experimental studies as
well as the difference in the values of 7, 7., and 7);
between the simulations and experiments. If we use
ni =n, =2 and 7 =1, for C-MOD, our theoretical
model agrees well with the data set presented by Hubbard
et al. [16] in their Fig. 3. Also for the DIII-D case, since
our constant is smaller, our analytic curve is in better agree-
ment with the DIII-D data shown in Fig. 8 [17]. In reality
it is necessary to measure the gradients of the electron and
ion temperature as well as the density to compute the con-
stant more accurately. Further improvement in our model
including finite ion temperature effects and more detailed
comparison with simulations and experimental data will
be the subject of future work. Thus we conclude that the
L-H transition is triggered by shear flow/zonal magnetic
field suppression of turbulence and the sustainment of the
flow and magnetic field by the steepening of the density
gradient.
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